Gene Cheung, Xianming Liu National Institute of Informatics 11th July, 2016

Graph Signal Processing for Image Compression & Restoration (Part I)

Biography

D video

3D video Communication

(8 yrs)

- MS from **UC Berkeley** in EECS in 1998.
 - <u>Thesis</u>: Joint source / channel coding for wireless video.
- PhD from UC Berkeley in EECS in 2000.

- Thesis: Computation / memory / distortion tradeoff in signal compression.
- Senior researcher in HP Labs Japan from 2000 ~ 2009.
 - <u>Topic 1</u>: 2D video coding & streaming (2000~2007).
 - Topic 2: Multiview video, w/ Prof. Ortega (2007~).
- Associated professor in NII from 11/2009 to now.
 - <u>Topic 1</u>: Image & video representation.
 - <u>Topic 2</u>: Immersive visual communication.
 - <u>Topic 3</u>: Graph signal processing.
- Adjunct associate professor in **HKUST** from 1/2015.

Acknowledgement

Collaborators:

- B. Motz, Y. Mao, Y. Ji (NII, Japan)
- W. Hu, P. Wan, W. Dai, J. Pang, J. Zeng, A. Zheng, O. AU (HKUST, HK)
- Y.-H. Chao, A. Ortega (USC, USA)
- D. Florencio, C. Zhang, P. Chou (MSR, USA)
- Y. Gao, J. Liang (SFU, Canada)
- L. Toni, A. De Abreu, P. Frossard (EPFL, Switzerland)
- C. Yang, V. Stankovic (U of Strathclyde, UK)
- X. Wu (McMaster U, Canada)
- P. Le Callet (U of Nantes, France)
- H. Zheng, L. Fang (USTC, China)
- C.-W. Lin (National Tsing Hua University, Taiwan)

ICME'16 Tutorial 07/11/2016

NII Overview

- National Institute of Informatics
- Chiyoda-ku, Tokyo, Japan.
- Government-funded research lab.

- Offers graduate courses & degrees through The Graduate University for Advanced Studies (Sokendai).
 - 60+ faculty in "**informatics**": quantum computing, discrete algorithms, database, machine learning, computer vision, speech & audio, image & video processing.

Get involved!

- 2-6 month Internships.
- Short-term visits via MOU grant.
- Lecture series, Sabbatical.

Outline (Part I)

- Fundamental of Graph Signal Processing (GSP)
 - Spectral Graph Theory
 - Graph Fourier Transform (GFT)
- Image Coding using GSP Tools
 - PWS Image Coding via Multi-resolution GFT
 - PWS Image Coding via Generalized GFT
 - Lifting Implementation of GFT

Outline (Part II)

- Image Restoration using GSP Tools
 - Image Denoising
 - Soft Decoding of JPEG Compressed Images
 - (Presented by Prof. Xianming Liu)

Outline (Part I)

- Fundamental of Graph Signal Processing (GSP)
 - Spectral Graph Theory
 - Graph Fourier Transform (GFT)
- Image Coding using GSP Tools
 - PWS Image Coding via Multi-resolution GFT
 - PWS Image Coding via Generalized GFT
 - Lifting Implementation of GFT

Traditional Signal Processing

- Traditional discrete signals live on regular data kernels (unstructured).
 - Ex.1: audio / music / speech on regularly sampled timeline.
 - Ex.2: image on 2D grid.
 - Ex.3: video on 3D grid.
- Wealth of SP tools (transforms, wavelets, dictionaries, etc) for tasks such as:
 - compression, restoration, segmentation, classification.

 $\mathbf{x}(t)$

Sparsity of Signal Representations

- "Everything should be made as simple as possible, but no simpler." paraphrase of Albert Einstein
- "Among competing hypotheses, the hypothesis with the fewest assumptions should be selected (simplest explanation is usually the correct one)." Occam's razor
 (over-complete) dictionary
- Desirable signals are often sparse. desired signal (sparse) code vector → a = Φ x E[xx^T]=C^L covariance matrix

 KLT: decorrelate input components. eigen-matrix
 Eigen-decomposition of covariance matrix.
 CQ = QΛ diagonal matrix
 of eigen-values

 DCT approximates KLT*.
 Decorrelation leads to compact signal representation

ICME'16 Tutorial 07/11/2016

*Assuming simple AR process with same innovation variance.

Graph Signal Processing

- Signals live on graph.
 - Graph is a collection of nodes and edges.
 - Edges reveals node-to-node relationships.
- Data kernel itself is **structured**.
- 1. Data domain is naturally a graph.
 - Ex.1: posts on social networks.
 - Ex.2: temperatures on sensor networks.
- 2. Embed signal structure in graph.
 - **Ex.1: images:** 2D grid \rightarrow structured graph.

Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

[1] D. I. Shuman et al.,"**The Emerging Field of Signal Processing on Graphs: Extending High-dimensional Data Analysis to Networks** and other Irregular Domains," *IEEE Signal Processing Magazine*, vol.30, no.3, pp.83-98, 2013.

11

Graph Signal Processing

Research questions*:

- **Sampling**: how to efficiently acquire / sense a graph-signal?
 - Graph sampling theorems.
- **Representation**: Given graph-signal, how to compactly represent it?
 - Transforms, wavelets, dictionaries.
- Signal restoration: Given noisy and/or partial graph-signal, how to recover it?
 - Graph-signal priors.

undirected graph

Graph Fourier Transform (GFT)

Graph Laplacian:

- Adjacency Matrix A: entry A_{i,j} has non-negative edge weight w_{i,j} connecting nodes i and j.
- Degree Matrix D: diagonal matrix w/ entry D_{i,i} being sum of column entries in row i of A.

$$D_{i,i} = \sum_{i} A_{i,j}$$

- Combinatorial Graph Laplacian L: L = D-A
 - L is symmetric (graph undirected).
 - L is a high-pass filter.
 - L is related to 2nd derivative.

$$\begin{array}{c|c} W_{1,2} & 1 & 1 \\ \hline 1 & 2 & 3 & 4 \end{array}$$

$$\mathbf{A} = \begin{bmatrix} 0 & w_{1,2} & 0 & 0 \\ w_{1,2} & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$\mathbf{D} = \begin{bmatrix} w_{1,2} & 0 & 0 & 0 \\ 0 & w_{1,2} + 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} w_{1,2} & -w_{1,2} & 0 & 0 \\ -w_{1,2} & w_{1,2} + 1 & -1 & 0 \end{bmatrix}$$

-1

0

$$L_{3,:}x = -x_2 + 2x_3 - x_4$$

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

L

0

*https://en.wikipedia.org/wiki/Second_derivative

Graph Fourier Transform (GFT)

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

$$Lu_i = \lambda_i u_i$$
 eigenvalue
eigenvector

• Recall classical Fourier Transform: of function f is inner-product with

complex exponentials:

inner-product of f and complex exp

$$\widehat{f}(\xi) = \langle f, e^{2\pi i \xi t} \rangle = \int f(t) e^{-2\pi i \xi t} dt$$

Complex exponentials are eigen-functions of 1D Laplace operator:

$$-\Delta \left(e^{2\pi i\xi t}\right) = \frac{\partial^2}{\partial t^2} e^{2\pi i\xi t} = \left(2\pi\xi\right)^2 e^{2\pi i\xi t}$$

• Analogously, GFT of graph-signal *f* is inner-product with **eigenvectors** of graph Laplacian L: $\widehat{f}(1) = \int_{-\infty}^{N} f(1) e^{igenvector} \int_{-\infty}^{N} f(1) e^{igenvector} e^{igenvector}$

$$\widehat{f}(\lambda_i) = \langle f, u_i \rangle = \sum_{n=1}^{N} f(n) u_i^*(n)$$

ICME'16 Tutorial 07/11/2016

Graph Fourier Transform (GFT) $1^{W_{1,2}} - 3^{-1} - 4 \dots 8$

- 1. Sum of columns in $L = \mathbf{0} \rightarrow \text{constant}$ eigenvector assoc. with $\lambda_0 = 0$
- 2. Edge weights affect shapes of eigenvectors.
- 3. Eigenvalues (≥ 0) as graph frequencies.
 - Constant eigenvector is DC component.
 - # zero-crossings increases as λ increases.
- 4. GFT enables signal representation in graph frequency domain. $\alpha = \Psi x$
- 5. "Smoothness", "band-limited" defined w.r.t. to graph frequencies.

Facts of Graph Laplacian & GFT

• $x^T Lx$ (graph Laplacian quadratic form) [2]) is one measure of variation in signal \rightarrow graph-signal smoothness prior.

$$\mathbf{x}^{T}\mathbf{L}\mathbf{x} = \frac{1}{2}\sum_{i,j} w_{i,j} (x_i - x_j)^2 = \sum_i \lambda_i \alpha_i^2$$

- Eigenvalues can be defined iteratively via Rayleigh quotient (Courant-Fischer Theorem): $\lambda_0 = \min_{f \in \mathbb{R}^N, \|f\|_2 = 1} \left\{ f^T L f \right\}$ $\lambda_n = \min_{f \in \mathbb{R}^N, \|f\|_2 = 1, f \perp span\{u_0, \dots, u_{n-1}\}} \left\{ f^T L f \right\} \quad n = 1, 2, \dots, N-1$
- GFT defaults to **DCT** for un-weighted connected line.
- GFT defaults to DFT for un-weighted connected circle.

[2] D. Spielman, "Spectral Graph Theory," Combinatorial Scientific Computing, Chapman and Hall / CRC Press, 2012.

Outline (Part I)

- Fundamental of Graph Signal Processing (GSP)
 - Spectral Graph Theory
 - Graph Fourier Transform (GFT)
- Image Coding using GSP Tools
 - PWS Image Coding via Multi-resolution GFT
 - PWS Image Coding via Generalized GFT
 - Lifting Implementation of GFT

PWS Image Compression using GFT

• DCT are **fixed** basis. Can we do better?

- 1. Assign edge weight 1 to adjacent pixel pairs.
- 2. Assign edge weight 0 to sharp signal discontinuity.
- 3. Compute GFT for transform coding, transmit coeff.

4. Transmit bits (contour) to identify chosen GFT to decoder (overhead of GFT).

[3] G. Shen et al., "**Edge-adaptive Transforms for Efficient Depth Map Coding**," *IEEE Picture Coding Symposium*, Nagoya, Japan, December 2010.

[4] M. Maitre et al., "Depth and depth-color Coding using Shape-adaptive Wavelets," *Journal of Visual Communication and Image Representation*, vol.21, July 2010, pp.513-522.

Shape-adaptive wavelets can also be done.

PWS Image Compression

Q: Why GFT leads to sparseness?

Ans 1: Capture statistical structure of signal in edge weights of graph.

- Adjacent pixel correlation 0 or 1 for *piecewise smooth* (PWS) signal.
- Can be shown GFT approximates KLT given Gaussian Random Markov Field (GRMF) model [5].

Ans 2: Avoid filtering across sharp edges.

filtering operation

• Low-freq GFT basis are PWS for PWS signals (discussed later).

[5] C. Zhang and D. Florencio, "**Analyzing the optimality of predictive transform coding using graph-based models**," *IEEE Signal Processing Letters*, vol. 20, NO. 1, January 2013, pp. 106–109.

Graph Fourier Transform (GFT) for Block-based Image Coding

• Block-based Transform coding of images*

Two things to transmit for adaptive transforms:

- transform coefficients \rightarrow the cost of transform representation
- adaptive transform itself \rightarrow the cost of transform description
- What's a *good* transform?
 - minimize the cost of transform representation & the cost of transform description

ICME'16 Tutorial 07/11/2016

[6] V. Goyal, "Theoretical foundations of transform coding," in IEEE Signal Processing Magazine, vol. 18, no.5, September 2001, pp. 9–21.

Transform Comparison

	Transform Representation	Transform Description	
Karhunen-Loeve Transform (KLT)	"Sparsest" signal representation given available data / statistical model	Can be expensive (if poorly structured)	
Discrete Cosine Transform (DCT)	non-sparse signal representation across sharp boundaries	little (fixed transform)	
Graph Fourier Transform (GFT)	minimizes the total rate of signal's transform desc	minimizes the total rate of signal's transform representation & transform description	

GFT Comparison

HR-UGFT [3]	MR-GFT
unweighted graphs	unweighted & weighted graphs
no notion of optimality	define an optimality criterion
graphs are directly drawn from detected boundaries	propose efficient algorithms to search for the optimal GFT
Requires real-time eigen-decomposition	3 techniques to reduce computation complexity (multi-resolution, graph isomorphism, table lookup)

[3] G. Shen et al., "**Edge-adaptive Transforms for Efficient Depth Map Coding**," *IEEE Picture Coding Symposium*, Nagoya, Japan, December 2010.

Search for Optimal GFT

- Rate-distortion performance: $D + \lambda R$
- Assumption: high bit rate, uniform quantization
 Distortion does not change when considering different transforms! [6]
 Consider Rate only!
- For a given image block $\mathbf{x} \in \mathbb{R}^N$ under fixed uniform quantization at high rate, the optimal GFT is the one that minimizes the total rate:

MR-GFT: Definition of the Search Space for Graph Fourier Transforms

$$\min_{\mathbf{W}} \quad R_{\alpha}(\mathbf{x}, \mathbf{W}) + R_T(\mathbf{W})$$

- In general, weights could be any number in [0,1]
- To limit the description cost R_T
 - Restrict weights to a small discrete set $C = \{1, 0, c\}$

- "1": strong correlation in smooth regions
- "0": zero correlation in sharp boundaries
- "c": weak correlation in slowly-varying parts

MR-GFT: Definition of the Search Space for Graph Fourier Transforms

$$\min_{\mathbf{W}} \quad R_{\alpha}(\mathbf{x}, \mathbf{W}) + R_{T}(\mathbf{W})$$

s.t.
$$W_{i,j} \in \{1, 0, c\} \quad \forall \ i, j \in \mathcal{V}$$

• For ease of computation, divide the optimization into two sub-problems

1. Weighted GFT (WGFT): $C_1 = \{1, c\}$

2. Unweighted GFT (UGFT): $C_2 = \{1, 0\}$

Strong correlation only? Default to the DCT

• What is the optimal c?

MR-GFT: Derivation of Optimal Edge Weights for Weak Correlation

• Assume a 1D first-order *autoregressive (AR) process* $\mathbf{x} = [x_1, ..., x_N]^T$ where,

$$x_{k} = \begin{cases} \eta, & k = 1 \\ x_{k-1} + e_{k}, & 1 < k \le N, \quad [k-1,k] \in \mathcal{S} \longleftarrow \text{smooth} \\ x_{k-1} + g + e_{k}, & 1 < k \le N, \quad [k-1,k] \in \mathcal{P} \longleftarrow \text{jump} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

 \mathbf{T}

1_

26

• Assuming the only weak correlation exists between x_{k-1} and x_k

$$\mathbf{F} \mathbf{X} = \mathbf{D},$$

$$x_{1} = \eta$$

$$x_{2} - x_{1} = e_{2}$$

$$\dots$$

$$x_{k} - x_{k-1} = g + e_{k} \quad \Longrightarrow \quad \mathbf{F} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & \ddots & \ddots & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ e_{2} \\ \vdots \\ e_{k} \\ \vdots \\ e_{N} \end{bmatrix} + \begin{bmatrix} \eta \\ 0 \\ \vdots \\ g \\ \vdots \\ 0 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 & \cdots & 0 & m_{g} & \cdots & m_{g} \end{bmatrix}^{T} \qquad \qquad \mathbf{X} = \mathbf{F}^{-1}\mathbf{b}$$

$$\mathbf{K} - \mathbf{b}$$

MR-GFT: Derivation of Optimal Edge Weights for Weak Correlation (cont'd)

• Covariance matrix $\mathbf{C} = E[(\mathbf{x} - \mu)(\mathbf{x} - \mu)^{T}]$ $= E[\mathbf{x}\mathbf{x}^{T}] - \mu\mu^{T}$ $= E[\mathbf{F}^{-1}\mathbf{b}\mathbf{b}^{T}(\mathbf{F}^{T})^{-1}] - \mu\mu^{T}$ $= \mathbf{F}^{-1}E[\mathbf{b}\mathbf{b}^{T}](\mathbf{F}^{T})^{-1} - \mu\mu^{T}$ $= \mathbf{F}^{-1}E[\mathbf{b}\mathbf{b}^{T}](\mathbf{F}^{T})^{-1} - \mu\mu^{T}$

MR-GFT: Derivation of Optimal Edge Weights for Weak Correlation (cont'd)

• Precision matrix (tri-diagonal)

• the KLT basis = $\{\psi_l\}$ of the covariance matrix = $\{\psi_l\}$ of the precision matrix

$$c = W_{k-1,k} = \frac{1}{\sigma_g^2 + 1}$$

 $\simeq \{\psi_l'\}$ of the Laplacian matrix

MR-GFT: Adaptive Selection of Graph Fourier Transforms

$$\min_{\mathbf{W}} \quad R_{\alpha}(\mathbf{x}, \mathbf{W}) + R_{T}(\mathbf{W})$$
s.t.
$$W_{i,j} \in \{1, 0, c\} \quad \forall \ i, j \in \mathcal{V}$$

- Two sub-problems with two corresponding non-overlapping search spaces
 - 1. Weighted GFT (WGFT): $C_1 = \{1, c\}$ (weighted & connected graphs)

2. Unweighted GFT (UGFT): $C_2 = \{1, 0\}$ (unweighted & disconnected graphs)

WGFT
$$\begin{array}{c} \min_{\mathbf{W}} & R_{\alpha}(\mathbf{x}, \mathbf{W}) + R_{T}(\mathbf{W}) \\ \text{s.t.} & W_{i,j} \in \{1, c\} \quad \forall \ i, j \in \mathcal{V} \end{array}$$

Cost function of transform coefficients •

$$\hat{R}_{\alpha}(\mathbf{x}, \mathbf{W}) \approx \mathbf{x}^{T} \mathbf{L} \mathbf{x} = \sum_{(i,j) \in \mathbf{E}} W_{i,j} (x_{i} - x_{j})^{2} = \sum_{k} \lambda_{k} \alpha_{k}^{2}$$
 GFT coeff graph freq.

Cost function of transform description ۰

mir W

$$\hat{R}_{T}(\mathbf{W}) = \sum_{(e,s)\in\mathcal{E}^{d}} |W_{e} - W_{s}| + \sum_{e\in\mathcal{V}^{d}} \gamma \rho(1 - W_{e})$$
costly if many weight changes
code only non-1's
$$\frac{\operatorname{Problem formulation for WGFT \ deviation}}{\operatorname{W} e \in \mathcal{V}^{d}} + \underbrace{\left|W_{e}(x_{v_{1}(e)} - x_{v_{2}(e)})^{2} + \gamma(1 - W_{e})\right|}_{(e,s)\in\mathcal{E}^{d}} + \underbrace{\left|W_{e} - W_{s}\right|}_{(e,s)\in\mathcal{E}^{d}} \xrightarrow{b} \left|\frac{1}{2}\right|_{d}^{a} \xrightarrow{c} \left|\frac{4}{2}\right|_{d}^{a} \xrightarrow{c} \left|\frac{4}{2}\right|_{d}^{a}$$

Separation-Deviation (SD) problem, solvable in polynomial time [8]. •

[8] D. S. Hochbaum, "An Efficient and Effective Tool for Image Segmentation, Total Variations and Regularization," SSVM'11 Proceedings of the Third International Conference on Scale Space and Variational Methods in Computer Vision, 2011, pp.338-349.

$\begin{array}{ll} \mathsf{UGFT} & \underset{\mathbf{W}}{\min} & R_{\alpha}(\mathbf{x},\mathbf{W}) + R_{T}(\mathbf{W}) \\ \text{s.t.} & W_{i,j} \in \{1,0\} \quad \forall \; i,j \in \mathcal{V} \end{array}$

• A greedy algorithm

- Divide graph into disconnected sub-graphs via spectral clustering [9].
- Check objective function, further sub-divide if cost decreases.

31

MR-GFT: Adaptive Selection of Graph Fourier Transforms

- Online eigen-decomposition: a hurdle to practical implementation
- Pre-compute and store GFTs in a table for simple lookups
 - Perform GFT on a small block
 - Store the most frequently used GFTs
 - Exploit graph isomorphism

 $f:\mathcal{V}(\mathcal{G})\to\mathcal{V}(\mathcal{H})$

• Graph isomorphism

MR-GFT: Adaptive Selection of Graph Fourier Transforms

Experimentation

- Setup ٠
 - Test images: depth maps of *Teddy* and *Cones*, and graphics images of *Dude* and *Tsukuba*.
 - Compare against: HR-DCT, HR-SGFT, SAW, MR-SGFT in H.264.

6.8dB

5.9dB

2.5dB

34

Subjective Results

HR-DCT

MR-GFT

Mode Selection

red: WGFT blue: UGFT

Edge Coding for PWS Image Compression

- Arithmetic Edge Coding [10]:
 - Coding of sequence of <u>between-pixel edges</u>, or chain code with symbols {L, S, R}.
 - Design a context to compute symbol probabilities for arithmetic coding.
 - **Extension**: better context based purely on symbol statistics analysis.
- Contour Approximation & Depth Image Coding [11]:
- Approximate contour while maintaining edge sharpness.
- Edge-adaptive blocked-based image coding (GFT).
- Average 1.68dB over GFT coding original contours at lowbitrate regions.

[10] I. Daribo, G. Cheung, D. Florencio, "Arbitrarily Shaped Sub-block Motion Prediction in Depth Video Compression using Arithmetic Edge Coding," *IEEE Trans on Image Processing*, Nov 2014.
[11] Y. Yuan G Cheung, P. Frossard, P. Le Callet, V. Zhao, "Contour Approximation & Depth Image Coding for Virtual View Synthesis," *IEEE MMSP*, October, 2015.

Experimentation

- Setup
 - AEC for contour coding plus MR-GFT.
 - Compare against: native HEVC
- Results

Summary for Multi-resolution Graph Fourier Transform

- A *multi-resolution (MR) graph Fourier transform (GFT)* coding scheme for compression of piecewise smooth images.
- Minimize transform representation cost + transform description cost given weight {0, 1, c}.
- Solve for optimal c, show optimality of GFT.
- **WGFT** {1, c}: formulate a separation-deviation (SD) problem.
- **UGFT** {1, 0}: greedy algorithm via spectral clustering.
- Practical implementation via multi-resolution, graph isomorphism and lookup tables.
- Excellent experimental results!

Outline (Part I)

- Fundamental of Graph Signal Processing (GSP)
 - Spectral Graph Theory
 - Graph Fourier Transform (GFT)
- Image Coding using GSP Tools
 - PWS Image Coding via Multi-resolution GFT
 - PWS Image Coding via Generalized GFT
 - Lifting Implementation of GFT

Intra-prediction in H.264

- Discontinuities at block boundaries
 - intra-prediction will not be chosen or bad prediction

Contributions

- Clustered-based intra-prediction
 - cluster discontinuities at block boundaries
 - $\mu + x_0$: shift by cluster mean μ (side information)
- Generalized Graph Fourier Transform (GGFT)
 - optimized for intra-prediction residuals
 - generalized graph Laplacian: extra weight added at block boundaries
 - default to the DCT and ADST in some cases

Related Work

- Zhang et al, graph-based predictive transform coding, GMRF [5]
 - Assume given model. No discussion on how to derive model parameters.
- Wang et al, intra predictive graph transform coding [13]
 - Intra-prediction plus KLT, optional graph sparsification.
- Ye et al, MDDT [14]
 - Completely data-driven resulting in unstructured transform.

[5] C. Zhang and D. Florencio, "Analyzing the optimality of predictive transform coding using graph-based models," in *IEEE Signal Processing Letters*, vol. 20, NO. 1, January 2013, pp. 106–109.

[13] Y. Wang, A. Ortega, and G. Cheung, "Intra predictive transform coding based on predictive graph transform," *ICIP*, September 2013.

[14] Y. Ye and M. Karczewicz, "Improved H.264 intra coding based on bidirectional intra prediction, directional transform, and adaptive coefficient scanning," *ICIP*, October 2008.

1D Signal Modeling

- Inter-pixel differences are concentrated around 0, occasionally large.
- Quantize inter-pixel differences into K bins, leveraging on Lloyd algorithm

$$x_n = x_{n-1} + \hat{\mu}_{i(\mu_n)} + g_{i(\mu_n)}$$

bin average approximation error

Optimal 1D Intra prediction

- Optimal in terms of resulting in a zeromean prediction residual
- Default to conventional intra-prediction when $\hat{\mu}_a=\hat{\mu}_b=0$, i.e.,

$$[x_0, ..., x_0]^T$$

Generalized Graph Fourier Transform

The precision matrix of the prediction residual ٠

 $\begin{array}{c} \alpha_{g}+1 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots \\ & & -1 & 1+\alpha_{b} & -\alpha_{b} \\ & & & -\alpha_{b} & \alpha_{b}+1 & -1 \\ & & & \ddots & \ddots \\ & & & & -1 & 2 & -1 \\ & & & & & -1 & 2 & -1 \\ & & & & & -1 & 2 & -1 \\ & & & & & -1 & 2 & -1 \\ & & & & & -1 & 2 & -1 \\ & & & & & -1 & 2 & -1 \\ & & & & & -1 & 2 & -1 \\ & & & & & & -1 & 2 & -1 \\ \end{array} \right|$

Generalized Graph Fourier Transform

• The precision matrix of the prediction residual

Generalized Graph Fourier Transform

• The precision matrix of the prediction residual

$$\begin{array}{c} \alpha + 1 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots \\ & & -1 & 1 + \alpha_b & -\alpha_b \\ & & -1 & 1 + \alpha_b & -\alpha_b \\ & & -\alpha_b & \alpha_b + 1 & -1 \\ & & \ddots & \ddots \\ & & & -1 & 2 & -1 \\ & & & -1 & 1 \end{array}$$

- Default to the DCT if $\alpha_a~=~0$ and $\alpha_b~=~1$
- Default to the ADST [15] if $\, lpha_a = 1 \,$ and $\, lpha_b \, = \, 1 \,$

Proposed Coding System

 $\hat{\mu}_{-1} < 0 < \hat{\mu}_1$

- Four clusters:
 - Strong correlation: $\hat{\mu}_0 = 0$
 - Weak correlations:
 - Zero correlation
- Side information:
 - contours: arithmetic edge coding
 - cluster indicator: arithmetic coding
- 2D prediction and transform

Vertical predictor

Horizontal predictor

Experimental Results

- Test images: PWS images and natural images
- Compare proposed intra-prediction (pIntra) + GGFT against:
 - edge-aware intra-prediction (eIntra) + DCT
 - elntra + ADST
 - elntra + GFT

Experimental Results

TABLE I

AVERAGE GAIN IN PSNR MEASURED WITH THE BJONTEGAARD METRIC

Image	eIntra+GFT	eIntra+ADST	eIntra+DCT
Teddy	1.40	3.48	10.76
Cones	0.63	7.25	12.88
Tsukuba	1.97	2.36	13.28
Dude	3.46	4.59	5.26
Ballet	0.79	3.94	9.16
Carphone	0.59	1.13	1.96
Girl	0.42	0.31	1.74
Peppers	0.22	0.19	1.24
Cameraman	0.16	0.75	1.35
BaskeballDrill	0.39	1.02	1.80

Subjective Quality

elntra + DCT

eIntra + GFT

pIntra + GGFT

Outline (Part I)

- Fundamental of Graph Signal Processing (GSP)
 - Spectral Graph Theory
 - Graph Fourier Transform (GFT)
- Image Coding using GSP Tools
 - PWS Image Coding via Multi-resolution GFT
 - PWS Image Coding via Generalized GFT
 - Lifting Implementation of GFT

Motivation

- Complexity of GFT
 - Transform matrices are dense with floating point values
 - Complexity of transform operation: $O(N^2)$, N : number of nodes
- Contribution
 - Design low complexity transform w/ graph-based lifting O(N log N)
 - Novel bipartition approach in the lifting transform
 - Novel multi-level lifting filterbanks design
 - Performance approximates the GFT for intra-predicted video coding

Preliminaries - Lifting transform

• 1-level lifting transform

- The transform consists of 3 steps:
- (1) Bipartition into two disjoint sets Suand Sp (signal fuand fp)
- (2) Predict signal fpin Spwith nodes in Su
- (3) Update signal f_{u} in S_{u} with the prediction residue stores in S_{P}

Preliminaries - Lifting transform

- Multi-level lifting transform:
- Dyadic decomposition for Su in each level

Bipartition Algorithm

- Goal: minimize energy of prediction residue (high frequency) stored in S_P \rightarrow increase energy compaction
- Applied signal model
 - Gaussian Markov Random Field (GMRF): $\mathbf{f} \sim N(\mathbf{0}, \Sigma = \mathbf{Q}^{-1})$
 - Inverse covariance matrix $Q = \sigma L \rightarrow \sigma (L + \delta L)$
- Proposed bipartition $\mathbf{S}_{U}^{*} = \arg\min_{\mathbf{S}_{U}} E \left\| \mathbf{f}_{P} \boldsymbol{\mu}_{P|U} \right\|^{2}$
- Where $\mu_{P|U}$ is the MAP predictor of $\mathbf{f}_{P} \mid \mathbf{f}_{U}$
- NP hard \rightarrow greedy approximation
- Initialization: $S_U = 0$ and $S_P = V$ Select node $v^* \in S_P = \arg \min E \left\| f_P \mu_{P|(U \cup \{v\})} \right\|^2$ iteratively

Bipartite Graph Formulation

- Proposed method
- 1. Connecting nodes in S_P using Kron reduction^{*} \rightarrow bipartite graph A_P
- Procedure
- 1. For each node v in S_P
- 2. Remove nodes in $S_P / \{v\}$
- 3. Apply Kron reduction on the resulting subgraph
 - 1. derive connection from v to S_{v}
- 4. Prune the links of v by keeping the 4 links with largest weights
- 5. Repeat the same procedure for all the nodes in S_P

Filterbanks Design

• CDF5/3 filterbanks on graphs ³

- Prediction: $d_{i \in \mathbf{S}_P} = f_{i \in \mathbf{S}_P} \sum_{k \sim i} p(i, k) \cdot f_k$
- Update: $s_{j \in \mathbf{S}_U} = f_{j \in \mathbf{S}_U} + \sum_{k \sim j} u(j,k) \cdot d_k$
- Prediction weight $p(i,k) = \frac{\mathbf{A}_{\mathsf{BP}}(i,k)}{\sum_{j\sim i} \mathbf{A}_{\mathsf{BP}}(i,j)}$
- Update weight u(j,k) is computed based on orthogonalization
- Properties
 - Localization: the transformed coefficients of node v depend only on neighboring nodes in graphs
 - \bullet For locally connected graph, the prediction and update transform matrices ${\bf P}$ and ${\bf U}$ are sparse

Experimental Results - Simulation Setup Test

- Test Sequences: Foreman, Mobile, Silent, Deadline
- Extract intra-predicted residual blocks from HEVC (HM-14) encoder
- Fixed block size as 8 x 8
- Transform coefficients are uniformly quantized and then encoded
- using a symbol grouping-based arithmetic entropy encoder (AGP*)
- Edge Map is encoded using arithmetic edge coding (AEC**)

*A. Said and W. A. Pearlman, Low-complexity waveform coding via alphabet and sample-set partitioning, SPIE Visual Communications and Image Processing (1997)

** Daribo, Ismael and Cheung, Gene and Florencio, Dinei, Arithmetic edge coding for arbitrarily shaped sub-block motion prediction in depth video compression, ICIP 2012

Experimental Results

- Hybrid mode between proposed lifting and DCT:
- based on RD cost SSE + λ Bitrate
- Bjontegaard Distortion-Rate against DCT

Methods	GFT/DCT hybrid		Lifting/DCT with proposed method	
	Δ PSNR (dB)	Δ rate (%)	Δ PSNR (dB)	Δ rate (%)
Foreman	0.34	-7.28	0.29	-6.42
Mobile	0.17	-1.46	0.10	-0.97
Silent	0.22	-4.28	0.20	-3.88
Deadline	0.37	-4.97	0.31	-3.90

Summary (Part I)

- GFT is signal-adaptive transform.
- Adaptive transform \rightarrow energy compaction.
- Adaptive transform \rightarrow signal overhead.
- GFT approx. KLT assuming 1D AR model.
- GGFT approx. KLT for prediction residual.
- PWS signal, signaling can be coded contour via AEC.
- Lifting Implementation of GFT.

Open Questions

- Coding of Natural images:
 - What is optimal clustering?
 - What is optimal graph, optimal transform?
 - Joint intra-prediction / transform design?
- Coding of 3D data:
 - How to use GSP tools to code dynamic 3D geometry?
 - How to use GSP tools to code light field data?

Q&A

- Email: cheung@nii.ac.jp
- Homepage: http://research.nii.ac.jp/~cheung/