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Graph-based Dequantization of Block-Compressed
Piecewise Smooth Images
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Abstract—Block-based image or video coding standards (e.g.
JPEG) compress an image lossily by quantizing transform coeffi-
cients of non-overlapping pixel blocks. If the chosen quantization
parameters (QP) are large, then hard decoding of a compressed
image—using indexed quantization bin centers as reconstructed
transform coefficients—can lead to unpleasant blocking artifacts.
Leveraging on recent advances in graph signal processing (GSP),
we propose a dequantization scheme specifically for piecewise
smooth (PWS) images: images with sharp object boundaries and
smooth interior surfaces. We first mathematically define a PWS
image as a low-frequency signal with respect to an inter-pixel
similarity graph with edges of weights 1 or 0. Using quanti-
zation bin boundaries as constraints, we then jointly optimize
the desired graph-signal and the similarity graph in a unified
framework. A generalization to consider generalized piecewise
smooth (GPWS) images—where sharp object boundaries are
replaced by transition regions—is also proposed. Experimental
results show that our proposed scheme outperforms a state-of-
the-art dequantization method by 1dB on average in PSNR.

I. INTRODUCTION

Block-based image or video compression standards like
JPEG1 first divide an image into non-overlapping pixel blocks,
project each block onto basis functions of a chosen frequency
domain such as discrete cosine transform (DCT), and quantize
the resulting transform coefficients for compression gain.
If the chosen quantization parameters (QP) are large, then
hard decoding of a compressed image at the decoder—using
indexed quantization bin centers as reconstructed transform
coefficients—can result in unpleasant blocking artifacts.

In contrast, soft decoding approaches [1–5] treat image
dequantization as an under-determined inverse problem: find
the most probable transform coefficients in a code block
subject to indexed quantization bin constraints, given suitably
defined signal priors. [1] assumes band-limitedness in the
targeted code block and performs projection on convex sets
(POCS) between quantization bin constraints and a band-
limited subspace. The band-limited assumption is too strong
and results in over-smoothing, however. [2] assumes a total
variation (TV) prior, which performs well only for piecewise
constant functions. [3–5] assume a sparse signal model, where
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the targeted block is approximated as a sparse combination of
atoms from an over-complete dictionary. Computing a sparse
code vector from a large unstructured dictionary, however, is
computationally intensive. There are also nonlocal methods
like [6] that exploit self-similarity of pixel patches across
different spatial regions to remove blocking artifacts in a hard-
decoded image. The search for similar nonlocal patches is
expensive in computation and buffer space, however.

(a) PWS patch (b) GPWS patch
Fig. 1. Examples of piecewise smooth (PWS) and generalized piecewise
smooth (GPWS) pixel patches.

Leveraging on recent advances in graph signal processing
(GSP) [7], we propose a graph-signal smoothness prior for
soft decoding of JPEG compressed images; retrofitting our
algorithm to dequantize other block-compressed images is
straightforward. In particular, we focus on piecewise smooth
(PWS) images, where smooth textural regions are separated
by sharp discontinuities. See Fig. 1 (a) for an example. PWS
images include depth images, graphics images and sub-regions
of video frames overlaid with foreign language captions.
Structure of PWS pixel patches can be modeled using sim-
ple graphical models—4-connected graphs with edge weights
either 0 or 1 that reflect inter-pixel similarities [8]. Assuming
that the desired signal contains mostly low frequencies with
respect to a graph, we propose a unified framework that
alternately optimizes the graph (image structure) and the
signal on top of the graph (pixel patch) while satisfying the
quantization bin constraints. In particular, we show that the
signal can be optimized efficiently via quadratic programming,
while the graph can be optimized via a fast max-flow /
min-cut algorithm [9] in polynomial time. Moreover, unlike
nonlocal methods [6] our optimization is performed locally,
thus amenable to buffer-constrained hardware implementation.

Compared to recent graph-based denoising [10–13] and
dequantization works [4], we differ in two major ways. First,
unlike [4] that learns an over-complete dictionary for a sparse
signal prior that depends on training patches in natural images,
we design an edge weight prior specifically for PWS images,
which does not require offline dictionary training and online
sparse vector search, lowering overall complexity. Second,
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Fig. 2. (left) 4-connectivity graph G for 3×3 block. (right) Dual graph Gw .

we jointly optimize both the graph-signal and the graph that
describes the signal kernel, while [4, 10–13] optimize the
signal assuming first that the appropriate graph can be deduced
from noisy observations or updated version of the signal. To
the best of our knowledge, we are the first in the graph-based
inverse imaging literature to explicitly include both the graph
and the graph-signal in the optimization objective.

We next generalize our formulation to consider also gener-
alized piecewise smooth (GPWS) images, where sharp object
boundaries are replaced by a transition region. See Fig. 1 (b)
for an illustration. GPWS images include cartoon images,
medical images like X-ray and MRI, and saliency maps. We
show that a similar optimization algorithm can be used for
GPWS images. Experimental results show that our proposed
scheme outperforms a state-of-the-art dequantization method
[6] by 1dB on average in PSNR.

II. PROBLEM FORMULATION FOR PWS IMAGES

We first define the prior probability for edge weights in
a similarity graph for a PWS pixel patch. We then define
a smoothness prior for graph-signals with respect to a given
graph. We formulate a maximum a posteriori (MAP) estima-
tion problem for the desired PWS pixel patch. Finally, we
describe a fast algorithm to solve the formulated problem.

A. Graph Construction for PWS Pixel Patch

A graph G = {V, E ,W} is composed of a vertex set V ,
an edge set E connecting vertices, and a weighted adjacency
matrix W, where wi,j is the weight assigned to the edge
connecting vertices i and j. We build G on a

√
N×
√
N PWS

pixel patch,
√
N ∈ Z+, as follows. We represent each pixel

zi, 1 ≤ i ≤ N , as a vertex i in G, and connect two vertices
i and j with an edge ei,j in E iff the corresponding pixels
zi and zj are adjacent neighbors in the horizontal or vertical
direction on the 2D grid. This results in a 4-connectivity
graph as shown in Fig. 2 (left). Each edge weight reflects
the similarity between the two connecting pixels (e.g., setting
wi,j = exp{−‖zi−zj‖22/σ2} [10, 11, 14] yields wi,j ≈ 1 if the
connecting pixels i and j have similar intensities zi and zj);
we call G the similarity graph. Specifically for PWS images,
adjacent pixels in smooth regions are similar and we set the
corresponding edge weights wi,j = 1, and adjacent pixels
across sharp boundaries are dissimilar and we set wi,j = 0.

We now define the prior probability of edge weights of
a similarity graph for a PWS pixel patch. We stack all K

edge weights2 wi,j in G into a vector w ∈ RK . We treat
w as another graph-signal, and define it on a dual graph
Gw, where edges in G become nodes3 in Gw, as shown in
Fig. 2 (right). We then draw links to connect nodes in Gw that
represent neighboring edges in G. Specifically, we draw a link
of weight 1 between two nodes in Gw iff the two corresponding
edges in G share one same vertex as an endpoint, or two
endpoints of the corresponding edge of one node are both
one-hop neighbors of the endpoints of the corresponding edge
of the other node.

On Gw, we define priors for both the AC and DC4 com-
ponents of w to characterize piecewise smoothness. First,
boundaries of objects in a PWS image are typically contigu-
ous, which means that neighboring edge weights in original G
(nodes in dual Gw) are likely similar. We thus define the AC
prior as the total variation (TV) of w:

f(wA) = cA exp{−µ2 ‖Hw‖1}, (1)

where H is a S×K difference matrix—S being the number of
links in Gw—that computes the difference in values between
each pair of connected nodes in Gw. cA is a normalization
factor and µ2 is a parameter.

Second, since most regions are smooth in PWS images,
most edge weights are 1. Hence, we define the DC prior as

f(wD) = cD exp{−µ3 ‖1−w‖1}, (2)

where 1 ∈ RK is an all-one vector, cD is a normalization
factor and µ3 is a parameter.

The prior for w is the product of AC and DC priors:

f(w) = c2 exp{−µ2 ‖Hw‖1} exp{−µ3 ‖1−w‖1}, (3)

where c2 is a normalization factor, and we constrain the
feasible space of each element wi to be {0, 1} (0 for sharp
discontinuities, and 1 for smooth regions).

B. Graph-signal Smoothness Prior for PWS Images

We declare a pixel patch z is PWS iff z is smooth with
respect to a similarity graph G with edge weights w of
probability f(w) in (3). Mathematically, z is smooth iff∑

i∼j
wi,j(zi − zj)2 < ε, ∀i, j (4)

where ε is a threshold of a small positive value, and i ∼ j
means two vertices i and j are one-hop neighbors in G. In
order to satisfy (4), zi and zj must be similar for a large wi,j ,
but could be dissimilar for a small wi,j .

We define the combinatorial graph Laplacian as L := D−
W [15], where D is the degree matrix—a diagonal matrix
where di,i =

∑N
j=1 wi,j . As zTL(w)z =

∑
i∼j

wi,j(zi − zj)2

[16], (4) can be concisely written as zTL(w)z < ε.
The prior distribution for z given w can now be written as

f(z|w) = c1 exp{−µ1z
TL(w)z}, (5)

2For a
√
N×
√
N 4-connectivity graph, there are K = 2(N−

√
N) edges.

3As a convention, we use terminologies “vertices” and “edges” for the
original graph G, and “nodes” and “links” for the dual graph Gw .

4“DC” (direct current) means the 0-frequency component of a signal w,
and “AC” (alternating current) means the higher-frequency components.
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Fig. 3. A patch encloses a 8× 8 coding block in JPEG. The current patch
overlaps with previously optimized patches, and consistency of the overlapped
regions among these patches is enforced during optimization.

where c1 is a normalization factor and µ1 is a parameter.
We refer to (5) as the conditional graph-signal smoothness
prior of z. Combining (3) and (5), we write the graph-signal
smoothness prior f(z) using the law of total probability:

f(z) =
∑
w

f(z|w)f(w) (6)

C. MAP Estimation of PWS Images

As shown in Fig. 3, we operate on a
√
N ×
√
N processing

unit z—a patch that encompasses a smaller
√
M×

√
M (M <

N ) coding block y (8×8 block in JPEG) that was transformed
by the DCT matrix T and quantized at the encoder. This is
done to remove blocking artifacts (inconsistent reconstructed
signals across block boundaries), as done in [4]. The DCT
coefficients of y is written as α = TEz, where E is a M×N
matrix that extracts y from z.

At the decoder, the received quantization bin centers β
and quantization parameters q together define the indexed
quantization bins F(β,q) =

[
β − q

2 ,β + q
2

)
for coefficients

α. We then pose a MAP estimation problem: given indexed
quantization bins F(β,q), find the most probable signal z,

ẑMAP(β,q) = arg max
z
f(β,q|z)f(z) (7)

where f(β,q|z) is the likelihood term, and f(z) is the signal
prior (6) derived previously. In dequantization, likelihood takes
a simple form; it is 1 iff the block coefficients α are inside
the indexed quantization bins, and 0 otherwise:

f(β,q|z) =
{

1, if TEz ∈ F(β,q)
0, otherwise (8)

We can thus rewrite (7) as a sum of exponentials, where
wi ∈ {0, 1},∀i:
= max

TEz∈F(β,q)
f(z) = max

TEz∈F(β,q)

∑
w

f(z|w)f(w) (9)

= max
TEz∈F(β,q)

∑
w

exp{−µ1z
TL(w)z− µ2 ‖Hw‖1 − µ3 ‖1−w‖1},

1) Problem Formulation: Solving (9) requires a summation
over multiple weight vectors w each with edge weight prior
f(w). Instead, we make the following approximation:

max
TEz∈F(β,q)

∑
w

f(z|w)f(w) ≈ max
TEz∈F(β,q)

maxf(z|w)f(w)

(10)

This approximation is good if the distribution f(z|w)f(w) is
concentrated around a single peak [14]. In our case, f(z|w)
decays quickly from the peak, as zTL(w)z becomes large
when the structure of z is inconsistent with w in (5). Thus the
approximation is reasonable in our case.

Given the approximation in (10), we take the negative
log—turning maximization to minimization—resulting in the
following problem formulation:

min
z,w

µ1z
TL(w)z+ µ2 ‖Hw‖1 + µ3 ‖1−w‖1 (11)

s.t. wi ∈ {0, 1}, ∀i

β − q

2
≤ TEz ≤ β +

q

2
,

∑
zk∈N (z)

‖Skzz− Szkzk‖2 < τ

The last constraint is added to enforce local consistency in
overlapped regions between z and its neighboring patches zk ∈
N (z) optimized in previous iterations, as shown in Fig. 3. Skz
is a matrix that extracts the region of z overlapped with zk,
and Szk extracts the region of zk overlapped with z. τ is a
small threshold.

D. Alternating Minimizing Algorithm

In order to solve (11) with two variables z and w repre-
senting the signal and the graph respectively, we propose an
alternating minimizing algorithm to optimize one variable at a
time while the other is fixed. We first initialize w using spectral
clustering [17]. Specifically, we divide a pre-processed z into
two segments via spectral clustering, and then assign weight 1
to edges in each segment, and assign weight 0 to edges across
the two segments. Note that though the optimization is carried
out on a

√
N ×

√
N patch z, we perform spectral clustering

on a larger patch that encloses z, as better clustering results
can be achieved on a larger patch of larger variance.

We substitute the initialized w into (11). Then the objective
with respect to z is quadratic, and there remain one linear
constraint and one quadratic constraint—this is a quadratic
programming problem that can be solved efficiently. Next,
we fix the optimized z in (11) and update w. The resulting
objective is convex with respect to w and only the first discrete
constraint remains—this is a standard separation-deviation
(SD) problem and can be solved optimally using an efficient
algorithm in [9] in polynomial time. z and w are optimized
alternately until z converges.

III. EXTENSION TO GENERALIZED PWS IMAGES

We extend the above problem formulation for PWS images
to GPWS images. As shown in Fig. 1, GPWS images differ
from PWS images in regions that separate two smooth regions:
instead of ideal sharp discontinuities in PWS images, GPWS
images contain gradual transitions from one smooth region
to another. We thus change the AC prior probability of w in
Gw accordingly: in the transition region weights may deviate
from 1, and neighboring weights are similar in a l1-norm
sense. Neighboring weights are connected nodes in Gw as in
Fig. 2(b). We then define fg(wA) for GPWS images as

fg(wA) = max
d

fd(w) = max
d

cd exp{−λd ‖Hdw‖1}, (12)
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where d denotes nodes in a connected component in Gw to
specify a transition region in a GPWS patch. Nodes not in d are
in smooth regions with weight 1. Hd computes the difference
between neighboring weights in d. cd is a normalization factor
and λd is a parameter. We denote d̂ = argmax

d
fd(w), and

formulate the dequantization problem for a GPWS patch as:

min
z,w

zTL(w)z+ λd̂ ‖Hd̂w‖1 + λ2 ‖1−w‖1 (13)

s.t. 0 ≤ wi ≤ 1, ∀wi ∈ d̂, wi = 1 ∀wi 6∈ d̂

β − q

2
≤ TEz ≤ β +

q

2
,

∑
zk∈N (z)

‖Skzz− Szkzk‖2 < τ

We optimize one variable at a time. When initializing w, we
divide z into three segments via spectral clustering. The third
segment is the most probable transition region d̂. Then edge
weights in d̂ are not assigned 1 but exponential functions of
the corresponding inter-pixel intensity differences, while edge
weights in smooth segments are assigned 1. When w and d̂
are fixed, z is optimized via quadratic programming. When z
and d̂ are fixed, w is optimized via convex programming. d̂
is then re-computed via spectral clustering for this patch only.
The procedure repeats until convergence.

IV. EXPERIMENTATION

We first test our algorithm on five depth images: Dude of
size 480×800, Teddy of size 368×448, Sawtooth of size
380× 434, Tsukuba of size 480× 640 and Champagne of
size 960 × 1280. The parameters are empirically assigned as
µ1 = 1, µ2 = 1, µ3 = 5, λd = 1 and λ2 = 5. We compare
against five methods: 1) JPEG hard decoding; 2) TV [2], the
TV-based JPEG decompression method; 3) DicTV [18], a
recent sparsity-based restoration algorithm for decompression,
combining the TV prior with sparsity; 4) TGV [19], JPEG
decompression with Total Generalized Variation (TGV); and
5) ANCE algorithm [6], which is a state-of-the-art algorithm
for compression artifact reduction.

Table I and II list PSNR results of these approaches using
test images coded by a JPEG encoder with quality factor
(QF) 15 and 35, respectively. Larger QF value means smaller
quantization bins and thus better image quality. The bold
numbers are the best PSNR among competing schemes.

TABLE I
PERFORMANCE COMPARISON IN PSNR (DB) AT QF = 15

Images QF = 15
JPEG TV DicTV TGV ANCE Prop

Dude 37.00 34.23 37.58 37.19 37.99 38.17
Teddy 31.46 32.30 31.60 31.52 32.14 32.33

Tsukuba 33.13 35.29 34.19 33.68 34.69 36.22
Ballet 35.63 36.48 36.77 36.15 37.28 37.49

Champagne 36.82 34.12 37.46 37.00 37.73 37.68
Gain 1.57 1.89 0.86 1.27 0.41 -

We observe that our method results in the best PSNR in
most cases. On average, we achieve 2.36dB gain over JPEG,
1.12dB gain over TV, 1.62dB gain over DicTV, 1.40dB gain
over TGV and 1.00dB gain over ANCE. Note that JPEG, TV,
TGV and our method are local methods while DicTV and
ANCE are non-local methods. Though non-local methods gen-
erally lead to better results than local methods, our algorithm
still outperforms one state-of-the-art nonlocal method ANCE.

TABLE II
PERFORMANCE COMPARISON IN PSNR (DB) AT QF = 35

Images QF = 35
JPEG TV DicTV TGV ANCE Prop

Dude 40.57 42.77 40.49 41.81 42.16 44.80
Teddy 34.15 36.81 34.00 36.49 34.80 36.91

Tsukuba 36.17 39.97 37.68 39.44 38.36 40.72
Ballet 39.47 42.04 40.82 39.94 41.12 41.76

Champagne 41.29 41.99 42.79 41.88 42.73 43.00
Gain 3.11 0.72 2.46 1.53 1.60 -

Fig. 4 shows dequantized image regions. Unlike other meth-
ods, our results reconstruct sharp edges noticeably well. This
is due to the effectiveness of our proposed graph-signal
smoothness prior.

JPEG ANCE Proposed

JPEG ANCE Proposed

Fig. 4. Visual comparison among different dequantization methods. First
row: Teddy at QF = 25; Second row: Tsukuba at QF = 15.

We also test our extended method on GPWS images:
ColoText (printed text) of size 256 × 256, Mickey (an-
imation) of size 512 × 512 and Kanji (foreign language
caption) of size 56×72. Table III lists PSNR results of different
approaches at QF = 15. On average we achieve 2.59dB gain
over JPEG, 0.31dB gain over TV, 1.54dB gain over DicTV,
1.40dB gain over ANCE, and 2.71dB gain over our proposed
method PWS for PWS images. Fig. 5 shows our proposed
method well preserves the transition regions in ColoText.

TABLE III
PERFORMANCE COMPARISON IN PSNR (DB) AT QF = 15

Images QF = 15
JPEG TV DicTV TGV ANCE PWS Prop

ColoText 29.05 32.22 30.66 31.03 30.91 29.15 32.81
Mickey 29.42 30.85 28.94 29.90 30.95 29.18 31.04
Kanji 24.67 26.92 24.40 25.13 24.87 24.45 27.07
Gain 2.59 0.31 1.54 1.62 1.40 2.71 -

JPEG ANCE Proposed

Fig. 5. The subjective quality comparison among different dequantization
methods for a GPWS image ColoText at QF = 15.
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