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ABSTRACT

Social media sites like Facebook are obligated to store all
photos uploaded by an ever growing user base—which trans-
lates to an increasingly expensive storage cost—but only a
fraction of uploaded images are revisited thereafter. In this
paper, we propose a cloud storage system that trades off com-
putation of a small fraction of requested images with storage
of all photos. The key idea is to re-encode uploaded JPEG
photos with coarser quantization parameters (QP) for perma-
nent storage, then exploit a signal sparsity prior during inverse
mapping to recover fine quantization bin indices via a maxi-
mum a posteriori (MAP) formulation. Because by design the
system guarantees recovery of an original compressed image
(either with exactly the same input fine quantization bin in-
dices or has visual quality indistinguishable by human eyes),
from the user’s viewpoint it is a normal cloud storage, while
from the operator’s viewpoint there is pure compression gain
and hence lower storage cost. Experimental results show that
our storage system can reap significant storage savings (up to
20%) at roughly the same image PSNR (within 0.13dB).

Index Terms— cloud storage, image compression, sparse
signal recovery

1. INTRODUCTION

The popularity of social media sites like Facebook and photo
sharing sites like Flickr means that as the user base contin-
ues to grow, the responsible operators are on the hook to store
an increasingly large number of photos uploaded by users1.
However, because human’s time and attention are fundamen-
tally limited resources despite the ever growing heap of infor-
mation generated [1], only a fraction of the uploaded images
would realistically be revisited thereafter. This poses a system
implementation challenge for photo hosting operators: how
to best exploit this asymmetry between the volumes of initial
uploaded images and actual requested photos to minimize the
overall storage cost?

In this paper, we propose an efficient cloud storage system
that trades off computation of a small number of requested

1It is estimated in 2013 that 350 million photos are uploaded to Facebook
every day.

images with storage of all photos. The key idea is the fol-
lowing: when a user uploads a JPEG image compressed us-
ing quantization parameters (QP) q, the serving cloudlet first
re-encodes the image using coarser QP Q. The re-encoded
image is stored at a central cloud for permanent storage. If /
when the image is requested, the coarsely quantized image is
retrieved by the cloudlet, who then performs a reverse map-
ping to recover fine quantization bin indices with the help of
a signal prior. The restored image is returned to the user. The
system is illustrated in Fig. 1. From the user’s viewpoint, the
retrieved image is the same compressed image as the one up-
loaded (either with exactly the same input fine quantization
bin indices or has visual quality indistinguishable by human
eyes), hence it is no different than typical cloud storage. From
the operator’s viewpoint, however, the more coarsely quan-
tized image due to re-encoding results in pure compression
gain and lower storage cost.

The crux of the system rests in the inverse mapping from
coarse quantization bin indices to fine quantization bin in-
dices at the cloudlet when an image is requested: we call
this the quantization bin matching (QBM) problem. For each
fixed-size N -pixel code block, we formulate a maximum a
posteriori (MAP) problem to find the most probable N fine
quantization bin indices in the frequency domain given N
coarse quantization bin indices, assuming a sparse signal
prior [2], where a signal well approximated by a sparse linear
combination of dictionary atoms is more likely. This formula-
tion requires integration of the prior distribution over a given
N -dimensional quantization cell, which is mathematically
more challenging than previous de-quantization work [3, 4]
where a single most probable signal within a quantization cell
is sought. We propose a fast algorithm to approximate the
prior distribution integration. Experimental results show that
our storage system can reap significant storage savings (up to
20%) at roughly the same image PSNR (within 0.13dB).

The outline of the paper is as follows. We first discuss
related work in Section 2. We overview our cloud storage
system in Section 3. We formulate our MAP quantization bin
matching problem in Section 4 and present our algorithm in
Section 5. Finally, experimental results and conclusion are
presented in Section 6 and 7, respectively.



Fig. 1. Block diagram of the proposed scheme.

2. RELATED WORK

Image compression for cloud storage has attracted much in-
terest in both industry and academia. For example, Yue et al.
proposed in [5] to describe images and reconstruct them from
a large-scale image database via the SIFT descriptor. Shi et
al. [6] further extended this idea to compress a photo album
by exploiting local features rather than pixel values for ana-
lyzing and exploring the correlation among images. Song et
al. [7] proposed a novel cloud-based distributed image cod-
ing scheme. In this method, an input image is reconstructed in
the cloud using retrieved correlated images, from which side
information (SI) is extracted. The image is then compressed
through a transform-domain syndrome coding to correct the
disparity between the original image and the SI by an itera-
tive refinement process. In [8], Perra et al. proposed to take
advantage of redundant image data in the cloud by indepen-
dently compressing each newly uploaded image with its GIST
nearest neighbor taken from a canonical set of uncompressed
images. Although these schemes achieve good coding gain,
they rely heavily on whether correlated images can be found
in the cloud. Moreover, these methods cannot guarantee exact
recovery of the original photos uploaded by users.

3. SYSTEM OVERVIEW

For simplicity, we assume the following simple interaction
among the three entities—a user, a cloudlet and a central
cloud—in the cloud storage system illustrated in Fig. 1. A
user uploads a compressed image, coded using JPEG that
computes for each N -pixel code block m a set of DCT quan-
tization indices a(m) = [a1(m), . . . , aN (m)] using quantiza-
tion parameters (QP) q = [q1, . . . , qN ], to a serving cloudlet.
The cloudlet in turn re-encodes2 the image using coarser QP
Q = [Q1, . . . , QN ] that maps each a(m) to corresponding
quantization index set b(m) for code block m, and stores
them in the central cloud. When the user requests the im-
age, the cloudlet retrieves the index sets b(m)’s, performs an
inverse mapping that converts each b(m) back to a(m), and
returns a(m)’s back to the user. Because QP Q are coarser

2The mapping from a(m) to b(m) may not be unique; one can perform
a de-quantization procedure [3] to estimate the original signal, and then iden-
tify coarse quantization bin indices b(m) that contain the estimated signal.

than original QP q, i.e., Qi ≥ qi, there tend to be more zeros
in bi(m)’s than ai(m)’s, resulting in compression gain when
suitable entropy coding is employed. Our system is designed
to ensure that the input image can be satisfactorily recovered,
which means that either: i) original a(m) for each block m
is recovered exactly, or ii) the recovered image is so close to
the input compressed image in PSNR that to the user they are
visually indistinguishable.

The technical challenge is to design an inverse mapping
f(b), so that for some QP Q coarser than original q (thus
resulting in coding gain), the input image can be recovered
well. We only require that this inverse mapping is possible
for a large enough fraction of blocks in the image that are
re-encoded with QP Q; the remaining blocks are unchanged
with QP q. A small binary image losslessly encoded with
JBIG [9] is encoded in addition to inform the decoder which
blocks are re-quantized using Q. We discuss this coarse-to-
fine bin matching problem in the following section.

4. QUANTIZATION BIN MATCHING

4.1. MAP Formulation for Quantization Cell

Denote byXi the ground-truth i-th DCT coefficient of a target
code block x. Correspondingly, denote by ai the assigned
quantization bin index given Xi from compression at the user
end, using QP qi, i.e.,

ai = round (Xi/qi) . (1)

Thus at the decoder with ai and qi we know that Xi must
reside in interval I(ai, qi) = [(ai − 0.5)qi, (ai + 0.5)qi).

Denote by bi the assigned quantization bin index for Xi

in the re-encoded version using QP Qi, where Qi ≥ qi. Af-
ter the re-encoding, Xi must also reside in a larger interval
I(bi, Qi) = [(bi − 0.5)Qi, (bi + 0.5)Qi). Because I(ai, qi)
in the original encoding and I(bi, Qi) in the re-encoding both
contain Xi, they must overlap. Thus when performing the in-
verse mapping f : bi 7−→ ai, we only need to consider the
feasible bin set Fbi :

Fbi = {ai | I(ai, qi) ∩ I(bi, Qi) 6= ∅} (2)

Denote by P (Xi) the prior probability of Xi. We follow
a maximum a posteriori (MAP) formulation, where we seek
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Fig. 2. Illustration of the QBM problem (1D case), where three fine
quantization bins (of width q) overlap with the one coarse quantiza-
tion bin (of width Q).

the most likely bin âi among a discrete set Fbi :

âi = arg max
ai∈Fbi

∫ (ai+0.5)qi

(ai−0.5)qi
P (Xi | bi) dXi (3)

where

P (Xi | bi) =

{
P (Xi) if Xi ∈ I(bi, Qi)
0 o.w. (4)

This MAP formulation of the QBM problem in 1D is il-
lustrated in Fig. 2, where we choose, among the three fine
quantization bins of width q that overlap with the coarse
quantization bin of width Q, the one with the largest aggre-
gate probability

∫
P (Xi|bi) dXi. This differs from typical

de-quantization work like [3], where the MAP formulation
for the most probable signal within a quantization bin will
simply lead to the peak location of P (Xi|bi) within the bin.

Considering now all N DCT coefficients X in a block x
together with N -dimensional prior probability P (X), we for-
mulate the following more general MAP optimization prob-
lem:

max
a|ai∈Fbi

∫ (a1+0.5)q1

(a1−0.5)q1
. . .

∫ (aN+0.5)qN

(aN−0.5)qN
P (X |b) dX1 . . . dXN

(5)
where

P (X |b) =

{
P (X) if Xi ∈ I(bi, Qi), 1 ≤ i ≤ N
0 o.w.

(6)
We can rewrite (5), which involves multi-dimensional in-

tegration, into a simpler form:

max
a|ai∈Fbi

P̄a(X|b) (7)

where P̄a(X|b) is the aggregate of probability P (X|b)
within a quantization cell Ca defined by a, i.e., I(ai, qi), i =
1, . . . , N . The challenge to solve (7) is thus how to appropri-
ately define P (X), and how to compute P̄a(X|b) efficiently
and accurately.

4.2. Defining Prior Probability P (X)

We assume a sparsity model [2] to define signal prior P (X).
Specifically, a k-sparse signal model states that an N -
dimensional signal x in the pixel domain can be well ap-
proximated by a linear combination of k or fewer atoms from
an over-complete dictionary Φ:

x = Φα+ ε, ‖α‖0 ≤ k, (8)

where the model error ε is small. In this paper, following
the work [10], we learn adaptive dictionaries via PCA in a
machine-learning driven manner. By applying DCT operator
T on both sides of (8), we can get

X = Ψα+ ε′, (9)

where Ψ = TΦ. Therefore, the sparsity of X can be mea-
sured by the sparsity of x with respect to Φ.

Given this model, the joint probability distribution P (X)
can be represented as

P (X) = exp

{
−‖α‖0

σ

}
, (10)

where σ is a model parameter. We further relax the `0 norm
to `1 norm. Finally, the objective function can be rewritten as

arg min
a|ai∈Fbi

∫ (a1+0.5)q1
(a1−0.5)q1 . . .

∫ (aN+0.5)qN
(aN−0.5)qN ‖α‖1 dX1 . . . dXN ,

s.t., x = Φα+ ε.
(11)

As stated above, the QBM problem can be reformulated as
finding the quantization cell with the most and sparsest solu-
tions within its boundaries, rather than a single best sparse so-
lution which is usually done in image de-quantization [3, 4].

5. OPTIMIZATION

Optimizing the objective (11) directly is difficult. Instead of
searching for all possible sparse solutions within a quantiza-
tion cell, we find a single best sparse solution as a representa-
tive, then multiply the prior probability of the solution (expo-
nential of the solution’s sparsity count) by the cell’s volume.
This is an approximation of the multi-dimensional integration
in (11); in essence we say that the larger the cell volume, the
more likely we will find other sparse solutions like the dis-
covered one, hence a larger aggregate probability.

The problem of finding an initial sparse solution within
the indexed coarse quantization cell b is:

α∗ = arg min
α

‖x−Φα‖22 + λ‖α‖1,

s.t., Xi ∈ I(bi, Qi), i = 1, · · · , N, and X = Tx.
(12)

The optimization for sparse solutionα∗ can be effectively and
efficiently solved by a fast `1-minimization algorithm, known
as Augmented Largrangian Methods (ALM) [11].



Fig. 3. Rate-distortion performance comparison. The blue circles are the RD points of JPEG compression using fine QF. The red circles
represent the RD points of signal fidelity reconstruction by our method. The red and blue circles have the same PSNR values, but red ones
use less bits.

Table 1. Pure compression gain without changing uploaded images

Images Fine QF Coarse QF Blocks Proportion Bit-Saving
Lighthouse 80 50 10.97% 3.32%
Sailboats 80 50 10.09% 2.08%
Window 80 50 12.81% 3.04%

Girl 80 50 14.71% 4.54%
Hats 80 50 15.67% 4.38%

Parrots 80 55 17.37% 3.68%
Airplane 80 55 42.18% 14.19%

Ahoy 80 50 7.96% 2.01%

We identify the fine quantization cell a∗ that contains this
sparse solution as follows:

a∗ = round
(

TΦα∗

q

)
. (13)

If the identified fine quantization cell a∗ overlaps only
partially with the coarse quantization cell b (such as cell A
and C in Fig. 2), its aggregate probability is small since the
cell volume is small. We then search for sparse solutions also
in adjacent fine quantization cells via (12) to test other solu-
tion candidates. Among these cells, the one with the largest
product of signal prior (of the identified sparse solution in the
cell) and cell volume is concluded as the final solution.

6. EXPERIMENTS

We conducted experiments to demonstrate the effectiveness
of our proposed cloud image storage scheme. We use the
well-known Kodak dataset, in which five images are ran-
domly selected as training data for dictionary learning, and
the rest are used as test images. The quality factor (QF) in
JPEG coding, ranging from 1 to 100, indicates the relative
visual quality of an image after compression by choosing one
from a set of quantization matrices. In our experiments, the
fine QF for JPEG coding is fixed at 80, while the coarse QF
is chosen from 50 and 55 for different images.

The first design objective is to guarantee exact recovery of
fine quantization bin indices as the original uploaded version.
In this case, exact bin index recovery means there is no loss
in quality, and hence we report only bit savings. Note that bit

saving is achieved by re-encoding a fraction of image blocks
with coarser QFs that can guarantee exact bin index recovery.
Table 1 tabulates the used fine and coarse QFs, the proportion
of blocks selected to be re-encoded, and the pure compression
gains of our method on the eight test images. The results show
that, for the test images, up to 42.18% blocks are selected
for further compression using coarse QFs, translating to up to
14.19% bit-saving.

The second alternative design objective is to guarantee re-
covery of an uploaded image so close in quality that it is indis-
tinguishable to human eyes. To accomplish this, we relax the
“exact bin matching” constraint by allowing some differences
between the recovered and the input fine bin indices. The
level of difference is measured by the sum of block-level bin
errors. In our experiments, we test six cases: the sum of error
is 0, 2, 3, 4, 5 and 6. Fig. 3 illustrates the rate-distortion per-
formance comparison of our method with JPEG on three test
images: Lighthouse, Ahoy and Airplane. The PSNR losses in
the six cases are within 0.13dB. It is widely accepted that such
small PSNR loss typically does not lead to visual differences.
The results show that our method significantly outperforms
JPEG. Further, at the expense of very slight PSNR loss, the
visually indistinguishable reconstruction option achieves sig-
nificantly higher bit-saving, compared with the case of exact
bin index recovery. Using the error sum of 6 as an example,
our method achieves 16.71%, 12.82% and 20.7% bit-saving
for Lighthouse, Ahoy and Airplane, respectively, in contrast
to 3.32%, 2.01% and 14.19% shown in Table 1.

7. CONCLUSION

We propose a cloud storage system for JPEG images that
trades off computation of a small number of requested im-
ages with storage of a much larger volume of uploaded im-
ages. Specifically, given an input JPEG image uploaded by
a user and quantized using quantization parameter (QP) q, a
cloudlet re-encodes it using a coarser QP Q for permanent
storage. When the image is requested, the cloudlet retrieves
the coarsely quantized image and performs a coarse-to-fine
bin matching to recover the input fine quantization bin in-
dices. Experiments show that at virtually the same input im-
age quality, our system can reap significant storage saving.
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