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Abstract—When images at low bit-depth are rendered at
high bit-depth displays, missing least significant bits need to be
estimated. We study the image bit-depth enhancement problem:
estimating an original image from its quantized version from
a minimum mean squared error (MMSE) perspective. We first
argue that a graph-signal smoothness prior—one defined on
a graph embedding the image structure—is an appropriate
prior for the bit-depth enhancement problem. We next show
that solving for the MMSE solution directly is in general too
computationally expensive to be practical. We then propose an
efficient approximation strategy. Specifically, we first estimate the
AC component of the desired signal in a maximum a posteriori
(MAP) formulation, efficiently computed via convex program-
ming. We then compute the DC component with an MMSE
criterion in closed form given the computed AC component.
Experiments show that our proposed two-step approach has
improved performance over conventional bit-depth enhancement
schemes in both objective and subjective comparisons.

Index Terms—Bit-depth enhancement, graph signal processing

I. INTRODUCTION

It is undeniable that there exists an insatiable human desire

to create bigger and more realistic visual displays. In terms

of spatial resolution (number of pixels per image), television

has evolved from VGA (640× 480) to HD (1280× 720), and

soon to 4K and 8K ultra HD (3840× 2160 and 7680× 4320
respectively). In terms of bit-depth (number of bits per pixel),

high dynamic range (HDR) technologies [1] have promised

10 or more bits per pixel—as opposed to conventional 8 bits

per pixel—for finer-grained quantization of real pixel values

to discrete levels.

However, though display technologies have continued to

improve, the bulk of legacy image and video contents were

captured and recorded using older imaging devices, often in

lower spatial resolution and shallower bit-depth than what

modern displays are capable of rendering. Super-resolution [2]

addresses the first problem of increasing the spatial resolution

of an image. In contrast, we address the second problem of bit-

depth enhancement. Bit-depth enhancement is equivalent to the

problem of signal reconstruction from its per-pixel quantized

version. Thus bit-depth enhancement can also be called the

pixel domain de-quantization problem.
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Fig. 1: Examples of quantized and reconstructed 1D signals.

One major visual artifact caused by shallow bit-depth is

false contouring, also called posterization artifact. Informally

it is the unnatural appearance of discrete color bands due

to coarse quantization into finite bits, while a high bit-depth

equivalent image patch would appear as smooth transition

from one color to another. Thus there is a need to suitably

increase the bit-depth of legacy image content.

Existing techniques for bit-depth enhancement in the lit-

erature [3–7] exploit the notion of smoothness. The key

observation is that true image signals tend to be smooth, and

thus given an observed low bit-depth (LBD) signal, applying

a smoothing operator across consecutive quantization levels

would likely result in a better quality reconstructed signal. As

an illustration, we see in Fig. 1 an 8-sample one-dimensional

(1D) signal y quantized to integer values 1 and 2. If a smooth-

ing operator is applied, it can result in x1 or x2, depending on

the amount and type of smoothing applied. While the notion of

smoothness is intuitive, defining an appropriate mathematical

definition and applying it optimally for high bit-depth (HBD)

signal reconstruction is nontrivial.

In this paper, leveraging on recent graph signal process-

ing (GSP) techniques for images [8–18], we first formally

define “smoothness” via a signal-dependent graph Laplacian.

Specifically, a graph Fourier transform (GFT) computed from

a defined graph can decompose a graph-signal (e.g., a pix-

el patch) into graph frequency components, and a graph-

signal is deemed smooth if it contains mainly low graph

frequencies. Further, unlike spectral decomposition based on

fixed transforms like discrete cosine transform (DCT), image

gradients can be embedded as edge weights into the graph,

so that discontinuities in natural images will nonetheless be

interpreted as low graph frequencies, reducing the chance of

over-smoothing.

Next, armed with our defined smoothness prior for graph-

signals, we formulate an optimization problem for recon-

structed signal x̂ that minimizes the average mean squared

error (MSE) (or, equivalently, the expected distortion) given
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quantized signal y. Observing that the optimization is difficult

to solve directly, we next demonstrate that the most probable

signal via maximum a posteriori (MAP) estimation, given

observed y and the smoothness prior, can lead to large

expected distortion, and thus applying MAP directly is a poor

proxy for the original optimization objective. However, we

argue that with a simple twist—computing the most proba-

ble AC component x̂A of the reconstructed signal first via

MAP and then a distortion-minimizing DC component x̂D

subsequently—MAP can still be a useful and efficient tool

that returns good approximate solutions to the original MMSE

problem. Experiments demonstrate that our proposed two-step

method produces HBD images that are better than competing

schemes in both objective and subjective comparisons.

The outline of the paper is as follows. We first overview

related work in Section II. We then formulate and analyze

the bit-depth enhancement problem in Section III. Proposed

image bit-depth enhancement and the corresponding optimiza-

tion procedure are elaborated in Section IV and Section V

respectively. Finally, we discuss experimental results and draw

conclusions in Section VI and VII, respectively.

II. RELATED WORK

Bit-depth enhancement is different from the inverse tone

mapping problem in HDR imaging [19, 20]. Distortions in

inverse tone mapping are typically caused by unknown non-

linear tone mapping operator or the over-saturation of camera

sensors, while distortion in bit-precision enhancement problem

is introduced by scalar quantization. Thus the desired output of

bit-precision enhancement does not hallucinate lost details for

improved subjective quality, but estimates the original HBD

image from the coarsely quantized LBD image.

Coarse quantization may cause false contours which degrade

the visual quality of the image. Besides naı̈ve algorithms such

as zero-padding and bit-replication [21], previous works on

false contour removal and bit-precision enhancement [4, 5, 7,

22] are typically smoothing schemes using filtering or spatial

interpolation, which do not optimize an objective metric such

as mean squared error (MSE). [23] presented a bit-depth

enhancement method by modeling the error of intra-pixel

prediction, but its objective is to minimize the classification

risk, rather than to minimize the MSE relative to the ground-

truth. Also note that in our problem setup the input image has

already been quantized, so dithering-like approaches [24–26]

that change the signal before quantization are not applicable.

An example of filtering-based image bit-depth enhancement

method is predictive cancellation [7]. The basic idea is to

predict the quantization error of the HBD image given the

LBD image. The LBD image is first low-pass filtered, and

the quantization error of the low-passed image approximates

that of the input LBD image in low frequencies. Thus by

subtracting the approximated quantization error, the contours

in low frequency image regions can be removed. The problem

of this method is that the low-pass filter might blur non-

contour edges, and it is hard for the filter kernel to adapt to

false contours in different sizes.

Examples of interpolation-based bit-depth enhancement

method are [5, 27]. Two distance maps, up map and down

M

B1B1 B2

B4B3

B1 B2

Fig. 2: Illustration of block arrangement. We use M × M
half-overlapped blocks to reduce artefacts due to block-based

processing. From left to right: one block, two overlapped

blocks, four overlapped blocks. Note that the boundary pixels

of a block are the inner pixels of other blocks.

map, are generated to measure the contour region progression.

A variable called step ratio is calculated from the distance

maps showing the percentage of progression of the contour

region. Finally, the estimated HBD signal is calculated by

linear interpolation based on the step ratio. With the help of

detected skeletons, [5] obtained good bit-depth enhancement

results even for textureless regions that are local maximum

and minimum. But the simple linear interpolation does not

guarantee good reconstruction performances as natural images

are 2D signals that typically have signal-dependent structures

and non-linear transitions.

Graph signal processing (GSP) is the study of signals

that live on structured data kernels described by graphs [8].

GSP tools can also be applied to traditional signals such as

images that live on regular 2D grids [9–18, 28] or point cloud

structures [29], where the idea is to embed signal gradients into

the graph before signal processing. Similarly, to reconstruct a

HBD signal we first compute edge weights of a graph based

on the signal gradients (deduced from the observed input

LBD image) and then define signal smoothness via the graph

Laplacian, so that a signal with enhanced bit-precision can be

reconstructed without over-smoothing natural image gradients.

III. PROBLEM FORMULATION

We first overview the image bit-depth enhancement prob-

lem. We then define the problem objective in terms of MMSE.

We need an appropriate signal prior to regularize our inverse

problem; we argue that the graph-signal smoothness prior is

suitable for the bit-depth enhancement problem. We conclude

this section by showing that solving the formulated MMSE

problem directly is difficult—numerical evaluation is compu-

tationally complex, while solving MAP as a proxy can lead

to bad MSE performance.

A. Block-based Bit-depth Enhancement

Image bit-depth enhancement problem is an inverse imaging

problem. We interpret an image signal xo to be an observation

of an N -dimensional random vector x, whose probability

density function (PDF) is described mathematically by a signal

prior (to be formally defined). Without loss of generality,

we assume that the signal xo is normalized such that each

pixel i has value xo
i ∈ [0, 1]. To represent each pixel value

in finite bits, each xo
i is separately scalar-quantized to value

yi = (floor(xo
i /Q) + 0.5)Q [30] in vector y using a known
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scalar quantization step size Q = 1/2b with bit-depth b.1 At

the receiver, only y and Q are known, which translate to a

per-pixel quantization constraint for the original signal: xo
i

must lie within the quantization bin
[

yi −
Q
2 , yi +

Q
2

)

, ∀i.

Given the set of N quantization constraints and a pre-defined

signal prior, the problem is to find the “best” estimate x̂ of

the original image signal xo.

For complexity considerations, we divide an image into

overlapping pixel blocks for block-based processing. The

estimated HBD pixel values are updated through processing

of blocks in a raster-scan order. Specifically, we use M ×M
square blocks, each overlapping adjacent blocks on the same

row or column by M
2 pixels (M is an even integer); see Fig. 2

for an illustration. Thus by image signal, we mean a vectorized

image block with length N = M2.

B. MMSE Objective for Bit-depth Enhancement

Our objective is to find an estimate x̂MMSE with the

minimum mean squared error (MMSE):

x̂MMSE = argmin
x̂

∫

‖x̂− x‖22 f(x |y) dx (1)

where f(x |y) is the posterior PDF of original signal x given

observation y. To derive x̂MMSE, we set the derivative of (1)

with respect to x̂ to zero, leading to:

∫

(x̂− x) f(x |y) dx = 0 (2)

which implies x̂
∫

f(x |y) dx =
∫

xf(x |y) dx. By definition
∫

f(x |y) dx = 1, so the MMSE solution x̂MMSE is also the

expectation of x given y:

x̂MMSE =

∫

xf(x |y) dx = E(x|y) (3)

To compute x̂MMSE in (3) we need to compute the posterior

f(x |y). By Bayes’ theorem [31], we know that f(x |y) ∝
f(x)f(y |x), where f(x) and f(y |x) are the prior and

likelihood respectively. In our bit-depth enhancement problem,

the likelihood takes a simple form due to the nature of

quantization:

f(y|x) =

{

1, if x ∈ F(y)

0, otherwise
(4)

where F(y) is the feasible space of the original signal given

observed quantized signal y, i.e.,

F(y) = {x | (floor(xi/Q) + 0.5)Q = yi, ∀i} (5)

The prior f(x) reflects the statistics of the original signal.

Like other inverse problems, the prior serves to regularize an

otherwise ill-posed problem [32]. Next, we discuss the prior

we employ in this work for bit-depth enhancement—the graph-

signal smoothness prior.

1Another possible quantizer is yi = round(xo
i /Q)Q where Q = 1

2b−1
.

C. Smoothness Prior for Image Signal

Smoothness is a widely used signal prior for inverse imaging

problems such as denoising [32–34]. It assumes that the

desired signal is slow-varying over a defined spatial domain

where the signal exists [35]. Smoothness can be mathe-

matically defined in a number of ways. For example, total

variation (TV)—which assumes that the aggregate inter-pixel

difference in l1-norm in an image is small—is a well-known

smoothness prior in image restoration [36]. One can also

define smoothness as having mainly low-frequency energies in

a chosen transform domain, such as discrete Fourier or wavelet

transform [37, 38].

The appropriate choice of smoothness definition depends

on the specific inverse problem. For many image restoration

problems, smoothness defined as low-frequencies in fixed

Fourier transforms such as Discrete Cosine Transform (DCT)

may not be a good choice. Defined independent of the signal

it sought to represent, DCT essentially assumes that every

pair of adjacent pixels are equally similar. Thus, edges /

discontinuities common in a natural image would translate

to high frequencies in the Fourier domain, and enforcing

smoothness will blur sharp edges.

Thus a good smoothness prior should account for the

underlying image structures (discontinuities), so that over-

smoothing of sharp edges in images does not occur. We argue

that a smoothness prior defined on a weighed graph is suitable

for our image bit-depth enhancement problem. This is because

detected image structures (discontinuities) can be embedded

as small edge weights in the graph; small edge weights

prevent filtering across edges during graph-based filtering,

which would otherwise lead to blurring [10]. In literature,

graph-signal smoothness prior has been successfully used in

other inverse problems such as depth image denoising [9],

depth image interpolation [13, 14], natural image denoising

[15, 16] and soft decoding of JPEG images [12, 18].

We first formally define a graph and graph-signals on top

of the graph. We then define our notion of graph-signal

smoothness prior for bit-depth enhancement.

1) Signal on Graphs: We consider a graph G = (V,W)
where V and W are the sets of vertices and edge weights,

respectively. The graph is defined on a pixel block, where: 1)

each vertex represents a pixel i with associated pixel value xi;

and 2) two vertices—representing adjacent pixels i and j in the

block—are connected by an undirected edge, which in turn is

labeled with a non-negative weight wi,j ∈ [0, 1]. Edge weight

reflects the correlation of—or similarity between—two pixels:

1 means highest correlation / similarity and 0 effectively means

no correlation / similarity.

A graph-signal is defined as a vector x ∈ R
N on a graph

G with fixed V and W . Hence the edge weights have to

be determined prior to the processing of the graph-signal

x. Given only observed signal y, typically an edge weight

wi,j is assigned according to the similarity between the two

corresponding observed pixels yi and yj , so that observable

image structure can be embedded into the graph definition.

Like the bilateral filter [39] where a Gaussian kernel is used to

determine inter-pixel weights, one can use a Gaussian kernel
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Reconstruction using GFT
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(b) Signal reconstruction using
only DC and 1st AC component.
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(c) Example of enforcing graph smoothness. Upper figure is an input
row of pixel values, lower figure is the smoothed output.

Fig. 3: Advantage of graph smoothness over smoothness de-

fined by DCT: enforcing graph smoothness leads to a better re-

constructed signal. For (a) (b), the observed y = [5, 1, 1, 1, 1].
Signal samples are connected to its immediate neighbor, with

edge weights being 1 except for w1,2 = w2,1 = 0.1.

to compute wi,j [9, 15], i.e. wi,j = exp
(

−(yi − yj)
2/σ2

w

)

,

where σw is selected so that wi,j is close to 0 when yi and yj
are on two sides of a discontinuity, and close to 1 when they

are in a smooth region.

With the calculated edge weights, we define the adjacency

matrix W ∈ R
N×N of the graph, where its (i, j)-entry is the

weight wi,j . The degree matrix D ∈ R
N×N is a diagonal

matrix with entries di,i =
∑

j wi,j . The graph Laplacian

matrix is further defined as L = D − W. Eigenvectors of

L compose the rows of the transform matrix of the Graph

Fourier Transform (GFT). GFT decomposes a graph-signal

into its graph frequency components, where low frequency

components correspond to the eigenvectors with smaller eigen-

values. Note the smallest eigenvalue is zero by definition of

L, which corresponds to the DC component.

2) Graph-Signal Smoothness Prior: A smooth graph-signal

means that its low-frequency energy is dominant in the GFT

domain. Thus we define a graph-signal smoothness prior f(x)
where a signal x is more probable if x contains less high-

frequency energy in GFT domain. Since changing the DC

component does not affect the smoothness of a signal, we

write f(x) = f(xD)f(xA) where xD and xA are AC and DC

components of x respectively:

x = xD1+ xA, xD =
1

N

N
∑

i=1

xi (6)

Prior of the DC signal is assumed uniform, i.e. f(xD) = C
is a constant scalar. The AC prior PDF f(xA) favors low-

frequency components in GFT domain:

f(xA) =
1

K
exp {−σx⊺

ALxA} =
1

K
exp

{

−σ

N
∑

i=2

ρic
2
i

}

(7)

where [ρ2, · · · , ρN ] are L’s non-zero eigenvalues in non-

decreasing order. ci is the GFT coefficient of the i-th graph

frequency. K is the normalization factor for f(xA)
2.

By (7), an AC signal xA with energy mostly in the low

graph frequencies (non-zero coefficients ci’s only for small

ρi’s) will have higher probability f(xA). Further, because

x
⊺

ALxA = 1
2

∑

i,j wi,j(xA,i − xA,j)
2, a large inter-pixel

difference |xA,i − xA,j | will not incur high frequency energy

if edge weight wi,j is pre-assigned a small value. Hence

reconstructing a smooth graph-signal using prior in (7) will

not blur sharp edges if the image structure is described by

appropriately set edge weights. Fig. 3(b) shows an example

where a smooth graph-signal containing only DC and 1st

graph AC component better represents the original signal (with

discontinuity between the first and second samples) compared

to that using DCT basis. Fig. 3(c) shows an example of graph

smoothing on a row of pixels, where we see that a smooth

signal is restored without blurring the true edges.

D. Solving the MMSE Problem

Given Bayes’ theorem f(x|y) ∝ f(x)f(y|x), we multiply

our graph-signal smoothness prior (7) and likelihood function

(4) to obtain the posterior of x as follows:

f(x|y) ∝

{

f(x), if x ∈ F(y)

0, otherwise
(8)

Given the posterior, we can in theory compute the MMSE

solution using (3). However, directly calculating (3) is difficult:

the prior (7) is a N -dimensional Gaussian, while the likelihood

(4) is a binary-valued function defining a feasible signal space.

Hence the resulting posterior (8) is a “cropped” N -dimensional

Gaussian function. In that case, calculating (3), mean of

the posterior, requires multi-dimensional integration. General

high-dimensional integration is computationally expensive and

is typically done using Monte Carlo methods [41, 42].

One alternative to directly solving the MMSE problem is to

solve the MAP problem as an approximation; e.g., total vari-

ation denoising [36] can be computed using a MAP estimator

assuming the signal gradient follows a Laplace distribution.

MAP estimation is easier to compute since maximization can

be efficiently solved using convex optimization [43].

By definition, MAP solution is the mode of the posterior

PDF:

x̂MAP = argmax
x

f(x|y) (9)

MAP solution x̂MAP is clearly different from MMSE so-

lution x̂MMSE: MMSE is the location of center mass of the

posterior distribution, whereas the MAP is the location of the

peak of the posterior distribution. There are cases where the

MAP solution (mode) is far from the MMSE solution (mean).

2In some applications, the same smoothness prior can alternatively be
interpreted statistically using Gaussian Markov random field [40].
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(a) Original HBD image (b) Quantized image y

(c) Output by (9) (d) Output by proposed method

Fig. 4: Example showing direct MAP estimation leads to a DC

output (c) with large MSE, while proposed two-step approach

outputs a smooth signal (d) with smaller MSE.

In particular, we show that in our bit-depth enhancement

problem, using MAP directly as a proxy can lead to arbitrarily

poor MSE performance.

By (8), MAP estimator (9) finds the signal x with the largest

prior probability f(x) in F(y): x̂MAP = arg max
x∈F(y)

f(x).

Given a smoothness prior f(x) is used, the MAP estimator

identifies the “smoothest” signal in F(y). In the example

shown in Fig. 4, MAP identifies a solution in (c) that is

essentially DC, regardless of quantization step size Q, with

MSE = Q2/3. In contrast, MSE of simply using y as the

estimation is Q2/12. For increasingly large Q, the MAP

solution is increasingly worse than y. Hence directly using

MAP as a proxy to MMSE is not a good choice.

A natural question is then: what are the conditions for the

MAP solution to have good MSE performance? Derived in

Appendix A, the estimation error of MMSE solution and MAP

solution are respectively:

MSE(x̂MMSE) = E(‖x−E(x|y)‖22|y),

MSE(x̂MAP) = MSE(x̂MMSE) +G(x,y)2
(10)

where G(x,y) = ‖x̂MAP−x̂MMSE‖2 is the gap between MAP

estimation and MMSE estimation. Small gap means good MSE

performance. There are two sufficient conditions for a small

gap G(x,y): 1) the gap equals to zero if posterior distribution

f(x|y) is symmetric around the peak (e.g. Gaussian distribu-

tion); 2) the gap is small when the posterior distribution is

concentrated around the peak.

Above analysis explained the bad MSE performance of

direct MAP estimation MSE(x̂MAP): 1) the gap is larger due

to the asymmetry of the posterior distribution; 2) the variance

of the posterior distribution f(x|y) is large. This is because

the posterior f(x|y) in our problem is a “cropped” version of

Gaussian function (7). Although the prior probability f(x) is

symmetric in space R
N , it is not symmetric in the feasible

subspace F(y) ∈ R
N defined by likelihood (4), thus the

posterior distribution is asymmetric and the gap is large.

In summary, MMSE solution is optimal in MSE but is hard

to compute, while MAP solution is easy to compute but can

have bad MSE performance. We next present our two-step

approach that achieves a good tradeoff between the two: we

first estimate the AC signal using MAP which is shown to have

good MMSE performance, followed by a MMSE estimation

of the DC signal based on the estimated AC signal.

IV. PROPOSED ACDC METHOD

A. Approximation to the MMSE Solution

As discussed previously, directly computing the MMSE

solution (1) is computationally expensive, while MAP does not

yield good approximations in general. So instead of estimating

the signal x directly, we propose to estimate the AC and

DC signals separately: AC component via MAP, then DC

component via MMSE given computed AC component. For

notation convenience we call our proposed algorithm ACDC.

As in (6), we decompose the N -dimensional signal x

into AC and DC components: x = xD1 + xA, where the

DC component xD = 1
N

∑N
i=1 xi is a scalar, and the AC

component xA is a vector satisfying
∑N

i=1 xA,i = 0.

By the above AC-DC decomposition, the MMSE problem

(1) can be rewritten as:

x̂MMSE = arg min
x̂D,x̂A

∫

‖x̂D1+ x̂A − xD1− xA‖
2
2f(x|y)dx

(11)

Because ‖x̂D1 + x̂A − xD1 − xA‖
2
2 = N(x̂D − xD)2 +

‖x̂A−xA‖
2
2+2(x̂D−x̂D)1⊺(x̂A−xA) and 1⊺(x̂A−xA) ≡ 0,

equation (11) becomes

arg min
x̂D,x̂A

∫

(N(x̂D − xD)2 + ‖x̂A − xA‖
2
2)f(x|y)dx (12)

Problem (12) is still hard to solve with two variables x̂D

and x̂A, so we first estimate the AC signal x̂A, followed

by DC estimation. The reason for this decomposition is

because our graph-signal smoothness prior only characterizes

the AC signal, so estimating AC signal first in general is more

accurate.

Mathematically, we first solve (12) with x̂A as the only

variable:

argmin
x̂A

∫

(N(x̂D − xD)2 + ‖x̂A − xA‖
2
2)f(x|y)dx

= argmin
x̂A

∫

‖x̂A − xA‖
2
2 f(xA|y) dxA

(13)

This is still a MMSE problem that cannot be solved directly.

In the following Section IV-B, we will solve it approximately

using MAP; the solution is denoted as x̂ACDC
A .

Then we fix the AC signal as x̂ACDC
A and solve the MMSE

DC given the feasibility constraint:

argmin
x̂D

∫

(x̂D − xD)2 f(xD + x̂ACDC
A |y) dxD

s.t. x̂D1+ x̂ACDC
A ∈ F(y)

(14)
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(a) Posterior PDF f(x|y) in direct MAP (9). Like-
lihood function (4) defines a square feasible space
where the MAP solution is at the corner.
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(b) Posterior PDF of AC signal f(xA|y) in MAP
AC estimation (23). Note MAP solution is close to
MMSE solution.

x
A,1

x
A

,2

−1 −0.8 −0.6 −0.4 −0.2 0
0

0.2

0.4

0.6

0.8

1

(c) Likelihood function of AC signal (20) in MAP
AC estimation (23). Feasible space of AC signal
(21) is a line segment.

Fig. 5: An example of estimating signal x = [x1, x2] (N = 2) given its quantized signal y = [3, 4] and Q = 1. Prior PDF is

defined to be f(x) ∝ exp(−σ(x1 − x2)
2). The colormap stands for the probability density (red for higher value). We see that

due to the non-uniform AC likelihood (c), the posterior PDF of AC signal (b) is more concentrated than that of the whole

signal (a), thus MAP for AC signal has good MSE performance.

The solution of (14) is denoted as x̂ACDC
D , and will be

discussed in Section IV-C. Next we elaborate how we calculate

the MAP AC signal x̂ACDC
A and MMSE DC signal x̂ACDC

D in

turn.

B. AC Signal Estimation

We propose to estimate the AC signal x̂A using MAP

estimation. We first derive the exact likelihood function for

the AC signal, then we explain why MAP is a good proxy for

the MMSE AC problem (13).

Seeking MAP estimate of AC signal means solving:

max
xA

f(xA|y) = max
xA

f(y|xA) f(xA) (15)

where the prior for the AC signal is defined in (7). By total

probability theorem, the likelihood can be written as:

f(y|xA) =

∫

f(y|xA, xD)f(xD) dxD (16)

where f(y|xA, xD) is 1 if xD + xA ∈ F(y) and 0 otherwise.

Recall that f(xD) = C. Hence the likelihood (16) becomes:

f(y|xA) =

∫

xD|xD+xA∈F(y)

C dxD (17)

1) Deriving Likelihood of AC Signal: Next we derive the

upper and lower integral bounds for the above equation. By

definition of the feasible space F(y), we have N per-pixel

quantization constraints as follows:

xA,i +Dup ≤ yi +
Q

2
, ∀i

xA,i +Ddn ≥ yi −
Q

2
, ∀i

(18)

Solving the above simultaneous inequalities leads to the upper

and lower bounds of the integral:

Dup = min
i
(yi +

Q

2
− xA,i)

= min
i
(yA,i − xA,i) + yD +

Q

2

Ddn = max
i

(yi −
Q

2
− xA,i)

= max
i

(yA,i − xA,i) + yD −
Q

2

(19)

where i ∈ {1, . . . , N}. Defining function range(x) ,

maxi(xi)−mini(xi), the likelihood of xA (17) becomes:

f(y|xA) =

{

C(Q− range(yA − xA)), if xA ∈ FA(y)

0, otherwise

(20)

Feasible space FA(y) of the AC signal is determined by

Dup ≥ Ddn, i.e. range(yA −xA) ≤ Q. Together with the AC

definition 1⊺xA =
∑

i xA,i = 0, we have:

FA(y) = {xA | range(yA − xA) ≤ Q, 1⊺xA = 0} (21)

2) MAP Estimation of AC Signal: By Bayes’ theorem, the

posterior of the AC signal is proportional to the product of (7)

and (20):

f(xA|y) ∝
{

C(Q− range(yA − xA))f(xA), if xA ∈ FA(y)

0, otherwise

(22)

Hence, our proposed MAP AC estimation becomes:

x̂ACDC
A = arg max

xA∈FA(y)
(Q− range(yA − xA)) f(xA) (23)

3) Approximation Error: We now argue that the MAP

solution of AC signal by (23) does give a good approximation

of MMSE solution (13), i.e. the gap Gx|y is small. In contrast

to the uniform likelihood (4) of the whole signal x, the non-

uniform likelihood for AC signal (20) contributes to a posterior

PDF (22) that is more symmetric and more concentrated.
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Above facts can be easier to understand using an example

in Fig. 5. The posterior (8) of the whole signal x—which

is proportional to the smoothness prior (7) multiplied by a

binary likelihood (4)—is shown in Fig. 5(a). We see that the

gap between MMSE and MAP solutions is large in this case.

The AC likelihood f(y|xA), shown in Fig. 5(c), is the result

of integrating f(y|x) over feasible DC values. Mathematical-

ly, this integral is implied in the multiplication with value

Q − range(yA − xA) in (23). Due to this integration, the

AC likelihood f(y|xA) favors the AC signals closer to yA

(note the non-uniform likelihood function in 5(c)). Note this

behavior is very different from direct MAP estimation of the

whole signal (Fig. 5(a)) where the likelihood is uniform within

the feasible space.

The posterior of AC signal (22) is proportional to the

product of the smoothness prior (23) and the AC likelihood

function (20). Due to the non-uniform (20), we have a much

smaller gap between MAP and MMSE solution as shown

in Fig. 5(b). Following our previous discussion, a small gap

means that our MAP AC solution x̂ACDC
A has similar MSE

performance as the MMSE solution.

C. DC Signal Estimation

Given that the AC signal is estimated as x̂ACDC
A via MAP,

together with f(xD + x̂ACDC
A |y) ∝ f(y|xD + x̂ACDC

A )f(xD),
problem (14) becomes:

argmin
x̂D

C

∫

(x̂D − xD)2 f(y|xD + x̂ACDC
A ) dxD

s.t. x̂D1+ x̂ACDC
A ∈ F(y)

(24)

where f(y|xD, x̂ACDC
A ) = 1 so long as xD leads to quantized

y according to (5), i.e.

yi −
Q

2
≤ x̂ACDC

A,i + xD ≤ yi +
Q

2
, ∀i (25)

The integral bounds of (24) is determined by (19), so our

estimated DC signal is:

x̂ACDC
D = argmin

x̂D

∫ mini(yA,i−x̂ACDC
A,i )+yD+Q

2

maxi(yA,i−x̂ACDC
A,i

)+yD−Q
2

‖x̂D − xD‖22 dxD

= yD +
1

2
(min

i
(yA,i − x̂ACDC

A,i ) + max
i

(yA,i − x̂ACDC
A,i ))

= yD −
1

2
(min

i
(x̂ACDC

A,i − yA,i) + max
i

(x̂ACDC
A,i − yA,i))

(26)

where i ∈ {1, . . . , N}.

D. Final Output

Our estimated HBD image is x̂ACDC = x̂ACDC
A + x̂ACDC

D 1.

Note that (25) guarantees that x̂ACDC satisfies the quantization

constraints (19). Therefore our ACDC bit-depth enhancement

method gives a solution with small MSE satisfying all con-

straints. Calculation of DC signal (26) is trivial. We discuss

how MAP AC estimation (23) can be efficiently solved next.

V. SOLVING THE MAP AC ESTIMATION

We now discuss how MAP estimation of the AC signal can

be computed efficiently via convex optimization. We insert

the graph-signal smoothness prior (7) into (23), and given

range(x) = range(−x), we can write MAP AC estimation

as:

x̂ACDC
A = arg max

xA∈FA(y)

[
1

K
exp {−σx⊺

ALxA} · (Q− range(xA − yA))]
(27)

According to Appendix B, above optimization problem

is convex and can be well approximated by a quadratic

programming (QP) problem with variables x
⊺

A, s, and t. By

defining z = [x⊺

A, s, t]
⊺ ∈ R

N+2, the QP is in standard form:

min
z

z⊺Mz (28)

s.t. Az ≤ b,

c⊺z = 0

where

M =













0 0

Q2

2λ
L

...
...

0 0
0 . . . 0 1 −1
0 . . . 0 −1 1













,A =



























1 0

−IN
...

...
1 0
0 −1
0 −1

IN
...

...
0 −1

0 . . . 0 −1 1



























,

b = [−y
⊺

A,y
⊺

A, Q]⊺, c = [1, · · · , 1, 0, 0]⊺

QP can be solved very efficiently using, for example,

interior-point algorithms [44]. Although matrix M is typically

large in size (N×N ), it is very sparse (the number of nonzero

entries is less than 5N + 4 for a 4-connected graph). The

sparsity structure ensures efficient computation of QP.

A. Boundary Conditions

M=8, n=1

B1

B3

B2
B4

BBBBBBBBBBBBB1BBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBB2BBBBB

BBBBBBBBBBBBBB33BB33BBBBBBBBBBBBBBB3BBBBB

Fig. 6: Illustration of boundary pixels and boundary condition.

Suppose the gray blocks have been processed, B4 is the

current 8×8 block with 28 boundary pixels (marked in blue).

Because we apply bit-depth enhancement block by block,

there may be block artefacts along block boundaries. We

propose to enforce the following boundary condition for each

block. First, we define boundary pixels to be pixels on the

circumference of a block of width n. We then constrain the

boundary pixels to be exactly the same as the most recent

estimated values. If a boundary pixel i does not belong to

any previously optimized block, then its most recent estimated
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value is simply yi. Fig. 6 shows an example of boundary pixels

with M = 8, n = 1.

To achieve this, we need to add a set of equality constraints

to the QP formulation: SxA + x̂ACDC
D (xA) = Sx̂, where x̂

is the latest estimated signal (for a pixel i, if xi has not been

estimated by previous blocks, use yi as the latest estimate); S

is a matrix whose each row, sk ∈ R
N , is a selection vector

with form [0, 0, · · · 0, 1, 0 · · · , 0] indicating the k-th boundary

pixel. By (26) we know x̂ACDC
D (xA) = − 1

2 (s + t) + yD, so

above constraint can be rewritten as:

[sk,−0.5,−0.5]z = skx̂− yD, ∀ row k (29)

Therefore with boundary conditions the formulation (28)

becomes:

min
z

z⊺Mz (30)

s.t. Az ≤ b,

C⊺z = d

where

C =









1 · · · 1 0 0
−0.5 −0.5

S
...

...
−0.5 −0.5









, d =

[

0
Sx̂− yD1

]

Compared to (28), solving the above QP leads to the

estimated AC signal with boundary consistency. The bound-

ary condition guarantees continuous transition from block to

block, thus alleviates block artefacts.

VI. EXPERIMENTS

A. Experiment Setup

To validate our proposed bit-depth enhancement algorithm

experimentally, we use a collection of test images [45] as

shown in Fig. 7. All test images have bit-depth greater than

8. The HBD test images serve as the ground-truth xo, and the

input y to our bit-depth enhancement problem is the quantized

version of xo with low bit-depth b = 4 or 6 or 8.

We compare the objective performance of our proposed bit-

depth enhancement algorithm with the following competing

schemes: 1) ANC, the anchor method that simply uses y as

the output; 2) EPF, which estimates a high bit-depth pixel

value from neighboring pixels through an edge preserving

filter [22]; 3) DEC, a filtering-based method for removing false

contours [7]; 4) INT, a spatial interpolation method in spatial

domain [5]; 5) MRC, a bit-depth enhancement method using

minimum risk based classification [23]; and 6) ACDC, our

proposed two-step bit-depth enhancement method.

Given that we enhance block-by-block, we set block size

M = 64 with overlapped width of 32 pixels and a boundary

pixel width of n = 2. To compute a graph Laplacian L to

define the graph-signal smoothness prior, we first construct

a 4-connected graph for pixels in the target block. We then

compute the weight of an edge connecting two horizontally

/ vertically adjacent pixels as: wi,j = 1 if |yi − yj | ≤ Q,

otherwise wi,j = 0. For color images, the graph weights

are calculated using the maximal absolute differences in three

channels, and different color channels share the same graph

im1 (720x480) im2 (912x688) im3 (1024x768)

im4 (922x901) im5 (853x520) im6 (640x480)

im7 (800x480) im8 (440x320)

Fig. 7: HBD test images that serve as the ground-truth in

objective bit-depth enhancement experiments.

Laplacian. Because our MMSE objective is defined statistical-

ly, for fixed λ there is no guarantee that our computed solution

is close to a deterministic ground-truth image xo. For optimal

quality, we empirically adjust λ by estimating the degree of

smoothness in the signal.

B. Objective Comparisons

We use two objective metrics for rendered image evaluation:

peak signal to noise ratio (PSNR) and an alternative local

metric—segmental SNR (SSNR). Analogous to the segmental

SNR in audio processing literature [46, 47], the SSNR for

image is defined as the average SNR of non-overlapping

patches (we set patch size to be 100×100 in our experiments).

Different from the traditional SNR definition, the signal energy

here is the energy of the AC signal for each patch. The

intuition is that human eyes can adapt to the DC level of each

local block [48], thus the SNR using AC signal would better

characterize the perceived image quality by the human visual

system. The numerical results are summarized in Table I,

which shows our proposed ACDC performs consistently well

in 4-/6-/8-bit enhancement experiments because it not only

utilizes quantization constraints into the likelihood term, but

also embeds known image structures into graph weights,

enabling the reconstruction of edge-aware smooth signals.

Fig. 8, Fig. 9 and Fig. 10 show the visual results of

competing methods for b = 4, 6, 8 respectively. Given the b-bit

LBD input image, we re-quantize the output HBD image in

h-bit (h > b) to simulate the effect of displaying the output

images on a h−bit display device. When h > 8 one cannot

visually discern HBD images in a PDF document, so for output

images in b = 6 or 8 we instead show the local regions whose

intensity levels can be represented as 8-bit numbers. We see

that output images of proposed ACDC have no contouring

artifacts or blocky artifacts, in which true edges are well-

preserved from being smoothed out.

C. Subjective Comparisons

We conducted subjective testing to verify the effectiveness

of our proposed ACDC method compared to other ones. We
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ANC EPF

DEC INT

MRC ACDC

Fig. 8: Output HBD images of competing methods in 4-bit experiment (b = 4) for test image im1.

TABLE II: Subjective evaluation of different bit-depth enhancement methods for 4-bit and 6-bit images. Each table cell shows

the vote statistics and the corresponding p-value of two-sided χ2 test.

duck bill lion chair ball apple banana sack bill lion chair banana

(4-bit) (4-bit) (4-bit) (4-bit) (4-bit) (4-bit) (4-bit) (4-bit) (6-bit) (6-bit) (6-bit) (6-bit)

ACDC:ANC 18:0 14:1 18:0 13:1 17:0 18:0 13:1 17:0 15:0 14:0 13:1 10:4
p-value 2.2e-5 7.9e-4 2.2e-5 1.3e-3 3.7e-5 2.2e-5 1.3e-3 3.7e-5 1.1e-4 1.8e-4 1.3e-3 0.11

ACDC:MRC 15:0 18:0 15:2 17:0 14:0 11:6 15:0 17:1 18:0 15:2 14:3 12:3
p-value 1.1e-4 2.2e-5 1.6e-3 3.7e-5 1.8e-4 0.23 1.1e-4 1.6e-4 2.2e-5 1.6e-3 7.6e-3 0.02

ACDC:DEC 17:0 16:1 11:3 13:2 13:2 11:3 18:0 12:2 12:2 9:6 18:0 9:9
p-value 3.7e-5 2.7e-4 3.3e-2 4.5e-3 4.5e-3 3.3e-2 2.2e-5 7.5e-3 7.5e-3 0.44 2.2e-5 1.0

ACDC:GT 1:13 8:6 7:8 2:16 5:13 3:10 1:16 5:10 8:9 3:10 5:10 9:8
p-value 1.3e-3 0.59 0.80 9,7e-4 5.9e-2 5.2e-2 2.7e-4 0.20 0.81 0.05 0.20 0.81
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ANC EPF DEC INT MRC ACDC

ANC EPF DEC INT MRC ACDC

Fig. 9: Simulation of displaying the output images in 6-bit experiment (b = 6) on HBD monitor (cropped regions of im4).

ANC EPF DEC INT MRC ACDC

ANC EPF DEC INT MRC ACDC

Fig. 10: Simulation of displaying the output images in 8-bit experiment (b = 8) on a HBD monitor (cropped regions of im4).

used eight HBD test images selected from the HBD image

database in [49] for testing, which had the same resolution

and aspect ratio for ease of side-by-side comparison on a

16:9 display monitor in landscape mode. They are shown

in Fig. 11. For each image, ACDC competed against four

methods—ANC, EPF, DEC and GT (the ground truth)—in

four separate side-by-side comparison tests (also called two

alternative forced choice (2AFC) [50]); i.e., for each test

pair a human test subject was asked to select the better of

the two versions of the same image rendered side-by-side.

The four side-by-side comparisons were randomly slotted into

four test sequences, where for each sequence, the ordering

of the eight test image pairs was also randomized. Each test

subject randomly chose two test sequences to observe back-

to-back and enter scores. Each image pair was observed for

10 seconds, and the score was entered in the next 5 seconds.

This testing procedure followed closely guidelines provided

by ITU-R BT.500 [51].

We invited 31 participants for subjective testing, with age

23 to 48 and with normal or corrected to normal vision. Each

image pair was shown on a 8-bit Eizo EV2750-BKR 27”

monitor with contrast and bright set at 75%. The distance from
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TABLE I: Objective results. For each cell, the number on the

top and bottom are the PSNR and SSNR in dB, respectively.

(a) 4-bit experiment (b = 4)

ANC EPF DEC INT MRC ACDC

im1
34.87 36.68 35.53 36.53 36.49 37.84
13.53 15.26 14.16 15.18 15.07 16.57

im2
35.04 36.39 35.60 35.78 36.35 37.37
9.59 10.87 10.16 10.06 10.81 11.70

im3
34.39 35.29 34.61 33.88 35.34 37.66

6.47 7.30 6.69 5.82 7.35 9.94

im4
35.04 35.96 35.32 33.95 36.06 36.93
5.35 5.64 5.72 3.99 6.30 6.85

im5
34.87 36.31 35.29 37.77 36.17 38.29
6.20 7.69 6.55 9.24 7.60 9.69

im6
34.88 35.20 34.88 33.52 35.15 36.25
16.37 16.72 16.34 14.59 16.67 17.68

im7
35.41 36.18 35.83 34.85 36.00 37.31
9.10 9.67 8.97 9.26 9.62 10.96

im8
34.33 35.37 34.78 35.14 35.34 37.90

7.46 8.87 8.05 9.73 8.93 10.79

Ave.
34.85 35.92 35.23 35.18 35.86 37.44
9.26 10.25 9.58 9.73 10.29 11.77

(b) 6-bit experiment (b = 6)

ANC EPF DEC INT MRC ACDC

im1
46.80 48.18 45.92 48.31 48.83 49.03
25.43 26.93 24.57 26.95 27.38 27.67

im2
46.87 48.05 46.39 47.95 46.68 49.09
21.08 22.50 20.84 22.21 22.94 23.43

im3
46.89 47.47 46.32 47.66 48.10 48.90
18.81 19.62 18.47 19.76 20.03 21.00

im4
47.26 47.30 46.69 47.26 48.33 49.09

16.60 16.75 16.01 16.77 17.53 18.26

im5
46.87 46.89 45.97 48.82 48.37 49.21
18.09 18.16 17.16 20.38 19.49 20.50

im6
46.88 47.63 47.01 46.65 47.61 48.79
27.78 28.62 28.02 27.59 28.55 29.64

im7
46.96 49.43 48.50 50.94 48.84 51.12
20.59 23.48 21.99 25.10 22.71 25.01

im8
46.86 48.33 46.79 49.99 48.34 50.64
19.61 21.06 19.40 22.52 21.24 23.22

Ave.
46.92 47.91 46.70 48.45 48.14 49.48
21.00 22.14 20.81 22.66 22.48 23.59

(c) 8-bit experiment (b = 8)

ANC EPF DEC INT MRC ACDC

im1
58.82 55.55 56.01 57.73 58.85 58.99
37.44 34.54 34.74 36.46 37.46 37.63

im2
58.91 57.44 56.49 58.42 58.97 59.57
33.12 32.00 30.83 32.84 33.17 33.89

im3
58.89 58.24 57.11 58.89 58.89 60.19
30.78 30.73 29.34 31.38 30.78 32.45

im4
58.92 58.89 57.62 59.18 58.89 60.83

28.07 28.28 26.83 28.86 28.28 30.38

im5
58.93 56.53 56.56 58.40 58.92 59.44

30.14 27.99 27.80 29.72 30.10 30.72

im6
58.91 60.15 59.09 60.86 58.87 61.08
39.56 40.86 39.85 41.75 39.52 41.96

im7
59.03 63.43 61.24 62.39 58.98 62.55
32.46 36.58 34.12 35.34 32.42 35.62

im8
58.94 58.25 57.27 59.71 58.55 60.25
31.70 30.86 29.78 32.11 31.05 32.79

Ave.
58.92 58.56 57.67 59.45 58.87 60.36
32.91 32.73 31.66 33.56 32.85 34.43

duck bill lion chair

ball apple banana sack

Fig. 11: HBD test images used for subjective experiments. The

spatial resolution is 1200× 1200.

bill lion chair banana

Fig. 12: Cropped test images used for subjective experiments.

the subject to the monitor is approximately twice the monitor’s

height (335.7mm). The illumination of the room was in the

300-320 Lux range. Each participant was familiarized with the

testing procedure before the start of the experiment.

Table II summarizes the subjective test results, where we

show the participates’ votes for different methods in 4-bit

and 6-bit experiments. We see that for all 4-bit test images,

the participants selected ACDC over competing schemes by

a clear margin. This validates the superior visual quality of

ACDC over competing schemes. When compared to GT, we

see that ACDC was comparable in two images, but was inferior

in the remaining six images. This shows that there are even

cases where ACDC is indistinguishable from the original high

bit-depth images (GT).

We also conducted a similar subjective experiment where

four 6-bit images were enhanced for cropped image patch-

es; the images were cropped to isolate spatial regions with

gradations that are known to be problematic for bit-depth en-

hancement algorithms, resulting in false contours. The cropped

images are shown in Fig. 12. We observe that ACDC outper-

formed ANC and MRC for all images. For DEC, ACDC is

superior for two images and indistinguishable for the other two

images. Overall, ACDC is still better than DEC. Compared to

the ground-truth GT, ACDC is comparable in two images. That

indicates the reconstructed images by our proposed method are

of high visual quality.

We used the two-sided chi-square χ2 test [52] to examine

the statistical significance of the results. The null hypothesis

is that there is no preference for proposed ACDC and a com-

peting methods. Under this hypothesis, the expected number

of votes should be equal. The p-value [52] is also indicated in

the table. As a rule of thumb in experimental sciences, the null

hypothesis is rejected when p < 0.05. As seen in Table II, the

majority of the p-values are much smaller than 0.05. We can
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thus conclude that subjects showed a statistically significant

preference for our proposed method ACDC.

VII. CONCLUSION

We proposed a computation-efficient algorithm for the im-

age bit-depth enhancement problem, where an image of low

bit-depth (LBD) is reconstructed to one of high bit-depth

(HBD). Specifically, after formulating an optimization prob-

lem with a minimum mean squared error (MMSE) objective

and arguing that the problem is difficult to solve directly, we

propose to first use MAP to estimate the AC signal—efficiently

solved via quadratic programming—and then compute the DC

signal with an MMSE criterion. Experiments show that our

proposed two-step method outperforms competing methods.

APPENDIX A

MSE OF MMSE AND MAP SOLUTION

Proof. By (12), the estimation error of an estimator x̂ is:

MSE(x̂) =
∫

‖x̂− x‖22 f(x |y) dx = E(‖x̂− x‖22|y).
For a random variable r, the mean-variance decomposition

E(‖r‖22) = E(‖r − E(r) + E(r)‖22) = E(‖r−E(r)‖22) +
‖E(r)‖22 always holds. Replacing r by x − x̂ yields E(‖x −
x̂‖22) = E(‖x−E(x)|22) + ‖E(x)− x̂‖22. Given the quantized

signal y, above equation becomes: MSE(x̂) = E(‖x −
x̂‖22|y) = E(‖x−E(x|y)‖22|y) + ‖E(x|y)− x̂‖22.

Equation (10) is obtained by substituting x̂ with the MMSE

solution E(x|y) and MAP solution x̂MAP.

APPENDIX B

REFORMULATING (27) TO A QP

Proof. Taking the negative log of (27) leads to the following

convex optimization problem:

min
xA

x
⊺

ALxA − λ log(Q− range(xA − yA)) (31)

s.t. range(xA − yA) < Q,

1⊺xA = 0

where λ = 1/σ. Convexity of the above problem is proved in

Appendix C. By introducing two extra scalar variables s and

t, the above problem can be rewritten as:

min
xA,s,t

x
⊺

ALxA − λ log(Q− (t− s)) (32)

s.t. s1 ≤ xA − yA ≤ t1,

t− s ≤ Q,

1⊺xA = 0

We note that log(Q− (t− s)) promotes a small t− s value.

Towards efficient computation, we replace log(Q+s− t) with

its second-order approximation − 2
Q2 (s−t)2 (See Appendix D

for details). Then problem (32) becomes a Quadratic Program-

ming (QP) problem:

min
xA,s,t

x
⊺

ALxA +
2λ

Q2
(t− s)2 (33)

s.t. s1 ≤ xA − yA ≤ t1,

t− s ≤ Q,

1⊺xA = 0

APPENDIX C

PROOF OF CONVEXITY OF (31)

Proof. Let f(xA) = Q − range(xA − yA), g(x) = − log(x).
Because quadratic function x

⊺

ALxA is convex, we only need

to prove g(f(xA)) is convex. According to the composition

rule “if f is concave and g is convex and non-increasing, then

h(x) = g(f(x)) is convex” [43], the problem becomes to

prove f(xA) is concave, i.e. range(xA−yA) is convex. Since

yA is constant, we next prove the convexity of range(xA).
Denote θ ∈ [0, 1] and x1,x2 ∈ R

N , by definition

range(θx1 + (1 − θ)x2) = maxi(θx1,i + (1 − θ)x2,i) −
mini(θx1,i + (1 − θ)x2,i). For any two vectors v1,v2, ap-

parently maxi(v1,i + v2,i) ≤ maxi(v1,i) + maxi(v2,i) and

mini(v1,i+v2,i) ≥ mini(v1,i)+mini(v2,i). Letting v1 = θx1

and v2 = (1 − θ)x2, we have range(θx1 + (1 − θ)x2) ≤
θmaxi(x1,i) + (1 − θ)maxi(x2,i) − θmini(x1,i) − (1 −
θ)mini(x2,i) = θrange(x1)+ (1− θ)range(x2). By definition

of convexity, function range(xA) is convex, so is our objective

x
⊺

ALxA − λ log(Q− range(xA − yA)).

APPENDIX D

SECOND-ORDER APPROXIMATION OF log FUNCTION

Proof. The Taylor expansion of function log(x) at position a

is: log(x) = log(a) +
∑∞

k=1
(−1)k+1

k
(x−a

a
)
k
. Because t− s ∈

[0, Q], variable x = Q − (t − s) ∈ [0, Q]. Letting a = Q
2 be

the center of the domain, we have x−a
a

= x
a
− 1 ∈ [−1, 1].

That means we can dismiss the high order (k ≥ 3) polynomials

and get the second-order approximation of log(x) as log(x) ≈

log(a)− x−a
a

+ 1
2 (

x−a
a

)2 = const+ 2x
a
− x2

2a2 = const+ 4x
Q

−
2x2

Q2 . Substituting x = Q + s − t into above equation, we get

log(Q+ s− t) ≈ const − 2
Q2 (s− t)2.
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[40] Cha Zhang and Dinei Florêncio, “Analyzing the optimality of predictive

transform coding using graph-based models,” Signal Processing Letters,

IEEE, vol. 20, no. 1, pp. 106–109, 2013.
[41] Wikipedia, “MMSE,” http://en.wikipedia.org/wiki/Minimum mean

square error, accessed April 2015.
[42] Marcelo GS Bruno, “Sequential monte carlo methods for nonlinear

discrete-time filtering,” Synthesis Lectures on Signal Processing, vol. 6,
no. 1, pp. 1–99, 2013.

[43] Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cam-
bridge University Press, New York, NY, USA, 2004.

[44] Wikipedia, “Quadratic Programming,” http://en.wikipedia.org/wiki/
Quadratic programming, accessed April 2015.

[45] P. Wan, “Details on the test images,” http://ihome.ust.hk/∼leoman/test
images.txt, accessed April 2015.

[46] Schuyler R Quackenbush, Thomas Pinkney Barnwell, and Mark A
Clements, Objective measures of speech quality, Prentice Hall, 1988.

[47] John R Deller, John G Proakis, and John HL Hansen, Discrete-time

processing of speech signals, IEEE New York, NY, USA:, 2000.
[48] Horace B. Barlow, “Dark and light adaptation: Psychophysics,” in Visual

Psychophysics, vol. 7 / 4 of Handbook of Sensory Physiology, pp. 1–28.
Springer Berlin Heidelberg, 1972.

[49] Asuni N and Giachetti A, “Testimages: a large-scale archive for testing
visual devices and basic image processing algorithms,” 2014.

[50] M. Taylor and C. Creelman, “PEST: Efficient estimates on probability
functions,” in J. Acoustical Society of America, 1967, vol. 41, pp. 782–
787.

[51] ITU-R, Recommendation ITU-R BT.500-13: Methodology for the sub-

jective assessment of the quality of television pictures, January 2012.
[52] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical

Procedures, Chapman & Hall/CRC, 2007.



14

Pengfei Wan is with Meitu, Inc. He received the
B.E. degree in Electronic Engineering and Infor-
mation Science from the University of Science and
Technology of China (USTC), Hefei, China in 2010,
and the Ph.D. degree in Electronic and Computer
Engineering from the Hong Kong University of
Science and Technology (HKUST) in 2015.

His research interests include image/video sig-
nal processing, computational photography, and ma-
chine learning techniques for computer vision.

Gene Cheung (M’00—SM’07) received the B.S.
degree in electrical engineering from Cornell Uni-
versity in 1995, and the M.S. and Ph.D. degrees in
electrical engineering and computer science from the
University of California, Berkeley, in 1998 and 2000,
respectively.

He was a senior researcher in Hewlett-Packard
Laboratories Japan, Tokyo, from 2000 till 2009. He
is now an associate professor in National Institute of
Informatics in Tokyo, Japan. He has been an adjunct
associate professor in the Hong Kong University of

Science & Technology (HKUST) since 2015.
His research interests include 3D image processing, graph signal processing,

and signal processing for sleep analysis. He has served as associate editor for
IEEE Transactions on Multimedia (2007–2011), DSP Applications Column
in IEEE Signal Processing Magazine (2010–2014) and SPIE Journal of
Electronic Imaging (2014–2016). He currently serves as associate editor for
IEEE Transactions on Image Processing (2015–present), IEEE Transactions
on Circuits and Systems for Video Technology (2016–present) and APSIPA
Journal on Signal & Information Processing (2011–present), and as area editor
for EURASIP Signal Processing: Image Communication (2011–present). He
is a distinguished lecturer in APSIPA (2016–2017). He served as a member of
the Multimedia Signal Processing Technical Committee (MMSP-TC) in IEEE
Signal Processing Society (2012–2014), and a member of the Image, Video,
and Multidimensional Signal Processing Technical Committee (IVMSP-TC)
(2015–2017). He has also served as technical program co-chair of International
Packet Video Workshop (PV) 2010 and IEEE International Workshop on
Multimedia Signal Processing (MMSP) 2015, and symposium co-chair for
CSSMA Symposium in IEEE GLOBECOM 2012. He is a co-author of
best student paper award in IEEE Workshop on Streaming and Media
Communications 2011 (in conjunction with ICME 2011), best paper finalists
in ICME 2011, ICIP 2011 and ICME 2015, best paper runner-up award in
ICME 2012 and best student paper award in ICIP 2013.

Dinei Florencio (M’96—SM’05—F’16) received
the BS and MS degrees from University of Braslia,
and the PhD from Georgia Tech, all in Electrical
Engineering. He is a researcher with Microsoft Re-
search since 1999. From 1996 to 1999, he was a
member of the research staff at the David Sarnoff
Research Center.

Dr. Florencios current research focus includes sig-
nal processing and computer security. His research
has enhanced the lives of millions of people, through
high impact technology transfers to many Microsoft

products, including Internet Explorer, Live Messenger, Exchange Server,
RoundTable, and the MSN toolbar.

Dr. Florencio has authored over 80 referred papers, and holds 57 granted US
patents. His papers received awards at ICME2010, SOUPS2010, MMSP09,
MMSP12, and ICIP14. Dr. Florencio was general co-chair of CBSP08,
MMSP’09, Hot3D10 and 13, and WIFS11, and technical co-chair of WIFS10,
ICME11, and MMSP13.

Dr. Florencio is a Fellow of the IEEE, and was Chair of the IEEE SPS
Technical Committee on Multimedia Signal Processing and a member of the
IEEE SPS Technical Directions Board (2014-2015).

Cha Zhang (M’04—SM’09) is a Principal Re-
searcher in the Multimedia, Interaction and eXpe-
rience Group at Microsoft Research. He received
the B.S. and M.S. degrees from Tsinghua University,
Beijing, China in 1998 and 2000, respectively, both
in Electronic Engineering, and the Ph.D. degree in
Electrical and Computer Engineering from Carnegie
Mellon University, in 2004. His current research
focuses on applying various audio/image/video pro-
cessing and machine learning techniques to multi-
media applications. Dr. Zhang has published more

than 80 technical papers and holds 20+ U.S. patents. He won the best paper
award at ICME 2007, the top 10% award at MMSP 2009, and the best student
paper award at ICME 2010. He currently serves as an Associate Editor for
IEEE Trans. on Circuits and Systems for Video Technology, and IEEE Trans.
on Multimedia.

Oscar C. Au received his B.A.Sc. from Univ. of
Toronto in 1986, his M.A. and Ph.D. from Princeton
Univ. in 1988 and 1991 respectively. After being
a postdoc in Princeton for 1 year, he joined Hong
Kong Univ. of Science and Technology (HKUST)
as an Assistant Professor in 1992 and promoted to
Associate Professor and then Full Professor. He left
HKUST in 2014 and migrated to the USA. His main
research contributions are on video/image coding
and processing, watermarking/light weight encryp-
tion, speech/audio processing. Research topics in-

clude fast motion estimation for H.261/3/4/5, MPEG-1/2/4, and AVS, optimal
and fast sub-optimal rate control, mode decision, transcoding, denoising,
deinterlacing, post-processing, multi-view coding, view interpolation, depth
estimation, 3DTV, scalable video coding, distributed video coding, subpixel
rendering, JPEG/JPEG2000, HDR imaging, compressive sensing, halftone
image data hiding, GPU-processing, software-hardware co-design, etc. He
has published 70 technical journal papers, 370+ conference papers, 3 book
chapters, and 70+ contributions to international standards. His fast motion
estimation algorithms were accepted into the ISO/IEC 14496-7 MPEG-4
international video coding standard and the China AVS-M standard. His light-
weight encryption and error resilience algorithms are accepted into the China
AVS standard. He was Chair of Screen Content Coding AdHoc Group in
JCTVC for HEVC. He has 25+ granted US patents and is applying for
70+ more on his signal processing techniques. He has performed forensic
investigation and stood as an expert witness in Hong Kong courts many times.

Dr. Au is a Fellow of IEEE and HKIE. He is/was Associate/Senior Editors
of several IEEE journals (TCSVT, TIP, TCAS1, SPL, JSTSP, SigView) and
non-IEEE journals (JVCIR, JSPS, TSIP, JMM, JFI, and SWJ). He is guest
editor of some special issues in JSTSP and TCSVT. He was BoG member and
Vice President Technical Activity of APSIPA. He was Chair of 3 technical
committees: IEEE CAS MSA TC, IEEE SPS MMSP TC, and APSIPA IVM
TC. He was a member of 5 other TCs: IEEE CAS VSPC TC, DSP TC,
IEEE SPS IVMSP TC, IFS TC, and IEEE ComSoc MMC TC. He served
on 2 steering committees: IEEE TMM, and IEEE ICME. He also served on
organizing committee of many conferences including ISCAS 1997, ICASSP
2003, ISO/IEC 71st MPEG in Jan 2005, ICIP 2010, etc. He was General
Chair of several conferences: PCM 2007, ICME 2010, and PV 2010. He won
5 best paper awards: SiPS 2007, PCM 2007, MMSP 2012, ICIP 2013, and
MMSP 2013. He was IEEE Distinguished Lecturer (DL) in 2009 and 2010,
APSIPA DL in 2013 and 2014, and has been keynote speaker multiple times.


