
JOINT DENOISING / COMPRESSION OF IMAGE CONTOURS VIA GEOMETRIC PRIOR
AND VARIABLE-LENGTH CONTEXT TREE

Amin Zheng ∗, Gene Cheung # , Dinei Florencio $

∗ Hong Kong University of Science and Technology, # National Institute of Informatics,
$ Microsoft Research

ABSTRACT

The advent of depth sensing technologies has eased the detection of
object contours in images. For efficient image compression, coded
contours can enable edge-adaptive coding techniques such as graph
Fourier transform (GFT) and arbitrarily shaped sub-block motion
prediction. However, acquisition noise in captured depth images
means that detected contours also suffer from errors. In this paper,
we propose to jointly denoise and compress detected contours in an
image. Specifically, we first propose a burst error model that mod-
els typical errors encountered in an observed string y of directional
edges. We then formulate a rate-constrained maximum a posteriori
(MAP) problem that trades off the posterior probability P (x̂|y) of
an estimated string x̂ given y with its code rate R(x̂). Given our
burst error model, we show that the negative log of the likelihood
P (y|x) can be written as a simple sum of burst error events, error
symbols and burst lengths, while the geometric prior P (x) states in-
tuitively that contours are more likely straight than curvy. We design
a dynamic programming (DP) algorithm that solves the posed prob-
lem optimally. Experimental results show that our joint denoising /
compression scheme outperformed a competing separate scheme in
rate-distortion performance noticeably.

Index Terms— Contour coding, joint denoising / compression,
image compression

1. INTRODUCTION

Advances in depth sensors like Microsoft Kinect 2.0 means that
depth images—per pixel distances between physical objects in a
3D scene and the camera—can now be readily captured. Depth
imaging has in turn eased the detection of object contours in a cap-
tured image, which was traditionally a challenging computer vision
problem [1]. If detected object contours are compressed efficiently
as side information, they can enable a plethora of advanced edge-
adaptive image coding techniques such as graph Fourier transform
(GFT) coding [2, 3] and motion prediction [4] of arbitrarily shaped
blocks. Further, coded object contours can also be transmitted to
a central cloud for object detection or activity recognition [5], at a
much lower coding cost than the original captured depth video.

Unfortunately, captured depth images are often corrupted by ac-
quisition noise, and hence the detected contours also contain errors.
We observe that errors in detected contours are unique; e.g., an in-
correct depth pixel along a horizontal object boundary will cause the
detected contour to go around it, resulting in a burst error compared
to the original contour. In this paper, we first propose a burst error
model that captures unique characteristics of typical errors encoun-
tered in detected contours.

This work is supported by the Microsoft Research CORE program.

Moreover, we propose a novel approach to jointly denoise and
compress detected contours in an image. As done in [6, 7] for mul-
tiview depth images, we argue that, given only a noisy observed
signal, the signal compression problem is inherently probabilistic.
Thus a separate denoising / compression approach—treating a first
denoised signal as deterministic input to the second compression
stage—cannot perform the best possible rate-distortion (RD) trade-
offs; e.g., a less reliably denoised signal segment should be distorted
more (for bit saving) than a more reliably denoised segment.

Towards the goal of joint denoising / compression of detected
contours, we formulate a rate-constrained maximum a posteriori
(MAP) problem that trades off the posterior probability P (x̂|y) of
an estimated contour x̂ given observed contour y with its code rate
R(x̂). Given our burst error model, we show that the negative log of
the likelihood P (y|x) can be written as a simple sum of burst error
events, error symbols and burst lengths. Further, we construct a ge-
ometric prior P (x) stating intuitively that contours are more likely
straight than curvy. We design a dynamic programming (DP) [8]
algorithm that solves the posed problem optimally in polynomial
time. Experimental results show that our joint denoising / com-
pression scheme outperformed a competing separate scheme in RD
performance noticeably. We note that, to the best of our knowledge,
we are the first in the literature to formally address the problem of
joint denoising / compression of detected image contours.

The outline of the paper is as follows. We first overview related
works in Section 2. We pose our rate-constrained MAP problem in
Section 3, and describe our proposed optimal algorithm in Section
4. Experimental results are presented in Section 5.

2. RELATED WORK

The bulk of existing lossless contour coding research first convert
each detected contour into a differential chain code (DCC) [9]—a
finite sequence of symbols x each chosen from a small discrete al-
phabet A (more details in Section 3). The conditional probability
distribution of a symbol xi ∈ A given D previous symbols xi−1

i−D

(context) is estimated based on training data. If training data is lim-
ited, it has been shown that variable-length context tree (VCT) [10],
where the context used to define P (xi|xi−1

i−D) may depend only on
a sub-string xi−1

i−d, d < D, avoids over-fitting and has good per-
formance. One of the best VCTs is prediction by partial matching
(PPM) [11], which we use for actual coding and to compute the rate
term R(x̂) in our rate-constrained MAP estimation problem.

Lossy contour coding approaches can be classified into two cat-
egories: DCC-based [12, 13] and vertex-based [14, 15] approaches.
In [12, 13], the DCC strings are approximated by using some line
smoothing techniques. Vertex-based approaches select representa-
tive key points along the contour for coding at the encoder and in-

(a)

previous

direction

left: l

right: r

straight: s

(b)

Fig. 1. (a) Depth image with three detected contours. Initial points
of the contours are indicted by red arrows. (b) Directional code.

terpolation at the decoder. Because vertex-based approaches are not
suitable for lossless contour coding and we consider joint denoising
/ compression of contours for a wide range of bitrates, we choose
a DCC-based approach and compute the optimal rate-constrained
MAP contour estimate for coding using PPM.

Contour noise removal is considered in [4, 16]. The denoised
contour, however, may require a large encoding overhead. In con-
trast, we perform a MAP estimate to denoise an observed contour
subject to a rate constraint. We will show in Section 5 that we out-
perform a separate denoising / compression approach.

3. PROBLEM FORMULATION

We formulate our rate-constrained MAP problem to find the best
contour estimate for lossless coding. We assume that one or more
object contours in a noise-corrupted image have first been detected,
for example, using a method like gradient-based edge detection [4].
Each contour is defined by an initial point and a following sequence
of connected “between-pixel” edges on a 2D grid that divide pixels
in a local neighborhood into two sides. As an example, three con-
tours in one frame of Dude are drawn in Fig. 1(a).

We first convert each contour into a differential chain code
(DCC) [9]—a string of symbols each chosen from a size-three al-
phabet,A = {l, s, r}, specifying the three relative directions left,
straight, right on the 2D grid, as shown in Fig. 1(b). Denote
by Lz the length of DCC string z, where zi ∈ A, 1 ≤ i ≤ Lz.
Denote by ez(i) = {(mi, ni), di} the i-th edge of z on the 2D
grid, where (mi, ni) is the 2D coordinate of the ending point of
the edge, and di ∈ D = {N,E, S,W} is the absolute direction,
i.e. North, East, South and West. Because each contour is
processed independently, we can assume that each DCC string starts
from the origin, i.e., (m0, n0) = (0, 0), as shown in Fig. 2(a).

Denote by zji = [zj , zj−1, . . . , zi], i < j and i, j ∈ Z+, a
sub-string of length j − i + 1 from the i-th symbol zi to the j-th
symbol zj in reverse order. Denote by y ∈ S and x ∈ S the ob-
served and ground truth DCC strings respectively, where S is the
space of all DCC strings of finite length. As done in [6, 7] for mul-
tiview depth images, we follow a rate-constrained MAP formulation
and define our objective as finding string x̂ ∈ S that maximizes the
posterior probability P (x̂|y) (minimizes − logP (x̂|y)), subject to
a rate constraint on chosen x̂:

min
x̂∈S

− logP (x̂|y) s.t. R(x̂) ≤ Rmax (1)

where R(x̂) is the bit count required to encode string x̂, and Rmax

is the bit budget.
Instead of (1), one can solve the corresponding Lagrangian re-

(m0,n0)

e(2)

(a)

0

1

p

1-p

1-q1

q2

2

1-q2

q1

good bad

(b)

Fig. 2. (a) An example of an observed length-17 contour:s−s−s−
r −l−s−r −s−l−s−s−s−l−r−r−l−s, and e(2) = {(m0 +
2, n0), E}. The two red squares are the erred pixels. Observed y is
composed of black solid edges (good states) and green solid edges
(bad states). The ground truth x is composed of black solid edges
and black dotted edges. (b) A three-state Markov model.

laxed version instead [17]:

min
x̂∈S

− logP (x̂|y) + λR(x̂) (2)

where Lagrangian multiplier λ is chosen so that the optimal solution
x̂ to (2) has rate R(x̂) ≤ Rmax. [17, 18] discussed how to select an
appropriate λ. We focus on how (2) is solved for a given λ.

3.1. Likelihood & Prior Terms

Instead of maximizing the posterior P (x|y), we can maximize the
product of likelihood P (y|x) and prior P (x) using Bayes’ Rule. We
first describe an error model for DCC strings, then define likelihood
P (y|x) and prior P (x) in turn.

3.1.1. Error Model for DCC String

Assuming that an image is corrupted by a small amount of indepen-
dent and identically distributed (iid) noise, a detected contour will
occasionally be shifted from the true contour by one pixel or two.
However, the computed DCC string from the detected contour will
experience a sequence of wrong symbols—a burst error. This is il-
lustrated in Fig. 2(a), where the first single erred pixel resulted in
two erred symbols in the DCC string. The second single error pixel
also resulted in a burst error in the observed string, which is longer
than original string. Based on these observations, we propose our
DCC string error model as follows.

We define a three-state Markov model as illustrated in Fig. 2(b)
to model the probability of observing DCC string y given original
string x. State 0 is the good state, and burst error state 1 and burst
length state 2 are the bad states. p, q1 and q2 are the transition
probabilities from state 0 to 1, 1 to 2, and 2 to 0, respectively. Note
that state 1 (0) cannot transition directly to 0 (2).

Starting at good state 0, each journey to state 1 then to 2 then
back to 0 is called a burst error event. From state 0, each self-loop
back to 0with probability 1−pmeans that the next observed symbol
yi is the same as xi in original x. A transition to burst error state 1
with probability p, and each subsequent self-loop with probability
1 − q1, mean observed yi is now different from xi. A transition to
burst length state 2 then models the length increase in observed y
over original x due to this burst error event: the number of self-loops
taken back to state 2 is the increase in number of symbols. A return
to good state 0 signals the end of this burst error event.

3.1.2. Likelihood Term

Given the three-state Markov model, we can compute likelihood
P (y|x) as follows. For simplicity, we assume that y starts and ends

at good state 0. Denote by K the total number of burst error events
in y given x. Further, denote by l1(k) and l2(k) the number of visits
to state 1 and 2 respectively during the k-th burst error event. Sim-
ilarly, denote by l0(k) the number of visits to state 0 after the k-th
burst error event. We can then write the likelihood P (y|x) as:

(1− p)l0(0)
K∏

k=1

p(1− q1)l1(k)−1q1(1− q2)l2(k)−1q2(1− p)l0(k)−1

(3)
For convenience, we define the total number of visits to state

0, 1 and 2 as Γ =
∑K

k=0 l0(k), Λ =
∑K

k=1 l1(k) and ∆ =∑K
k=1 l2(k) respectively. We can then write the negative log of the

likelihood as:
− logP (y|x) =

−K(log p+ log q1 + log q2)− (Γ−K) log (1− p)
− (Λ−K) log (1− q1)− (∆−K) log (1− q2)

(4)

Assuming burst errors are rare events, p is small and log(1 −
p) ≈ 0. Hence:

− logP (y|x)

≈ −K(log p+ log q1 + log q2)

− (Λ−K) log (1− q1)− (∆−K) log (1− q2)

= −K(log p+ log
q1

1− q1
+ log

q2
1− q2︸ ︷︷ ︸

−c0

)

− Λ log(1− q1)︸ ︷︷ ︸
−c1

−∆ log(1− q2)︸ ︷︷ ︸
−c2

(5)

Thus − logP (y|x) simplifies to:

− logP (y|x) ≈ (c0 + c2)K + c1Λ + c2∆′ (6)

where ∆′ = ∆−K is the length increase of observed y due to theK
burst error events1. (6) states that the negative log of the likelihood is
a linear sum of three terms: i) the number of burst error eventsK; ii)
the number of error corrupted symbols Λ; and the length increase ∆
in observed string y. This agrees with our intuition that more error
events, more errors and more deviation in DCC length will result in
a larger objective value in (2).

3.1.3. Prior Term

Similar to [4], we propose a geometric prior based on the assumption
that contours in natural images tend to be more straight than curvy.
Specifically, we write prior P (x) as:

P (x) = exp

{
−β

Lx∑
i=Ds+1

s(xi
i−Ds

)

}
(7)

where β is a parameter, and s(xi
i−Ds

) measures the straightness of
DCC sub-string xi

i−Ds
. Let w be a DCC string of length Ds + 1,

i.e., Lw = Ds +1. Then s(w) is defined as the maximum Euclidean
distance between any coordinates of edge ew(k), 1 ≤ k ≤ Lw

and the line connecting the first point (m0, n0) and the last point
(mLw , nLw) of w on the 2D grid. We now write s(w) as:

max
1≤k≤Lw

{
|(mk−m0)(nLw−n0)−(nk−n0)(mLw−m0)|√

(mLw −m0)2 + (nLw − n0)2

}
(8)

Some examples of s(w) are shown in Fig. 3.
1Length increase of observed y due to k-th burst error event is l2(k)− 1.

s(w)

(a)

s(w)

(b) (c)

Fig. 3. Three examples of the straightness of s(w) with Lw = 4.
(a) w = rrls and s(w) =

√
2. (b) w = lrlr and s(w) =

√
2/2.

(c) w = ssss and s(w) = 0.

3.2. Rate Term

As discussed, to encode a chosen DCC string x̂ we use PPM [11],
which assigns conditional probability P (x̂i|x̂i−1

i−Dr
) of symbol x̂i ∈

A given previous Dr symbols x̂i−1
i−Dr

. The computed probabilities
are input to an arithmetic coder for entropy coding. The number
of bits for coding x̂ are thus approximated as the negative log of
conditional probabilities:

R(x̂) = −
N∑

i=Dr+1

log2 P (x̂i|x̂i−1
i−Dr

) (9)

Having defined the likelihood, prior and rate terms, our La-
grangian objective (2) can now be rewritten as:

J(x̂) = (c0 + c2)K + c1Λ + c2∆′

+ β

Lx̂∑
i=Ds+1

s(x̂i
i−Ds

)− λ
Lx̂∑

i=Dr+1

log2 P (x̂i|x̂i−1
i−Dr

)
(10)

4. OPTIMIZATION ALGORITHM

We present our DP algorithm to solve (10) optimally. To simplify
the notation, we define D = max{Ds, Dr} and

f(x̂i
i−D) = β

Lx̂∑
i=Ds+1

s(x̂i
i−Ds

)− λ
Lx̂∑

i=Dr+1

log2 P (x̂i|x̂i−1
i−Dr

).

(11)
Further, we let the first D estimated symbols x̂D

1 be the observed
yD
1 , and assume the last edge is correct, i.e., ex̂(Lx̂) = ey(Ly).

In a nutshell, as we examine each symbol in observed y, we
identify an “optimal” state traversal through our 3-state Markov
model—one that minimizes objective (10)—via two recursive func-
tions. The optimal state traversal translates directly to an estimated
DCC string x̂, which is the output of our algorithm.

Denote by Gi(x̂
i−1
i−D, e, j − 1) the minimum cost for estimated

x̂ from the i-th symbol onwards, given that we are in the good state
with a set of D previous symbols (context) xi

i−D , last edge being e
which is the same as an edge of index j − 1 in observed y. If we
choose one additional symbol x̂i = yj , then we remain in the good
state, incurring a local cost f(x̂i

i−D), plus a recursive cost Gi+1()
for the remaining symbols in string x̂ due to new context x̂i

i−D+1.
If instead we choose one additional symbol x̂i 6= yj , then we

start a new burst error event, incurring a local cost (c0 + c2) for
the new event, in addition to f(x̂i

i−D). Entering bad states, we use
Bi+1() for recursive cost instead.

Bi(x̂
i−1
i−D, e, j−1) is similarly computed asGi(x̂

i−1
i−D, e, j−1),

except that if chosen symbol x̂i has no corresponding edge in y,
then we add c1 to account for an additional error symbol. If chosen

Gi(x̂
i−1
i−D, e, j − 1) = min

x̂i∈A

{
f(x̂i

i−D) + 1(j < Ly) Gi+1(x̂i
i−D+1, v(e, x̂i), j), if x̂i = yj

(c0 + c2) + f(x̂i
i−D) + Bi+1(x̂i

i−D+1, v(e, x̂i), j), o.w.
(12)

Bi(x̂
i−1
i−D, e, j − 1) = min

x̂i∈A

{
c2(k − j) + f(x̂i

i−D) + Gi+1(x̂i
i−D+1, v(e, x̂i), k), if ∃k, v(e, x̂i) = ey(k)

c1 + f(x̂i
i−D) + Bi+1(x̂i

i−D+1, v(e, x̂i), j), o.w.
(13)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Bits(per symbol)

D
is

to
rt

io
n
(p

e
r

s
y
m

b
o
l)

Dude

Undenoised

Denosied−AEC

Separate−PPM

Joint

0.7 0.8 0.9 1 1.1 1.2
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Bits(per symbol)

D
is

to
rt

io
n
(p

e
r

s
y
m

b
o
l)

Tsukuba

Undenoised

Denosied−AEC

Separate−PPM

Joint

Fig. 4. Rate distortion curve of Dude and Tsukuba

symbol x̂i has a corresponding edge in y, then this is the end of
the burst error event, and we return to good state (recursive call to
Gi+1() instead). In this case, we must account for the change in
length between x̂ and y due to this burst error event, weighted by
c2. Gi(x̂

i−1
i−D, e, j − 1) and Bi(x̂

i−1
i−D, e, j − 1) are defined in (12)

and (13), respectively. 1(c) is an indicator function that evaluates
to 1 if the specified binary clause c is true and 0 otherwise. e =
{(m,n), d} denotes the (i − 1)-th edge of x̂, and v(e, x̂i) denotes
the next edge given that the next symbol is x̂i. j − 1 is the index of
matched edge in y.

In practice, the denoised DCC string x̂ should be no longer than
the observed y, so if i > Ly or k − j < 0, we stop the recursion
and return infinity to signal an invalid solution.

The complexity of the DP algorithm is bounded by the size of the
DP tables times the complexity of computing each table entry. De-
note by Q the number of possible edge end point locations. Looking
at the arguments of the two recursive funcions Gi() and Bi(), we
see that DP table size is O(3D 4QL2

y). To compute each entry in
Bi(), for each x̂i ∈ A, one must check for matching edge in y,
hence the complexity is O(3Ly). Hence the total complexity of the
algorithm is O(3DQL3

y), which is polynomial time for a fixed D.

5. EXPERIMENTATION

We used two computer-generated (noiseless) depth sequences:
Dude (800 × 400) and Tsukuba (640 × 480). We used gradient-
based edge detection [4] to detect the ground truth contours, and
then injected noise to the depth images assuming that the pixels
along the contours were corrupted by iid noise: for each edge of
the contour, the corruption probability was set at 10%. If corrupted,
the pixel along one side of this edge was replaced by the pixel from
the other side (side was chosen with equal probability). The noisy
contours were then detected from the noisy depth images.

The three transition probabilities in our error model, p, q1 and
q2, were computed from average noise statistics. Contours in one
previous frame were used to train the context tree for PPM-based
contour coding. We set Ds = 4 and Dr = 6 in all the experiments.

We compared performance of four different schemes. The first
scheme, Undenoised, encoded the noisy contours y directly us-
ing a lossy contour coding method (Lossy-AEC) [13]. The sec-

(a) Ground Truth (b) Noisy Observation

(c) Denoised-AEC (d) Joint

Fig. 5. Visual denoising results of Tsukuba. (c) Denoised-AEC
at bit rate 1.18 bits/symbol. (d) Joint at bit rate 0.92 bits/symbol.

ond scheme, Denoised-AEC, first denoised the contours using an
irregularity-detection method [4], then used Lossy-AEC for lossy
contour coding. The third scheme, Separate-PPM, first denoised
the contours using our proposal by setting λ = 0, then used PPM
to encode the denoised contours. The fourth scheme, Joint, is our
proposal that performed joint denosing / compression of contours.

We show the RD performance of the four schemes in Fig. 4. Dis-
tortion is defined as the sum of minimum distance from the points on
each decoded contour to the corresponding ground truth contour. For
Undenoised and Denoised-AEC, RD-curves were generated by
adjusting the strength of contour approximation [13], while the RD-
curve for Joint was obtained by varying λ. For Separate-PPM,
we used the same fixed β as in Joint to get the best denoising per-
formance, then we increased β to over-smooth the contour to reduce
the bit rate and obtained the RD-curve.

We see that Joint achieved the best RD performance for both
sequences, demonstrating the merit of our joint approach. In par-
ticular, we save about 18%, 40% and 45% bits on average against
Separate, Denoised-AEC and Undenoised for Dude, and
about 11%, 31%, 36% for Tsukuba.

Fig. 5 illustrates some visual denoising results. We see that the
noisy pixels along both the vertical (yellow circles) and diagonal
contours (red circles) were mostly removed by our proposed scheme,
while Denoised-AEC failed to remove the noisy pixels along the
diagonal contours.

6. REFERENCES

[1] C. Grigorescu, N. Petkov and M. A. Westenberg, “Contour de-

tection based on nonclassical receptive field inhibition,” IEEE
Trans. Image Process., vol. 12, no. 7, pp. 729–739, 2003.

[2] W. Hu, G. Cheung, A. Ortega, and O. Au, “Multi-resolution
graph Fourier transform for compression of piecewise smooth
images,” in IEEE Transactions on Image Processing, January
2015, vol. 24, no.1, pp. 419–433.

[3] W. Hu, G. Cheung, and A. Ortega, “Intra-prediction and gen-
eralized graph Fourier transform for image coding,” in IEEE
Signal Processing Letters, November 2015, vol. 22, no.11, pp.
1913–1917.

[4] I. Daribo, D. Florencio, and G. Cheung, “Arbitrarily shaped
motion prediction for depth video compression using arith-
metic edge coding,” in IEEE Transactions on Image Process-
ing, November 2014, vol. 23, no. 11, pp. 4696–4708.

[5] D. Weinland, R. Ronfard and E. Boyer, “A survey of vision-
based methods for action representation, segmentation and
recognition,” Computer Vision and Image Understanding, vol.
115, no. 2, pp. 224–241, 2011.

[6] W. Sun, G. Cheung, P. Chou, D. Florencio, C. Zhang, and
O. Au, “Rate-distortion optimized 3d reconstruction from
noise-corrupted multiview depth videos,” in IEEE Interna-
tional Conference on Multimedia and Expo, San Jose, CA, July
2013.

[7] W. Sun, G. Cheung, P. Chou, D. Florencio, C. Zhang, and
O. Au, “Rate-constrained 3D surface estimation from noise-
corrupted multiview depth videos,” in IEEE Transactions on
Image Processing, July 2014, vol. 23, no.7, pp. 3138–3151.

[8] S. E. Dreyfus and A. M. Law, Art and Theory of Dynamic
Programming, Academic Press, Inc., 1977.

[9] H. Freeman, “Application of the generalized chain coding
scheme to map data processing,” 1978, pp. 220–226.

[10] R. Begleiter, R. El-Yaniv and G. Yona, “On prediction using
variable order markov models,” Journal of Artificial Intelli-
gence Research, pp. 385–421, 2004.

[11] J. Cleary and I. Witten, “Data compression using adaptive cod-
ing and partial string matching,” IEEE Trans. Commun., vol.
32, no. 4, pp. 396–402, 1984.

[12] S. Zahir, K. Dhou and B. Prince George, “A new chain cod-
ing based method for binary image compression and recon-
struction,” in Proc. IEEE Int. Picture Coding Symp., 2007, pp.
1321–1324.

[13] Y. Yuan, G. Cheung, P. Frossard, P. L. Callet and V. Zhao,
“Contour approximation & depth image coding for virtual view
synthesis,” in Proc. IEEE Workshop Multimedia Signal Pro-
cessing. IEEE, 2015, pp. 1–6.

[14] A. K. Katsaggelos, L. P. Kondi, F. W. Meier, W. Fabian, J. O.
Ostermann and G. M. Schuster, “MPEG-4 and rate-distortion-
based shape-coding techniques,” Proceedings of the IEEE, vol.
86, no. 6, pp. 1126–1154, 1998.

[15] Z. Lai, J. Zhu, Z. Ren, W. Liu and B. Yan, “Arbitrary
directional edge encoding schemes for the operational rate-
distortion optimal shape coding framework,” in Proc. Conf.
Data Compression. IEEE, 2010, pp. 20–29.

[16] D. Yu and H. Yan, “An efficient algorithm for smoothing, lin-
earization and detection of structural feature points of binary
image contours,” Pattern Recognition, vol. 30, no. 1, pp. 57–
69, 1997.

[17] Y. Shoham and A. Gersho, “Efficient bit allocation for an ar-
bitrary set of quantizers,” in IEEE Transactions on Acoustics,
Speech, and Signal Processing, September 1988, vol. 36, no.9,
pp. 1445–1453.

[18] A. De Abreu, G. Cheung, P. Frossard, and F. Pereira, “Opti-
mal Lagrange multipliers for dependent rate allocation in video
coding,” in arXiv:1509.02995 [cs.MM], March 2016.

