Gene Cheung National Institute of Informatics 2nd September, 2016

Inverse Imaging Problems using Graph-Signal Smoothness Priors

Acknowledgement

Collaborators:

- B. Motz, Y. Mao, Y. Ji (NII, Japan)
- W. Hu, P. Wan, W. Dai, J. Pang, J. Zeng, A. Zheng, O. Au (HKUST, HK)
- Y.-H. Chao, A. Ortega (USC, USA)
- D. Florencio, C. Zhang, P. Chou (MSR, USA)
- Y. Gao, J. Liang (SFU, Canada)
- L. Toni, A. De Abreu, P. Frossard (EPFL, Switzerland)
- C. Yang, V. Stankovic (U of Strathclyde, UK)
- X. Wu (McMaster U, Canada)
- P. Le Callet (U of Nantes, France)
- H. Zheng, L. Fang (USTC, China)
- C.-W. Lin (National Tsing Hua University, Taiwan)
- S. Yang, J. Liu, Z. Guo (Peking U. China)

NII Overview

- National Institute of Informatics
- Chiyoda-ku, Tokyo, Japan.
- Government-funded research lab.

- Offers graduate courses & degrees through The Graduate University for Advanced Studies (Sokendai).
 - 60+ faculty in "**informatics**": quantum computing, discrete algorithms, database, machine learning, computer vision, speech & audio, image & video processing.

Get involved!

- 2-6 month Internships.
- Short-term visits via MOU grant.
- Lecture series, Sabbatical.

APSIPA Mission: To promote broad spectrum of research and education activities in signal and information processing in Asia Pacific

APSIPA Conferences: ASPIPA Annual Summit and Conference

APSIPA Publications: Transactions on Signal and Information Processing in partnership with Cambridge Journals since 2012; APSIPA Newsletters

APSIPA Social Network: To link members together and to disseminate valuable information more effectively

APSIPA Distinguished Lectures: An APSIPA educational initiative to reach out to the community

Outline

- Graph Signal Processing
 - Graph spectrum
- Graph-Signal Smoothness Prior
 - Graph Laplacian regularizer
 - LERaG
- Soft Decoding of JPEG Images
 - Mixture of Priors

Outline

- Graph Signal Processing
 - Graph spectrum
- Graph-Signal Smoothness Prior
 - Graph Laplacian regularizer
 - LERaG
- Soft Decoding of JPEG Images
 - Mixture of Priors

Digital Signal Processing

- Discrete signals on *regular* data kernels.
 - Ex.1: audio on regularly sampled timeline.
 - Ex.2: image on 2D grid.
- Harmonic analysis tools (transforms, wavelets) for diff. tasks:
 - Compression.
 - Restoration.
 - Segmentation, classification.

Smoothness of Signals

- Signals are often **smooth**.
- Notion of frequency, band-limited.

• Ex.: **DCT**:
$$X_k = \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi}{N}\left(n + \frac{1}{2}\right)k\right)$$

of Signals
Himited.

$$(n+\frac{1}{2})k)$$

 $a = \Phi x$
ansform coeff.
 $a = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$
Compact signal
representation
 $a = \begin{bmatrix} v \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix} a_0 \\ 0 \\ 0 \end{bmatrix}$
 $b = \begin{bmatrix}$

50

Graph Signal Processing

- Signals on structured data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals node-to-node relationships.
- 1. Data domain is naturally a graph.
 - Ex: ages of users on social networks.
- 2. Underlying data structure unknown.
 - Ex: images: 2D grid \rightarrow structured graph.

Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

Graph Signal Processing

Research questions*:

- **Sampling**: how to efficiently acquire / sense a graph-signal?
 - Graph sampling theorems.
- **Representation**: Given graph-signal, how to compactly represent it?
 - Transforms, wavelets, dictionaries.
- Signal restoration: Given noisy and/or partial graph-signal, how to recover it?

• Graph-signal priors.

undirected graph

Graph Fourier Transform (GFT)

Graph Laplacian:

- Adjacency Matrix A: entry A_{i,j} has non-negative edge weight w_{i,j} connecting nodes i and j.
- Degree Matrix D: diagonal matrix w/ entry D_{i,i} being sum of column entries in row i of A.

$$D_{i,i} = \sum_{i} A_{i,j}$$

- Combinatorial Graph Laplacian L: L = D-A
 - L is symmetric (graph undirected).
 - L is a high-pass filter.
 - L is related to 2nd derivative.

$$W_{1,2} \xrightarrow{1} 1 \xrightarrow{1} 4$$

$$\mathbf{A} = \begin{bmatrix} 0 & w_{1,2} & 0 & 0 \\ w_{1,2} & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$\mathbf{D} = \begin{bmatrix} w_{1,2} & 0 & 0 & 0 \\ 0 & w_{1,2} + 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} w_{1,2} & -w_{1,2} & 0 & 0 \\ -w_{1,2} & w_{1,2} + 1 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$L_{3,:}x = -x_2 + 2x_3 - x_4$$
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

*https://en.wikipedia.org/wiki/Second_derivative

Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

- 1. Edge weights affect shapes of eigenvectors.
- 2. Eigenvalues (≥ 0) as graph frequencies.
 - Constant eigenvector is DC.
 - # zero-crossings increases as λ increases.
- GFT defaults to **DCT** for un-weighted connected line.
- GFT defaults to **DFT** for un-weighted connected circle.

Variants of Graph Laplacians

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

$$Lu_i = \lambda_i u_i$$
 eigenvector

- Other definitions of graph Laplacians:
 - Normalized graph Laplacian:

$$L_n = D^{-1/2} L D^{-1/2} = I - D^{-1/2} A D^{-1/2}$$

• Random walk graph Laplacian:

$$L_{rw} = D^{-1}L = I - D^{-1}A$$

• Generalized graph Laplacian [1]:

$$L_g = L + D^{\circ}$$

[1] Wei Hu, Gene Cheung, Antonio Ortega, "Intra-Prediction and Generalized Graph Fourier Transform for Image Coding," *IEEE Signal Processing Letters*, vol.22, no.11, pp. 1913-1917, November 2015.

Characteristics:

- Normalized.
- Symmetric.
- No DC component.
- Normalized.
- Asymmetric.
- Eigenvectors not orthog.
- Symmetric.
- L plus self loops.
- Defaults to DST, ADST.

Outline

- Graph Signal Processing
 - Graph spectrum
- Graph-Signal Smoothness Prior
 - Graph Laplacian regularizer
 - LERaG
- Soft Decoding of JPEG Images
 - Mixture of Priors

Graph Laplacian Regularizer

• $x^{T}Lx$ (graph Laplacian quadratic form) [1]) is one variation measure \rightarrow graph-signal smoothness prior.

$$x^{T}Lx = \frac{1}{2} \sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2} = \sum_{k} \lambda_{k} \alpha_{k}^{2}$$
 signal contains
signal smooth in
nodal domain
observation $\longrightarrow y = x + v \leftarrow$ noise

• MAP formulation:

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$
smoothness prior
idelity term

[1] Jiahao Pang, Gene Cheung, "**Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain**," submitted 15 to *IEEE Transactions on Image Processing*, April 2016.

Graph Laplacian Regularizer for Denoising

- 1. Choose graph:
 - Connect neighborhood graph.
 - Assign edge weight:

pixel intensity difference

pixel location difference

$$v_{i,j} = \exp\left(\frac{-\|x_i - x_j\|_2^2}{\sigma_1^2}\right) \exp\left(\frac{-\|l_i - l_j\|_2^2}{\sigma_2^2}\right)$$

2. Solve obj. in closed form:

 $\min_{x} \left\| \mathbf{y} - \mathbf{x} \right\|_{2}^{2} + \mu \, \mathbf{x}^{T} \mathbf{L} \mathbf{x}$

• Iterate until convergence.

Comments:

- 1. L is NOT normalized.
- 2. Why works well for PWS signals?

TABLE I PERFORMANCE COMPARISON IN PSNR (DB) AT QF = 15

Imagas	QF = 15								
mages	JPEG	TV	DicTV	TGV	ANCE	Prop			
Dude	37.00	34.23	37.58	37.19	37.99	38.17			
Teddy	31.46	32.30	31.60	31.52	32.14	32.33			
Tsukuba	33.13	35.29	34.19	33.68	34.69	36.22			
Ballet	35.63	36.48	36.77	36.15	37.28	37.49			
Champagne	36.82	34.12	37.46	37.00	37.73	37.68			
Gain	1.57	1.89	0.86	1.27	0.41	-			

Spectral Clustering

• Normalized Cut [1]:

$$\min_{A,B} Ncut(A,B) := cut(A,B) \left(\frac{1}{vol(A)} + \frac{1}{vol(B)} \right)$$
$$cut(A,B) = \sum_{i \in A, j \in B} W_{i,j} \quad vol(A) = \sum_{i \in A} D_{i,i}$$
min normalized cut

2. Relax to: $\min_{f} \frac{f^{T}Lf}{f^{T}Df} \quad s.t. f^{T}D1 = 0$

[1] J. Shi and J. Malik, "Normalized cuts and image segmentation," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 22, no. 8, pp. 888–905, Aug. 2000.

min cut

Eigenvectors of Normalized graph Laplacian

• Define:

$$v := D^{1/2}f \quad v_1 := D^{1/2}1$$

• Problem rewritten as:

- Rayleigh quotient

$$\mathbf{v}^* = \arg\min_{\mathbf{v}} \frac{\mathbf{v}^T \mathbf{L}_n \mathbf{v}}{\mathbf{v}^T \mathbf{v}} \quad s.t. \ \mathbf{v}^T \mathbf{v}_1 = 0$$

- \mathbf{v}_1 minimizes obj \rightarrow Sol'n is 2nd eigenvector of \mathbf{L}_n .
- If \mathbf{f}^* optimal to norm. cut, \mathbf{v}^* is PWS \rightarrow well rep. PWS signals!
- **f*** optimal when nodes easy to cluster:
 - Easy-to-cluster graph has small Fiedler number.
- Disadvantage:
 - \mathbf{v}_1 not constant vector (DC) \rightarrow cannot well rep. smooth patch.

 $\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L}_{n} \mathbf{x}$ candidate objective

Eigenvectors of random walk graph Laplacian

- Random walk graph Laplacian L_{rw} is similar: $L_{rw} = D^{-1/2}L_n D^{1/2}$
- Let: $L_n = V \Lambda V^T \longleftarrow$ eigen-decomposition
- L_{rw} has left eigenvectors $V^T D^{1/2}$: $V^T D^{1/2} L_{rw} = V^T D^{1/2} D^{-1/2} V \Lambda V^T D^{1/2} = \Lambda V^T D^{1/2}$
- Advantage:
 - Constant signal 1 maps to $V^T D^{1/2} \rightarrow D^{1/2}$ maps to $V^T \rightarrow v_1$
 - $\beta = \mathbf{V}^T \mathbf{D}^{1/2} \mathbf{1}$ is sparse.

Left E-vector random walk graph Laplacian (LERaG)

- Disadvantage:
 - \mathbf{L}_{rw} is asymmetric \rightarrow no orthogonal e-vectors w/ real e-values.
- So, left Eigenvector Random Walk Graph Laplacian (LERaG) [1]:

[1] Xianming Liu, Gene Cheung, Xiaolin Wu, Debin Zhao, "**Random Walk Graph Laplacian based Smoothness Prior for Soft Decoding 20 of JPEG Images**," submitted to *IEEE Transactions on Image Processing*, July 2016.

Frequency Interpretation of LERaG

• Promote low graph frequencies: $\gamma^T \gamma = \mathbf{x}^T \mathbf{D}^{1/2} \mathbf{V} \mathbf{A} \mathbf{V}^T \mathbf{V} \mathbf{A} \mathbf{V}^T \mathbf{D}^{1/2} \mathbf{x}$ $= \beta^T \mathbf{A}^2 \beta = \sum_k \tilde{\eta}_k^2 \beta_k^2$ coeff of \mathbf{L}_{rm} 's left e-vectors
e-values of \mathbf{L}_n , \mathbf{L}_{rm} • Fast implementation of LERaG:

$$(d_{\min}^{-1})\boldsymbol{\gamma}^{T}\boldsymbol{\gamma} = \mathbf{x}^{T}(d_{\min}^{-1})\mathbf{L}\mathbf{D}^{-1}\mathbf{L}\mathbf{x}$$

inverse diagonal
matrix combinatoria
Laplacian

Comparison of Graph-signal Smoothness Priors

- Different graph Laplacian matrices
 - Combinatorial graph Laplacian: $\mathbf{L} = \mathbf{D} \mathbf{W}$
 - Symmetrically normalized graph Laplacian: $\mathcal{L}_n = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2}$
 - Random walk graph Laplacian: $\mathcal{L}_r = \mathbf{D}^{-1} \mathbf{L}$
 - Doubly stochastic graph Laplacian [1]: $\mathcal{L}_d = \mathbf{I} \mathbf{C}^{-1/2} \mathbf{W} \mathbf{C}^{-1/2}$

Graph Laplacian	Symmetric	Normalized	DC e-vector
Combinatorial	Yes	No	Yes
Symmetrically Normalized	Yes	Yes	No
Random Walk	No	Yes	Yes
Doubly Stochastic [1]	Yes	Yes	Yes

[1] A. Kheradmand and P. Milanfar, "A general framework for regularized, similarity-based image restoration," *IEEE Transactions on* **22** *Image Processing*, vol. 23, no. 12, pp. 5136–5151, Dec 2014.

LERaG for PWC Signal

Construct fully connected graph for PWC signal: •

$$\mathbf{W} = \left[egin{array}{ccc} \mathbf{A}_l & \mathbf{0}_{l imes (n-l)} \ \mathbf{0}_{(n-l) imes l} & \mathbf{A}_{n-l} \end{array}
ight] \ \mathcal{L}_n = \left[egin{array}{ccc} ilde{\mathbf{B}}_l & \mathbf{0}_{l imes (n-l)} \ \mathbf{0}_{(n-l) imes l} & ilde{\mathbf{B}}_{n-l} \end{array}
ight]$$

- 1st eigenvector for e-value = 0:
- 2nd eigenvector for e-value = 0:

$$v_{2,i} = \begin{cases} 1/l(l-1)^{1/2} & \text{if } 1 \le i \le l \\ -1/(n-l)(n-l-1)^{1/2} & \text{if } l < i \le n \end{cases}$$

- Can be shown that $\mathbf{D}^{1/2}\mathbf{x} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2$
- $d_{\min}^{-1}\gamma^T\gamma=\sum\widetilde{\eta}_k^2eta_k^2=0$ LERaG evaluates to 0!

$$w_{i,j} = \exp\left(\frac{-\|x_i - x_j\|_2^2}{\sigma_1^2}\right) \exp\left(\frac{-\|l_i - l_j\|_2^2}{\sigma_2^2}\right)$$

 $\mathbf{v}_1 = \mathbf{D}^{1/2} \mathbf{1}$

Outline

- Graph Signal Processing
 - Graph spectrum
- Graph-Signal Smoothness Prior
 - Graph Laplacian regularizer
 - LERaG
- Soft Decoding of JPEG Images
 - Mixture of Priors

Soft Decoding of JPEG Images

- Setting: JPEG compresses natural images:
 - 1. Divide image into 8x8 blocks, DCT.
 - 2. Perform DCT transform per block and quantize:

 $q_i = round(\mathbf{Y}_i/\mathbf{Q}_i), \quad \mathbf{Y} = \mathbf{T}\mathbf{y}$ 8x8 pixel block quantization parameter DCT Coefficients

- 3. Quantized DCT coeff entropy coded.
- **Decoder**: uncertainty in signal reconstruction:

$$q_i Q_i \le Y_i \le (q_i + 1) Q_i, i = 1, 2, \cdots, 64.$$

LERaG for Soft Decoding of JPEG Images

• **Problem**: reconstruct image given indexed quant. bin in 8x8 DCT.

- Procedure:
- Initialize per-block MMSE sol'n via Laplacian prior.
- Solve per-patch signal restoration problem w/ 2 priors:
 - 1. Sparsity prior
 - 2. Graph-signal smoothness prior

Soft Decoding Algorithm w/ Prior Mixture

- Optimization:
 - Laplacian prior provides an initial estimation;
- 2. Fix x and solve for u,
 3. Fix a and solve for x.

Experimental Setup

- Compared methods
 - BM3D: well-known denoising algorithm
 - **KSVD**: with a large enough over-complete dictionary (100x4000); our method uses a much smaller one (100x400).
 - ANCE: non-local self similarity [Zhang et al. TIP14]
 - **DicTV**: Sparsity + TV [Chang et al, TSP15]
 - SSRQC: Low rank + Quantization constraint [Zhao et al. TCSVT16]

PSNR / SSIM Comparison

Images	JPEG		BM3D [38]		KSVD [8]		ANCE [18]		DicTV [3]		SSRQC [20]		Ours	
Intages	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Butterfly	29.97	0.9244	31.35	0.9555	31.57	0.9519	31.38	0.9548	31.22	0.9503	32.02	0.9619	32.87	0.9627
Leaves	30.67	0.9438	32.55	0.9749	33.04	0.9735	32.74	0.9728	32.45	0.9710	32.13	0.9741	34.42	0.9803
Hat	32.78	0.9022	33.89	0.9221	33.62	0.9149	33.69	0.9169	33.20	0.8988	34.10	0.9237	34.46	0.9268
Boat	33.42	0.9195	34.77	0.9406	34.28	0.9301	34.64	0.9362	26.08	0.7550	33.88	0.9306	34.98	0.9402
Bike	28.98	0.9131	29.96	0.9356	30.19	0.9323	30.31	0.9357	29.75	0.9154	30.35	0.9411	31.14	0.9439
House	35.07	0.8981	36.09	0.9013	36.05	0.9055	36.12	0.9048	35.17	0.8922	36.49	0.9072	36.55	0.9071
Flower	31.62	0.9112	32.81	0.9357	32.63	0.9271	32.67	0.9314	31.86	0.9084	33.02	0.9362	33.37	0.9371
Parrot	34.03	0.9291	34.92	0.9397	34.91	0.9371	35.02	0.9397	33.92	0.9227	35.11	0.9401	35.32	0.9401
Pepper512	34.21	0.8711	34.94	0.8767	34.89	0.8784	34.99	0.8803	34.24	0.8639	35.05	0.8795	35.19	0.8811
Fishboat512	32.76	0.8763	33.61	0.8868	33.36	0.8809	33.60	0.8861	32.53	0.8496	33.68	0.8859	33.73	0.8871
Lena512	35.12	0.9089	36.03	0.9171	35.82	0.9146	36.04	0.9177	34.85	0.8986	36.09	0.9187	36.11	0.9191
Airplane512	33.36	0.9253	34.38	0.9361	34.36	0.9341	34.53	0.9358	33.75	0.9134	35.81	0.9355	36.07	0.9439
Bike512	29.43	0.9069	30.47	0.9299	30.66	0.9258	30.71	0.9298	30.05	0.9043	32.26	0.9372	32.55	0.9387
Statue512	32.78	0.9067	33.61	0.9188	33.55	0.9149	33.55	0.9193	32.53	0.8806	34.88	0.9249	34.95	0.9273
Average	32.44	0.9097	33.52	0.9264	33.50	0.9229	33.57	0.9258	32.25	0.8945	33.91	0.9283	34.41	0.9311

Subjective Quality Evaluation

(d) DicTV (23.42,0.8176)

(e) SSRQC (25.31,0.8764)

Subjective Quality Evaluation

Other Comparisons

• Computation complexity:

TIME	BM3D	KSVD	ANCE	DicTV	SSRQC	Proposed
Average	373.35	209.71	307.43	39.53	70.32	143.73

• Comparisons w/ other graph regularizers:

Images	Combinatorial	Normalized	Doubly Stochastic	LERaG]
Butterfly	25.42	24.70	25.15	25.57	
Leaves	24.99	24.54	24.84	25.17	
Hat	27.53	27.42	27.43	27.56	
Boat	26.99	26.94	26.98	26.99	
Bike	23.12	23.01	23.09	23.17	
House	29.87	29.83	29.86	29.89	
Flower	25.84	25.78	25.82	25.87	
Parrot	27.97	27.95	27.97	28.02	
Average	26.46	26.27	26.39	26.53]

Summary

- Graph Signal Processing (GSP)
 - Tools to process signals that live on graphs.
- Graph-signal Smoothness for Inverse Problems
 - New regularizer: LERaG
 - Normalized
 - Handles constant / PWC signals
 - Computation-efficient
- Soft Decoding of JPEG Images
 - Mixture of Laplacian, sparsity, graph-signal smoothness prior

Q&A

- Email: cheung@nii.ac.jp
- Homepage: http://research.nii.ac.jp/~cheung/