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NII Overview

• National Institute of Informatics

• Chiyoda-ku, Tokyo, Japan.

• Government-funded research lab.
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• Offers graduate courses & degrees 

through The Graduate University for 

Advanced Studies (Sokendai).

• 60+ faculty in “informatics”: 

quantum computing, discrete 

algorithms, database, machine 

learning, computer vision, speech & 

audio, image & video processing.

• Get involved!

• 2-6 month Internships.

• Short-term visits via 

MOU grant.

• Lecture series, 

Sabbatical.
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APSIPA Distinguished Lecture Series 

www.apsipa.org 

Introduction to APSIPA and APSIPA DL
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APSIPA Mission: To promote broad spectrum of research and education 
activities in signal and information processing in Asia Pacific

APSIPA Conferences: ASPIPA Annual Summit and Conference 

APSIPA Publications: Transactions on Signal and Information Processing 
in partnership with Cambridge Journals since 2012; APSIPA Newsletters

APSIPA Social Network: To link members together and to disseminate 
valuable information more effectively

APSIPA Distinguished Lectures: An APSIPA educational initiative to reach 
out to the community



Outline

• Graph Signal Processing

• Graph spectrum

• Graph-Signal Smoothness Prior

• Graph Laplacian regularizer

• LERaG

• Soft Decoding of JPEG Images

• Mixture of Priors
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Digital Signal Processing

• Discrete signals on regular data kernels.

• Ex.1:  audio on regularly sampled timeline.

• Ex.2: image on 2D grid.

• Harmonic analysis tools (transforms, 

wavelets) for diff. tasks: 

• Compression.

• Restoration.

• Segmentation, classification.
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Smoothness of Signals 

• Signals are often smooth.

• Notion of frequency, band-limited.

• Ex.: DCT:

2D DCT basis is set of outer-product of

1D DCT basis in x- and y-dimension.
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Typical pixel blocks have 

almost no high frequency 

components.
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desired signal

transform

transform coeff.

Compact signal

representation
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Graph Signal Processing

• Signals on structured data kernels described by 

graphs.

• Graph: nodes and edges.

• Edges reveals node-to-node relationships.

1. Data domain is naturally a graph.

• Ex:  ages of users on social networks.

2. Underlying data structure unknown.

• Ex:  images: 2D grid → structured graph.

9

Graph Signal Processing (GSP) addresses the problem of 

processing signals that live on graphs.

[1] D. I. Shuman et al.,”The Emerging Field of Signal Processing on Graphs: Extending High-dimensional Data Analysis to Networks 

and other Irregular Domains,” IEEE Signal Processing Magazine, vol.30, no.3, pp.83-98, 2013.

example graph-signal



Graph Signal Processing

Research questions*:

• Sampling:  how to efficiently acquire / 

sense a graph-signal?

• Graph sampling theorems.

• Representation:  Given graph-signal, how 

to compactly represent it?

• Transforms, wavelets, dictionaries.

• Signal restoration:  Given noisy and/or 

partial graph-signal, how to recover it?

• Graph-signal priors.
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node
edge

* Graph Signal Processing Workshop, Philadelphia, US, May 25-27, 2016. 

https://alliance.seas.upenn.edu/~gsp16/wiki/index.php?n=Main.Program



Graph Fourier Transform (GFT)

Graph Laplacian:

• Adjacency Matrix A:  entry Ai,j has non-negative

edge weight wi,j connecting nodes i and j.

• Degree Matrix D:  diagonal matrix w/ entry Di,i being 

sum of column entries in row i of A.

• Combinatorial Graph Laplacian L:   L = D-A 

• L is symmetric (graph undirected).

• L is a high-pass filter.

• L is related to 2nd derivative.
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Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

1. Edge weights affect shapes of eigenvectors.

2. Eigenvalues (≥ 0) as graph frequencies.

• Constant eigenvector is DC.

• # zero-crossings increases as λ increases.

• GFT defaults to DCT for un-weighted connected line.

• GFT defaults to DFT for un-weighted connected circle.
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iii uuL 
eigenvalue

eigenvector
1st AC eigenvector

1 2 3 4 8…2,1w 1 1
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Variants of Graph Laplacians

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

• Other definitions of graph Laplacians:

• Normalized graph Laplacian:

• Random walk graph Laplacian:

• Generalized graph Laplacian [1]:
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iii uuL 
eigenvalue

eigenvector

2/12/12/12/1   ADDILDDLn

ADILDLrw

11  

*DLLg 

Characteristics:

• Normalized.

• Symmetric. 

• No DC component.

• Normalized.

• Asymmetric.

• Eigenvectors not orthog.

• Symmetric.

• L plus self loops.

• Defaults to DST, ADST.

[1] Wei Hu, Gene Cheung, Antonio Ortega, "Intra-Prediction and Generalized Graph Fourier Transform for Image Coding," IEEE 

Signal Processing Letters, vol.22, no.11, pp. 1913-1917, November 2015.
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Graph Laplacian Regularizer

• (graph Laplacian quadratic form) [1]) is one variation measure 

→ graph-signal smoothness prior.

• Signal Denoising:

• MAP formulation:
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[1] Jiahao Pang, Gene Cheung, "Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain," submitted 

to IEEE Transactions on Image Processing, April 2016.
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Graph Laplacian Regularizer for Denoising 

1. Choose graph:

• Connect neighborhood graph.

• Assign edge weight:

2. Solve obj. in closed form:

• Iterate until convergence.

16[1] W. Hu, G. Cheung, M. Kazui, "Graph-based Dequantization of Block-Compressed Piecewise Smooth Images," IEEE Signal 

Processing Letters,  vol.23, no.2, pp.242-246, February 2016. 
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pixel intensity difference

pixel location difference

Comments:

1. L is NOT normalized.

2. Why works well for PWS signals?
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Spectral Clustering

• Normalized Cut [1]:

• Problem is NP-hard, so:

1. Rewrite as:

2. Relax to:
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[1] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 

Aug. 2000.



Eigenvectors of Normalized graph Laplacian

• Define:

• Problem rewritten as:

• v1 minimizes obj → Sol’n is 2nd eigenvector of Ln.

• If f* optimal to norm. cut, v* is PWS → well rep. PWS signals!

• f* optimal when nodes easy to cluster: 

• Easy-to-cluster graph has small Fiedler number.

• Disadvantage:

• v1 not constant vector (DC) → cannot well rep. smooth patch.
PKU Visit 09/02/2016 18
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Eigenvectors of random walk graph Laplacian

• Random walk graph Laplacian Lrw is similar:

• Let:

• Lrw has left eigenvectors :

• Advantage:

• Constant signal 1 maps to                → maps to        →  v1

• is sparse.
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2/12/12/12/12/1 DVDVVDDVLDV TTT
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1DV 21/T

[1] Xianming Liu, Gene Cheung, Xiaolin Wu, Debin Zhao, "Random Walk Graph Laplacian based Smoothness Prior for Soft Decoding 

of JPEG Images," submitted to IEEE Transactions on Image Processing, July 2016.

diagonal matrix

w/ eigenvalues

eigen-decomposition



Left E-vector random walk graph Laplacian 

(LERaG)

• Disadvantage:

• Lrw is asymmetric → no orthogonal e-vectors w/ real e-values.

• So,  left Eigenvector Random Walk Graph Laplacian (LERaG) [1]:

20[1] Xianming Liu, Gene Cheung, Xiaolin Wu, Debin Zhao, "Random Walk Graph Laplacian based Smoothness Prior for Soft Decoding 

of JPEG Images," submitted to IEEE Transactions on Image Processing, July 2016.

projection of signal x

to D1/2, then Ln



Frequency Interpretation of LERaG

• Promote low graph frequencies:

• Fast implementation of LERaG:
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coeff of Lrm’s left e-vectors

e-values of Ln, Lrm

combinatorial 

Laplacian

inverse diagonal 

matrix

projection of signal x

to left e-vectors



Comparison of Graph-signal Smoothness Priors

• Different graph Laplacian matrices

• Combinatorial graph Laplacian:

• Symmetrically normalized graph Laplacian:

• Random walk graph Laplacian:

• Doubly stochastic graph Laplacian [1]:

22

Graph Laplacian Symmetric Normalized DC e-vector

Combinatorial Yes No Yes

Symmetrically Normalized Yes Yes No

Random Walk No Yes Yes

Doubly Stochastic [1] Yes Yes Yes

[1] A. Kheradmand and P. Milanfar, “A general framework for regularized, similarity-based image restoration,” IEEE Transactions on 

Image Processing, vol. 23, no. 12, pp. 5136–5151, Dec 2014.



LERaG for PWC Signal

• Construct fully connected graph for PWC signal:

• 1st eigenvector for e-value = 0:

• 2nd eigenvector for e-value = 0:

• Can be shown that

• LERaG evaluates to 0!
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Soft Decoding of JPEG Images

• Setting: JPEG compresses natural images:

1. Divide image into 8x8 blocks, DCT.

2. Perform DCT transform per block and quantize:

3. Quantized DCT coeff entropy coded.

• Decoder:  uncertainty in signal reconstruction:
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(Y / Q ),    =i i iq round Y Ty

DCT Coefficients

8x8 pixel block

quantization parameter

DCT 

Q Y ( 1)Q , 1, 2, ,64.i i i i iq q i   



LERaG for Soft Decoding of JPEG Images

• Problem: reconstruct image given indexed quant. bin in 8x8 DCT.
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0~ 221

min 

k

k

k

Td 

• Procedure: 

1. Initialize per-block

MMSE sol’n via 

Laplacian prior.

2. Solve per-patch signal 

restoration problem w/ 

2 priors:

1. Sparsity prior

2. Graph-signal 

smoothness prior



Soft Decoding Algorithm w/ Prior Mixture

• Objective:

• Optimization:

1. Laplacian prior provides an initial estimation;

2. Fix x and solve for α;

3. Fix α and solve for x.
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sparsity prior graph-signal smoothness

prior

quantization bin constraint

fidelity term

graph-signal,

code vector



Experimental Setup

• Compared methods

• BM3D: well-known denoising algorithm

• KSVD: with a large enough over-complete dictionary (100x4000); our 

method uses a much smaller one (100x400).

• ANCE: non-local self similarity  [Zhang et al. TIP14]

• DicTV: Sparsity + TV     [Chang et al, TSP15]

• SSRQC: Low rank + Quantization constraint  [Zhao et al. TCSVT16]
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PSNR / SSIM Comparison
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Subjective Quality Evaluation
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Subjective Quality Evaluation



Other Comparisons

• Computation complexity:

• Comparisons w/ other graph regularizers:
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Summary

• Graph Signal Processing (GSP)

• Tools to process signals that live on graphs.

• Graph-signal Smoothness for Inverse Problems

• New regularizer:  LERaG

• Normalized

• Handles constant / PWC signals

• Computation-efficient

• Soft Decoding of JPEG Images

• Mixture of Laplacian, sparsity, graph-signal smoothness 

prior
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Q&A

• Email:  cheung@nii.ac.jp

• Homepage: http://research.nii.ac.jp/~cheung/
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