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Abstract—Piecewise smooth (PWS) images (e.g., depth maps
or animation images) contain unique signal characteristics such
as sharp object boundaries and slowly-varying interior surfaces.
Leveraging on recent advances in graph signal processing, in
this paper we propose to compress PWS images using suitable
Graph Fourier Transforms (GFT) to minimize the total signal
representation cost of each pixel block, considering both the
sparsity of the signal’s transform coefficients and the compactness
of transform description. Unlike fixed transforms such as the
Discrete Cosine Transform (DCT), we can adapt GFT to a
particular class of pixel blocks. In particular, we select one among
a defined search space of GFTs to minimize total representation
cost via our proposed algorithms, leveraging on graph optimiza-
tion techniques such as spectral clustering and minimum graph
cuts. Further, for practical implementation of GFT we introduce
two techniques to reduce computation complexity. First, at the
encoder we low-pass filter and down-sample a high-resolution
(HR) pixel block to obtain a low-resolution (LR) one, so that
a LR-GFT can be employed. At the decoder, up-sampling and
interpolation are performed adaptively along HR boundaries
coded using arithmetic edge coding (AEC), so that sharp object
boundaries can be well preserved. Second, instead of computing
GFT from a graph in real-time via eigen-decomposition, the
most popular LR-GFTs are pre-computed and stored in a table
for lookup during encoding and decoding. Using depth maps
and computer-graphics images as examples of PWS images,
experimental results show that our proposed multi-resolution
(MR)-GFT scheme outperforms H.264 intra by 6.8 dB on average
in PSNR at the same bit rate.

Index Terms—Image Compression, Graph Fourier Transform,
Piecewise Smooth Images.

I. INTRODUCTION

A popular approach to image compression is transform cod-
ing [1]: an image is first divided into non-overlapping blocks
of pixels, with each block projected to a chosen transform
domain, and the resulting transform coefficients are quantized,
entropy-coded and transmitted to the decoder. While one can
apply a transform to an entire image, most compression codecs
(e.g., JPEG1, H.264 [2]) employ transform coding block-by-
block. This is because block-based transforms can adapt to
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the non-stationary statistics of natural images and are more
amenable to hardware implementation. We focus on block-
based transform coding of images in this paper.

A key to good compression performance is to select a
transform that promotes sparsity in representation; i.e., upon
signal transformation there remain few non-zero transform
coefficients, resulting in coding gain. For a vector follow-
ing a known correlation model (statistically described by a
covariance matrix), the Karhunen-Loève Transform (KLT) is
the optimal transform in terms of decorrelating components
of the vector2 [7]. In order to use the KLT for coding of
non-overlapping pixel blocks in an image, one would first
adaptively classify each block into one of several statistical
classes, then apply the KLT corresponding to the identified
statistical class for decorrelation. However, description of the
identified statistical class for the coded block (and hence
the transformation employed) must be conveyed to the de-
coder for correct transform decoding. Given this transform
description overhead, how to suitably select a good set of
statistical classes for KLT transform coding to achieve good
overall performance—in terms of both sparsity of signal
representation and compactness in transform description—is
the challenge.

The Discrete Cosine Transform (DCT), on the other hand,
is a fixed transform with no signal adaptation, thus it requires
no description overhead. It is equivalent to the KLT for the
single statistical class where the correlation between each pair
of adjacent pixels is assumed to be 1. The DCT is widely
used in image compression systems, such as the JPEG and
H.26x codecs [8]. However, the assumption that the pixel
correlation tends to 1 is not always true. In particular, adjacent
pixels across sharp boundaries clearly have correlation much
smaller than one. This means that for blocks that straddle
sharp boundaries, the DCT will lead to non-sparse signal
representation, resulting in poor coding performance.

In order to achieve a balance between signal representation
and transform description, we propose to use graph Fourier
transforms (GFTs) [9] for transform coding of images. GFT
is a matrix of eigenvectors of the graph Laplacian matrix of
a constructed graph. For transform coding, the graph nodes
represent pixels in a coding block, and each edge weight rep-
resents correlation between two connected (adjacent) pixels.

2Optimality in decorrelating a vector statistically, however, does not nec-
essarily imply optimality in transform coding. It is shown that the KLT is
optimal if the input vector is jointly Gaussian or a mixture of Gaussians, for
variable-rate high-resolution coding [3], [4], [5]. For other sources, the KLT
may yield sub-optimal performance [6].
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Given a defined search space of graphs that connect pixels in
a given block, an “optimal” graph (and hence corresponding
“optimal” GFT) minimizes the total signal representation
cost, evaluating both the sparsity of the signal’s transform
coefficients and the compactness of transform description.

(a) Teddy (b) Dude
Fig. 1. Examples of PWS images: (a) a depth map of an image sequence
Teddy; (b) a computer-graphics image Dude.

In particular, we propose to use GFTs for transform cod-
ing of a class of images—piecewise smooth (PWS) images.
PWS images consist of sharp boundaries and smooth interior
surfaces. They have recently received renewed attention in the
image processing community, due to advances in depth sensing
technologies, such as Microsoft Kinect R©, that capture fairly
accurate depth maps in real-time. A depth image is a per-pixel
map that measures the physical distance between objects in the
3D scene and the capturing camera. Because textural contents
of objects are not captured, depth images are smooth within
an object’s surface, and hence PWS. Depth maps can be used
for advanced image processing tasks, such as foreground /
background segmentation, 3D motion estimation [10], depth-
image-based rendering (DIBR) [11], etc. Other examples of
PWS images include animation images, magnetic resonance
imaging (MRI) images, dense motion fields [12], computer-
graphics images, etc. See Fig. 1 for examples of PWS images.
Unique signal characteristics of sharp boundaries and smooth
interior surfaces in PWS images mean that conventional cod-
ing schemes designed for natural images such as JPEG do
not offer good compression performance. We focus on the
compression of PWS images in this paper.

Our proposed GFT-based coding scheme for PWS im-
ages, called multi-resolution GFT (MR-GFT), has three main
contributions. First, we consider a large space of possible
graphs, including unweighted graphs and weighted graphs,
to exploit the generality afforded by GFT. Further, we define
an optimality criterion of GFT for compression that aims to
minimize the total representation cost, including transform
domain representation and transform description. To enable
low GFT description cost, we restrict our feasible space of
GFTs to graphs with simple connectivity and a small discrete
set of edge weights. Discrete edge weights are derived from
a statistical analysis under a model specifically designed to
characterize PWS signals, for which we demonstrate that the
derived GFT approximates the KLT.

Second, given a defined search space of graphs (or equiv-
alently GFTs), we search for the optimal GFT for each pixel
block with our proposed efficient algorithms. In particular,
for ease of optimization we divide the search space into
two subspaces—GFTs on weighted graphs and GFTs on un-

weighted graphs. For GFTs on weighted graphs, we formulate
a separation-deviation (SD) problem and solve it using a
known efficient graph cut algorithm [13]. Meanwhile, we
search for good GFTs on unweighted graphs via a greedy
algorithm, leveraging on a graph partitioning technique based
on spectral clustering [14].

Third, for practical implementation, we design two tech-
niques to reduce computation complexity. In the first tech-
nique, we propose a multi-resolution (MR) approach, where
detected object boundaries are encoded in the original high
resolution (HR), and smooth surfaces are low-pass-filtered and
down-sampled to a low-resolution (LR) one, before performing
LR GFT for a sparse transform domain representation. At
the decoder, after recovering the LR block via inverse GFT,
we perform up-sampling and interpolation adaptively along
the encoded HR boundaries, so that sharp object boundaries
are well preserved. The key insight is that on average PWS
signals suffer very little energy loss during edge-adaptive low-
pass filtering, which enables the low-pass filtering and down-
sampling of PWS images. This MR technique also enables us
to perform GFT on large blocks, resulting in large coding gain.
In the second technique, instead of computing GFT from a
graph in real-time via eigen-decomposition of the graph Lapla-
cian matrix, we pre-compute and store the most popular LR-
GFTs in a table for simple lookup during actual encoding and
decoding. Further, we exploit graph isomorphism to reduce the
number of GFTs required for storage to a manageable size.
Using depth maps and graphics images as examples of PWS
images, experimental results show that our proposed MR-
GFT scheme outperforms H.264 intra (with intra prediction
used) by 6.8 dB on average in PSNR. Further, when applying
compressed depth maps to DIBR, we achieve 2.2 dB gain on
average in synthesized view PSNR compared to H.264 intra.

The outline of the paper is as follows. We first discuss re-
lated work in Section II. We then overview our proposed MR-
GFT coding system in Section III and review the definition of
GFT in Section IV. Next, we present a mathematical analysis
of optimal GFTs in Section V. The problem formulations and
algorithms for optimal GFTs on two types of graph supports
are discussed in Section VI. We then outline the detailed
implementation in Section VII. Finally, experimental results
and conclusions are presented in Section VIII and Section IX,
respectively.

II. RELATED WORK

The field of PWS image compression encompasses diverse
source coding schemes, ranging from segmentation-based
techniques to popular transform approaches. In general, they
feature efficient representations of the geometric structures in
PWS images. We discuss them in order as follows.

Segmentation-based compression schemes segment the im-
age into homogeneous partitions followed by coding of each
partition. One of the most popular is quadtree-based com-
pression [15], [16], [17], which recursively divides the image
into simple geometric regions. [15] designs the quadtree
segmentation in an optimal Rate-Distortion (RD) framework
and then approximates each segment using a polynomial
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model separated by a linear boundary. The direction of the
boundary, however, is chosen from a given limited discrete
set, which may not be sufficiently descriptive to describe
arbitrarily shaped boundaries. In contrast, our proposed MR-
GFT can represent any boundary accurately and efficiently via
arithmetic edge coding (AEC) of HR edges [18], [19]. In [16]
depth maps are modeled by piecewise-linear functions (called
platelets) separated by straight lines, which are adaptive to
each subdivision of the quadtree with variable sizes in a global
RD tradeoff. However, this representation has non-vanishing
approximation error, since depth maps are not exactly piece-
wise linear. In contrast, our proposed MR-GFT can accurately
represent PWS images in GFT domain.

Transform approaches are also designed for PWS image
compression. An ensemble of transforms exploit the geometry
of PWS images, such as the wavelet-domain compression [20],
[21], curvelet [22], and contourlet [23]. However, they are
all deployed over the entire image, and so are not easily
amenable to block-based processing for hardware-friendly
implementation. In contrast, our proposed MR-GFT is a block-
based transform coding approach.

GFT is first used for depth map coding in [24], which
empirically demonstrated that using GFT for transform coding
of a depth pixel block with sharp boundaries, one can achieve
a sparser transform domain representation than with DCT.
(Sparsity in representation of depth block in GFT domain is
also used as a signal prior in depth image denoising in [25].)
However, [24] has the following shortcomings. First, given an
input pixel block, [24] considers only a single variant of GFT
based on an unweighted graph, while we consider a much
larger space of possible graphs, including both unweighted
and weighted graphs. Second, graphs are deduced directly
from detected boundaries in [24], thus it is not clear if the
construction of graphs is optimal in any sense. In contrast,
we formally define an optimality criterion that reflects repre-
sentation cost and propose efficient algorithms to search for
graphs that lead to optimal GFTs. Finally, for each

√
N×
√
N

pixel block, [24] requires real-time eigen-decomposition of an
N ×N graph Laplacian matrix to derive basis vectors at both
the encoder and decoder. This large computation burden also
means that GFT cannot be practically performed for larger
blocks in PWS images, which will otherwise result in larger
coding gain. To address this issue, we design two techniques
to reduce computation complexity, namely, the MR scheme
and table lookup. Experimental results show that we achieve
5.9 dB gain on average in PSNR over [24].

Drawing a connection between GFT and a graphical statis-
tical model called Gaussian Markov Random Field (GMRF),
[26] provides a theoretical analysis on the optimality of GFT
in terms of decorrelating the input vector under the GMRF
model. Unlike [26], we select a GFT for each coding block
by choosing from a set of candidate GFTs using an optimality
criterion that considers both the sparsity of the GFT domain
signal representation and the compactness of the transform
description.

Image compression specifically tailored for depth maps, a
representative class of PWS images, has been studied exten-
sively in recent years. Beyond the class of techniques that

exploit the piecewise smooth characteristics of depth signals
[16], [17], [21] as previously discussed, another class of
depth coding techniques are tailored specifically for virtual
view rendering via DIBR [27], [28], [29], [30], [31], [32].
Specifically, they optimize depth coding by considering the
impact of depth errors due to lossy image compression on the
DIBR-synthesized views. [27], [28] utilize synthesized view
distortion as metric for depth coding optimization, such as
mode selection. [29], [30] use synthesized view distortion as
objective for transform domain sparsification (TDS). In [31],
view synthesis is incorporated for improved depth prediction
in a RD optimized framework. [32] proposes down-sampling
/ up-sampling techniques in an optimized fashion by incor-
porating the effect of depth re-sampling on view synthesis
quality. In contrast, since we focus on compression of general
PWS images, we do not consider synthesized view distortion
as an optimization metric. Nevertheless, our proposed method
implicitly leads to good synthesized views via edge-preserving
of depth maps, as shown in Section VIII.

III. MULTI-RESOLUTION GRAPH FOURIER TRANSFORM
CODING SYSTEM
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Fig. 2. MR-GFT coding system for PWS images.

We first provide an overview of our proposed MR-GFT
coding system for compression of PWS images, shown in
Fig. 2. Given a PWS image, we discuss the encoding and
decoding procedures as follows.

A. Encoder

At the encoder, we first detect prominent boundaries (large
inter-pixel intensity difference) in the HR image via hard
thresholding of image gradients. The threshold is set based
on the mean and variance of the image, so that the boundary
detection is adaptive to the image statistics. We encode HR
boundaries losslessly for the adaptive intra prediction and
interpolation at the decoder (discussed later), using AEC [18],
[19]. We apply AEC for the entire image, which avoids initial-
ization for each block and efficiently encodes long continuous
boundaries in the image. Then for each K

√
N ×K

√
N target

pixel block considering a down-sampling factor K = 2, we
execute the following three steps.
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First, we perform edge-aware intra prediction as proposed
in [33]. Different from the intra prediction in H.264 [2], edge-
aware intra prediction efficiently reduces the energy of the
prediction error by predicting within the confine of detected
HR boundaries, thus reducing bits required for coding of the
residual signal.

Second, we try two types of transforms for transform coding
of the residual block: i) fixed DCT on the original HR residual
block (HR-DCT), ii) a pre-computed set of LR GFT (LR-
GFT) on the down-sampled LR residual block (including
LR weighted GFT and LR unweighted GFT, as discussed
in Section V). We then choose the one transform with the
best RD performance. Before transform coding using LR-GFT,
however, we first adaptively low-pass-filter and down-sample
the K

√
N ×K

√
N block uniformly to a

√
N ×

√
N block.

Low-pass filtering is first used to avoid aliasing caused by
down-sampling. We propose an edge-adaptive low-pass filter
in the pixel domain for the preservation of sharp boundaries.
Specifically, a pixel is low-pass-filtered by taking average of
its neighbors on the same side of HR boundaries within a
(2K − 1) × (2K − 1) window centering at the to-be-filtered
pixel. The advantage of this edge-adaptive low-pass filtering is
that filtering across arbitrary-shape boundaries will not occur,
so pixels across boundaries will not contaminate each other
through filtering.

For the implementation of the HR-DCT and LR-GFT, we
pre-compute the optimal transforms (discussed in Section VI)
and store them in a lookup table (discussed in Section VII)
a priori. During coding, we try each one and choose the one
with the best RD performance. The two types of transforms,
HR-DCT and LR-GFT, are employed to adapt to different
block characteristics. HR-DCT is suitable for blocks where
edge-adaptive low-pass filtering would result in non-negligible
energy loss. If very little energy is lost during low-pass
filtering, LR-GFT would result in a larger coding gain. Note
that if a given block is smooth, the LR-GFT will default to
the DCT in LR, and would generally result in a larger gain
than HR-DCT due to down-sampling (the rates of transform
indices for both, i.e., the transform description overhead, are
the same in this case).

Third, after the RD-optimal transform is chosen from the
two transform candidates, we quantize and entropy-encode the
resulting transform coefficients for transmission to the decoder.
The transform index identifying the chosen transform is also
encoded, so that proper inverse transform can be performed at
the decoder.

B. Decoder

At the decoder, we first perform inverse quantization and
inverse transform for the reconstruction of the residual block.
The transform index is used to identify the transform chosen
at the encoder for transform coding.

Secondly, if LR-GFT is employed, we up-sample the recon-
structed

√
N×
√
N LR residual block to the original resolution

K
√
N×K

√
N , and then fill in missing pixels via our proposed

image-based edge-adaptive interpolation [34], where a pixel x
is interpolated by taking average of its neighboring pixels on

the same side of boundaries within a (2K − 1) × (2K − 1)
window centering at pixel x.

Finally, the K
√
N×K

√
N block is reconstructed by adding

the intra predictor to the residual block.

IV. GRAPH FOURIER TRANSFORM FOR IMAGES

Before we proceed to problem formulation and algorithms
for optimal GFTs, we first review the basics of GFT.

A graph G = {V, E ,W} consists of a finite set of vertices V
with cardinality |V| = N , a set of edges E connecting vertices,
and a weighted adjacency matrix W. W is a real N × N
matrix, where Wi,j is the weight assigned to the edge (i, j)
connecting vertices i and j. We consider here only undirected
graphs, which correspond to symmetric weighted adjacency
matrices, i.e., Wi,j = Wj,i. We also assume weights are non-
negative, i.e., Wi,j ≥ 0.

While there exist different variants of Laplacian matrices,
we are interested in the unnormalized combinatorial graph
Laplacian in this work, which is defined as L := D −W,
where D is the degree matrix—a diagonal matrix whose ith
diagonal element is the sum of all elements in the ith row

of W, i.e., Di,i =
N∑
j=1

Wi,j . Since the Laplacian matrix is

a real symmetric matrix, it admits a set of real eigenvalues
{λl}l=0,1,...,N−1 with a complete set of orthonormal eigenvec-
tors {ψl}l=0,1,...,N−1, i.e., Lψl = λlψl, for l = 0, 1, ..., N−1.
We employ this Laplacian matrix for two reasons.

First, because elements in each row of L sum to zero
by construction, 0 is guaranteed to be an eigenvalue with
[1 . . . 1]T as the corresponding eigenvector. This means a
frequency interpretation of GFT, where the eigenvalues λl’s
are the graph frequencies, will always have a DC component,
which is beneficial for the compression of PWS images where
most regions are smooth.

Second, GFT defaults to the well known DCT when defined
for a line graph (corresponding to the 1D DCT) or a 4-
connectivity graph (2D DCT) with all edge weights equal to
1 [26]. That means GFT is at least as good as the DCT in
sparse signal representation if the weights are chosen in this
way. Due to the above two desirable properties, we use the
unnormalized Laplacian matrix in our definition of GFT.

We note that the graph Laplacian can be used to describe
the total variation of the signal with respect to the graph; i.e.,
for any signal x ∈ RN residing on the vertices of a graph with
the graph Laplacian L, we can write [35]

xTLx =
1

2

N∑
i=1

N∑
j=1

Wi,j(xi − xj)2. (1)

xTLx is small when x has similar values at each pair of
vertices i and j connected by an edge, or when the weight Wi,j

is small for an edge connecting i and j with dissimilar values.
Thus, a signal is smooth (mostly low-frequency components)
with respect to a graph if the edge weights capture the
similarity of connected pixels in the signal. Since xTLx is
small if a signal is smooth on the graph (thus a sparse
representation in the GFT domain), we will use xTLx to select
graphs that lead to good compression results in later sections.
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Fig. 3. An example of constructing GFT from a 2×2 pixel block. The vertical
contour separates pixel 1 and 2 from pixel 3 and 4, and a graph is constructed
by connecting pixels on each side of the contour. The corresponding adjacency
matrix W, degree matrix D, Laplacian matrix L as well as the computed
GFT U are shown on the right.

In particular, we will discuss how we use (1) as the rate proxy
of transform coefficients during the search for optimal GFTs
in Section VI.

The eigenvectors {ψl}l=0,1,...,N−1 of the Laplacian matrix
are then used to define the GFT. Formally, for any signal x ∈
RN residing on the vertices of G, its GFT x̂ ∈ RN is defined
in [9] as

x̂(l) =< ψl,x >=

N∑
n=1

ψ∗l (n)x(n), l = 0, 1, ..., N −1. (2)

The inverse GFT follows as

x(n) =

N−1∑
l=0

x̂(l)ψl(n), n = 1, 2, ..., N. (3)

Having defined the GFT, we give an example of how to
construct a GFT given an unweighted graph defined for a
pixel block. Given a

√
N ×

√
N pixel block, we first treat

each pixel in the block as a vertex in a graph G and connect it
to its four immediate neighbors, resulting in a 4-connectivity
graph. See Fig. 3 for an illustration. Second, if there is a large
discrepancy in values between two neighboring pixels, we
eliminate their connection. Given the connectivity graph, we
can define the adjacency matrix W, where Wi,j = Wj,i = 1
if pixel positions i and j are connected, and 0 otherwise. The
degree matrix D can then be computed. In the third step, using
computed W and D, we compute the graph Laplacian matrix
L = D −W. We then stack pixels in the

√
N ×

√
N patch

into a length-N vector x and compute the GFT according to
(2).

V. OPTIMAL GRAPH FOURIER TRANSFORMS FOR
PIECEWISE SMOOTH IMAGES

We now define a notion of optimality of GFT for com-
pression of PWS images. Towards a formal definition of an
optimization problem, we then define the search space for
GFT as a discrete set of graph supports with edge weights
drawn from a small discrete set. The weights are later derived
assuming a specific statistical model for PWS images, where
we demonstrate that the derived GFT approximates the KLT
under this model.

A. Optimality Definition for Graph Fourier Transforms

In lossy image compression, different coding systems are
compared based on their RD performance, which describes the

trade-off between the coding rate and total induced distortion.
Specifically, a typical system design seeks to minimize a
weighted sum of rate and distortion for chosen weighting
parameters. However, assuming high bit rate, [36] shows that
a uniform quantizer yields the following expected distortion:

D =
Nq2

12
, (4)

where q is the quantization step size employed for each
coefficient, and N is the toal number of coefficients, which
is the same for different orthogonal transforms. This indicates
that the expected distortion does not change when considering
different transforms under the same assumptions.

Hence, we only need to consider the total coding rate. Given
a pixel block x ∈ RN , the GFT representation derived from the
graph G = {V, E ,W} constructed on x has two representation
costs: i) the cost of transform coefficient vector α denoted
by Rα(x,W), and ii) the cost of transform description T
denoted by RT (W). We thus arrive at the following definition
of optimality for GFTs:

Definition For a given image block x ∈ RN under fixed
uniform quantization at high bit rate, an optimal GFT is the
one that minimizes the total rate, i.e.:

min
W

Rα(x,W) +RT (W)

s.t. Wi,j ∈ C ∀ i, j ∈ V
(5)

where C is the feasible set of edge weights.

Note that while an edge weight could in general take on any
non-negative real value, we restrict weights to a small discrete
set C in order to enable low description cost RT for GFT. This
is further discussed next.

B. Definition of Search Space for GFTs

To lower the description cost RT for GFT in optimiza-
tion (5), instead of a full graph we assume a simpler 4-
connectivity graph, where each vertex is only connected to
its four adjacent neighbors. Further, we view pixels that are
neighbors in the 4-connectivity graph as random variables, and
consider a discrete set of possible weights to be chosen for
each edge connecting two pixels. These weights correspond
to three representative classes of the correlation between two
pixels: 1) strong correlation between the pixels, which models
pixel pairs occurring in smooth regions of the foreground
/ background; 2) zero correlation between the two pixels,
occurring when they straddle sharp boundaries between the
foreground and background; and 3) weak correlation between
the pixels that correspond to distinctly different parts of the
same foreground / background object. See Fig. 4 for an
illustration. Correspondingly, the weights are assigned to be
C = {1, 0, c}, where c is a carefully chosen real value between
0 and 1 (to be formally derived next).

Having defined the edge weight set, for ease of computation
we further divide the optimization problem (5) into two sub-
problems with two corresponding non-overlapping GFT search
spaces:
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Fig. 4. An intuitive illustration of how different transforms adapt to pixel
blocks with different pixel correlations in the depth map of Ballet.

• Unweighted GFT (UGFT), with C = {1, 0} for blocks
that can be well described by pixel pairs with strong and
zero correlations only; and

• Weighted GFT (WGFT), with C = {1, c} for blocks that
can be well described by pixel pairs with strong and weak
correlations only.

If a block can be well described by pixel pairs with strong
correlation only (i.e., a smooth block), then the GFT defaults
to the DCT. See Fig. 4 for an illustration. In a nutshell, the
WGFT considers only graphs that describe a single connected
component (i.e., only one DC coefficient in any WGFT
representation of the signal). The UGFT considers graphs
of multiple connected components, where each component is
connected by edges with weight 1. (A connected component
with a pair of disconnected neighboring pixels appears rarely
in practice, and thus is not considered in the UGFT opti-
mization.) Both search spaces are searched for a given input
coding block for the best possible signal representation. The
rationale for this division is twofold. First, if the coding block
is sufficiently small, then the likelihood of a block containing
pixel pairs with all the three classes of correlations is very
small. Second, division into two independent searches for the
UGFT and WGFT leads to efficient search algorithms, which
will be presented in Section VI.

The key question now is: what is the most suitable value of
c, one that correctly models weak correlation in the third class
of pixel pairs, so that an optimal GFT in the WGFT search
space has the best possible performance? We next derive the
optimal c from statistical analysis under a model designed
for PWS signals, where we demonstrate that the derived GFT
approximates the KLT for the corresponding class of signals.

C. Derivation of Optimal Edge Weights for Weak Correlation

For simplicity, we consider the derivation of the optimal
edge weight c in one dimension. We note, however, that the
optimality of our derived edge weight c—by extension the
optimality of the corresponding GFT—carries over to the more

general 2D setting where the locations of smooth and weak
transition regions S and P are known deterministically, and
the statistics of the random variables involved in the model
are known probabilistically.

Given the unique characteristics of PWS images, we as-
sume a piecewise first-order autoregressive process x =
[x1, ..., xN ]T with independent and identically distributed
(i.i.d.) standard normal noise ek ∼ N (0, 1), k = 1, ..., N [37]:

xk =

 η, k = 1
xk−1 + ek, 1 < k ≤ N, [k − 1, k] ∈ S
xk−1 + g + ek, 1 < k ≤ N, [k − 1, k] ∈ P

(6)
where we assume the first variable x1 to be η ∼ N (0, σ2

1).
In the given smooth region S, xk is assumed to be the sum
of xk−1 and a standard normal noise, while across the known
weak transition region P (e.g., from one smooth region of the
foreground to another, as shown in Fig. 4), xk is modeled
as the sum of xk−1, a random gap g ∼ N (mg, σ

2
g), and a

standard normal noise.
Further, we assume there exists only one weak transition

in a code block. Since experimentally we use a sufficiently
small block size, it is very likely to have at most one weak
transition in a block in each dimension. Assuming the only
weak transition exists between xk−1 and xk, then (6) can be
expanded as:

x1 = η
x2 − x1 = e2
· · ·

xk − xk−1 = g + ek
· · ·

xN − xN−1 = eN

(7)

and further written into the matrix form:

Fx = b, (8)

where

F =



1 0 0 0 0 0
−1 1 0 0 0 0

0
. . .

. . . 0 0 0
0 0 −1 1 0 0

0 0 0
. . .

. . . 0
0 0 0 0 −1 1


,b =



0
e2
...
ek
...
eN


+



η
0
...
g
...
0


(9)

Since F is invertible with

F−1 =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1

 , (10)

we have
x = F−1b. (11)

In order to approximate the optimal decorrelation property
of the KLT for a particular ensemble of 1D signals as x under
our specific model, we first compute the covariance matrix of
x. Assuming µ = E[x], we have
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C = E[(x− µ)(x− µ)T ]
= E[xxT ]− µµT

= E[F−1bbT (FT )−1]− µµT

= F−1E[bbT ](FT )−1 − µµT ,

(12)

where µ takes the form

µi =

{
0, 1 ≤ i < k
mg, k ≤ i ≤ N (13)

Further computation gives

E[bbT ] =



σ2
1 0 ··· 0 ··· 0
0 1 ··· 0 ··· 0

. . .
0 0 ··· 1 0 ··· 0
0 0 ··· 0 σ2

g+m
2
g+1 0 ··· 0

0 0 ··· 0 0 1 ··· 0

. . .
0 0 ··· 0 0 0 ··· 1


(14)

Finally C is computed to be

C =



σ2
1 σ2

1 σ2
1 ··· σ2

1 σ2
1 ··· σ2

1

...
...

...
...

...
...

σ2
1 σ

2
1+1 σ2

1+2 ··· σ2
1+k−2 σ2

1+k−2 ··· σ2
1+k−2

σ2
1 σ

2
1+1 σ2

1+2 ··· σ2
1+σ

2
g+k−1 σ

2
1+σ

2
g+k−1 ··· σ

2
1+σ

2
g+k−1

σ2
1 σ

2
1+1 σ2

1+2 ··· σ2
1+σ

2
g+k−1 σ2

1+σ
2
g+k ··· σ2

1+σ
2
g+k

...
...

...
...

...
...

σ2
1 σ

2
1+1 σ2

1+2 ··· σ2
1+σ

2
g+k−1 σ2

1+σ
2
g+k ··· σ2

1+σ
2
g+N−1


(15)

In order to relate the KLT to GFT, we consider the cor-
responding precision matrix Q, i.e., the inverse of C. Q
computes to a tridiagonal matrix:

Q = C−1 =



1+ 1

σ21
−1

−1 2 −1
. . . . . . . . .
−1 2 −1
−1 1

σ2g+1
+1 − 1

σ2g+1

− 1
σ2g+1

1
σ2g+1

+1 −1

−1 2 −1
. . . . . . . . .
−1 2 −1
−1 1


(16)

The first element 1 + 1
σ2
1

is close to 1, since the variance
σ2
1 of the first pixel (in the absence of any other information)

tends to be very large. Then for the 2-connectivity graph in
Fig. 5, if we assign Wk−1,k = 1

σ2
g+1 and all the other edge

weights 1, Q is approximately equivalent to the combinatorial
Laplacian matrix L from its definition in Section IV. Since
Q shares the same set of eigenvectors with C [26], i.e., the
basis vectors of the KLT, the derived GFT is approximately
the KLT for the class of signals with the covariance matrix C
defined as in (15).

Hence, the optimal edge weight for weak correlation that
leads to the decorrelation GFT is

c = Wk−1,k =
1

σ2
g + 1

. (17)

In practice, we estimate σ2
g from collected pixel pairs of weak

correlation from training images. Specifically, we classify pixel

Fig. 5. A one-dimensional graph model.

pairs with similar weak correlation based on the discontinuity
magnitude, and then compute the sample variance of each class
of pixel pairs as the estimation of σ2

g .
To summarize, an optimal graph—one that leads to a GFT

that approximates the KLT—is one with edge weights 1 except
the weight (17) of the edge that connects two pixels in the
transition region P .

VI. ADAPTIVE SELECTION OF GRAPH FOURIER
TRANSFORMS

Having derived the optimal edge weight c for weakly
correlated pixel pair in a coding block—and by extension the
optimal WGFT for decorrelation, ideally one can simply use
that optimal WGFT for transform coding. However, this does
not account for the cost of transform description RT in (5).
To account for both the signal representation cost in the GFT
domain and the desription cost of the chosen GFT, as discussed
in Section V, we search for the optimal GFT that minimizes
(5), and further divide the search space into two subspaces:
1) WGFT on weighted and connected graphs, and 2) UGFT
on unweighted and disconnected graphs. In this section we
present the respective problem formulations and algorithms in
the two subspaces in detail.

A. Weighted Graph Fourier Transform

The WGFT is derived from a weighted and connected graph
G = {V, E ,W}, where the feasible weight set is C = {1, c}.
For ease of optimization, we first propose plausible proxies
for the two rate terms in (5), i.e., the rates for transform
coefficients and transform description. Then we cast the op-
timization problem of WGFT as a separation-deviation (SD)
problem, in order to leverage on the well known and efficient
algorithm developed for the SD problem in [13].

1) Rate Proxy of Transform Coefficients: Transform coef-
ficients consist of DC and AC coefficients. Since the WGFT
is constructed on a connected graph (i.e., only one connected
component in the graph), the zero eigenvalue is of multiplicity
one, and each WGFT produces only one DC coefficient for
a given block x. The cost of DC coefficients of the WGFT
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is thus the same. We then approximate the cost of quantized
AC coefficients (corresponding to non-zero eigenvalues), for
a given quantization step size q and without consideration of
rounding for simplicity, as follows:

xTLx/q2 = xT (

N−1∑
l=0

λlψlψl
T )x/q2

=

N−1∑
l=0

λl(x
Tψl)(ψl

Tx)/q2

=

N−1∑
l=0

λl(αl/q)
2,

(18)

where αl, l = 1, ..., N − 1, is the l-th transform coefficient.
In words, xTLx/q2 is an eigenvalue-weighted sum of squared
quantized transform coefficients. This also means that the DC
coefficient is not reflected in (18). By minimizing (18), we
suppress high-frequency coefficients. Recall that xTLx can
also be written in the form in (1) in terms of edge weights
and adjacent pixel differences. We thus propose the following
proxy for the cost of quantized AC coefficients:

Rα(x,W) =
1

2

N∑
i=1

N∑
j=1

Wi,j(xi − xj)2/q2

=
1

2
ρ

N∑
i=1

N∑
j=1

Wi,j(xi − xj)2,

(19)

where ρ = 1/q2. We note that [38] proposed to use (19) as the
cost function for all GFT coefficients, even for disconnected
graphs. As discussed, (19) excludes the cost of DC coeffi-
cients, which means that (19) fails to capture the variable cost
of DC coefficients in cases where the graph contains a variable
number of connected components. In our WGFT search space,
we avoid this problem since our search space contains only
graphs that have a single connected component, because 0 is
excluded as a possible choice for an edge weight. Note that
without this restriction, the all zero connection graph would
be chosen as the optimal choice, which obviously does not
lead to an optimal GFT in general.

Fig. 6. An illustration for converting edges in original graph to vertices in
the dual graph for SD formulation.

Further, for ease of later algorithm development, we convert
edges in the graph G to nodes in a dual graph3 Gd, and define
the AC coefficient cost (19) on Gd instead. More specifically,
we map each edge e that connects vertices v1(e) and v2(e)
in G to a node4 vde in Gd, and assign node vde with the value

3The dual graph is also termed the line graph in the mathematical discipline
of graph theory.

4To avoid confusion, we use the terminology of vertex and edge in the
original graph, and node and link in the dual graph.

We = Wv1(e),v2(e). A link is drawn between two nodes in
the dual graph if the two corresponding edges in the original
graph share the same vertex as an endpoint, or traverse the
same contour in the coding block. See Fig. 6 for an example
of the conversion.

Given the node set Vd in the dual graph, (19) can now be
rewritten as

Rα(x,W) = ρ
∑
e∈Vd

We (xv1(e) − xv2(e))
2, (20)

where a label We assigned to node e in the dual graph Gd is
the edge weight Wv1(e),v2(e) in the original graph G. A label
assignment W to a node e in a graph inducing difference cost
is typically called a deviation cost in an SD problem [13].

2) Rate Proxy of Transform Description: Weighted graphs
for a pixel block are defined by edges assigned weak corre-
lation c; the rest of the edges are assigned weight 1. Further,
edges of weak correlation tend to collectively outline an
object’s contour, i.e., fractional weight edges tend to appear
consecutively. Hence, a rare WGFT—one selected with low
probability p or high entropy cost −p log p—will have weak
correlation edges scattered throughout the block. We thus
propose a rate proxy to penalize these rare GFTs. Specifically,
we use the label differential cost of nodes connected by links
Ed in the dual graph Gd as the rate proxy of WGFT, i.e.,∑

(e,s)∈Ed |We − Ws|. Assigning different labels to nodes
connected by a link will induce a separation cost in an SD
problem [13].

Further, since pixels in a PWS image are more likely to be
strongly correlated, we penalize a block with larger number
of weak correlation edges by adding another term to the rate
proxy:

RT (W) =
∑

(e,s)∈Ed
|We −Ws|+

∑
e∈Vd

γρ(1−We), (21)

where ρ is the same one as in (19), and γ is used to assign the
importance of the second term relative to the first term. While
the first term specifies the cost of encoding a given distribution
of edges (consecutive fractional weight edges consume fewer
bits as discussed earlier), the second term essentially counts
the number of fractional weight edges in the block to encode.
The actual relative importance between these two terms, i.e.,
the assignment of γ, depends on the particular edge encoding
scheme.

3) Problem Formulation for WGFT: Collecting the two
proposed rate proxies together, we can now formulate the
optimal WGFT problem in the dual graph as an SD problem
as follows:

min
W

ρ
∑
e∈Vd

[We (xv1(e) − xv2(e))
2 + γ(1−We)] +

∑
(e,s)∈Ed

|We −Ws|

s.t. We ∈ {1, c} ∀ e ∈ Vd.
(22)

The problem is an SD problem, because the first and second
term can be interpreted as a deviation cost, while the third term
can be interpreted as a separation cost. We thus employ the
algorithm in [13] to efficiently solve the SD problem in (22).
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Since the defined deviation term is linear and the separation
term is bi-linear in (22), it is solvable in strongly polynomial
time5 using the algorithm in [13] based on minimum graph
cuts. Specifically, the running time of this algorithm for a 4×4
block (adopted in our coding system) is on the order of 10−2

seconds on an Intel Core(TM) i5-4570 CPU 3.20GHz machine
(around 2.7 minutes for a 512× 512 image).

B. Unweighted Graph Fourier Transform

Unlike WGFT, in the UGFT case we do not have closed
form expressions for Rα(x,W) and RT (W) in terms of
W. The reason is that it is difficult to approximate the first
term in (5)—the rate of UGFT coefficients—using a simple
proxy as done in WGFT. As discussed earlier, the rate proxy
in (19) captures only the cost of AC coefficients, ignoring
the cost of DC coefficients, which could be variable for
UGFTs corresponding to graphs with several disconnected
components. Due to this combinatorial nature, we develop a
greedy algorithm based on spectral clustering for the UGFT
search sub-problem, which computes the actual rate via a
divide-and-conquer strategy. We first formulate the UGFT
search problem, and then elaborate on the proposed greedy
algorithm.

1) Problem Reformulation: Since UGFTs are defined on
disconnected and unweighted graphs with the feasible weight
set C = {1, 0}, we modify the constraint in (5) for the UGFT
search problem as follows:

min
W

Rα(x,W) +RT (W)

s.t. Wi,j ∈ {1, 0} ∀ i, j ∈ V
(23)

2) A Greedy Algorithm for UGFT: Instead of exhaustive
search, we develop a greedy algorithm combined with spectral
clustering in order to efficiently solve (23). Spectral clustering
[35], identification of clusters of similar data, takes advantage
of the eigenvectors of the graph Laplacian derived from a
similarity graph of the data. Among the family of spectral
clustering algorithms, normalized cuts [14] is a very popular
one. We hence employ normalized cuts to identify clusters of
similar pixels for UGFT.

For a given pixel block x, the normalized cuts algorithm
consists of four steps: i) construct a similarity graph Gs =
{Vs, Es,Ws} on x, which measures the similarity between
pixels i and j using W s

i,j ; ii) acquire the generalized eigen-
vectors ψ of the graph Laplacian by solving (Ds −Ws)ψ =
λDsψ; iii) bipartition x using the eigenvector with the smallest
non-zero eigenvalue; iv) recursively repartition the segmented
clusters if necessary.

Leveraging on normalized cuts, we develop a greedy algo-
rithm to search for a locally optimal UGFT. The key idea is to
recursively partition the pixel block using normalized cuts until
the resulting representation cost increases. For each iteration,
we perform the following three steps on each pixel block x.

5”Strongly polynomial time” means that the computation complexity of an
algorithm in question is polynomial in the size of the input bits that describe
the instance of the optimization problem. See [39] for details.

First, we construct a similarity graph Gs = {Vs, Es,Ws}
on x. Each weight W s

i,j is defined as in [35]:

W s
i,j = exp

{
−|xi − xj |2

σ2
w

}
, (24)

which describes the similarity in pixel intensities6. σw controls
the sensitivity of the similarity measure to the range of
intensity differences. From this graph, we use normalized cuts
to partition the block into two clusters.

Second, we build a graph Gu where pixels in the same
cluster are connected with weight 1 while those in different
clusters are disconnected. The UGFT is then derived from Gu.

Thirdly, we compute the total representation cost as defined
in the objective of (23). We encode transform coefficients
via entropy coding to compute the coding rate, and encode
disconnected edges in the graph via AEC to compute the
transform description cost. Note that, instead of using a proxy
as in the search for WGFT, we compute the actual cost of
transform description, since it is more accurate while only
inducing moderate complexity to the greedy algorithm. If the
current representation cost is smaller than that of the previous
iteration, then further repartition is performed.

In practice, few iterations are required due to the small
size of the coding block, and hence this greedy algorithm is
computation-efficient.

C. Illustrative Examples: Optimal GFTs for Different Blocks
& at Different Rates

Having elaborated on the problem formulations and algo-
rithms of WGFT and UGFT, we provide examples to illustrate
optimal GFTs for different classes of blocks and at different
rates.
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Fig. 7. An illustration of UGFT and WGFT. (a) An example block containing
pixel pairs with strong and zero correlations, and its signal representation in
the UGFT domain. (b) An example block containing pixel pairs with strong
and weak correlations, and its signal representation in the WGFT domain.

We first provide an example in Fig. 7 to show how we
employ the two flavors of GFTs to capture various correlations

6Note that the similarity graph Gs used for normalized cuts is a different
graph than the ones used to define GFTs, and thus the edge weights are not
restricted to be in a small discrete set C.
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in pixel blocks. Fig. 7(a) shows an example block contain-
ing pixel pairs with strong and zero correlations. UGFT is
chosen during mode decision based on RD costs, where the
block is divided into two separate partitions and a connected
graph is constructed in each partition. The resulting transform
representation is one DC coefficient for the description of
each partition, as shown at the bottom of Fig. 7(a). Fig. 7(b)
shows an example block containing pixel pairs with strong
and weak correlations. Accordingly WGFT is chosen from
mode decision, where a graph containing edge weights c (here
c = 0.13) is constructed on the block. The resulting transform
coefficients consist of one large DC term and one small AC
term, shown at the bottom of Fig. 7(b).
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Fig. 8. An illustration of optimal UGFTs at different rates. For a given
pixel block, the figure shows the optimal graph construction (all the edges
connecting pixels are assigned weight 1) and resulting transform coefficients
at (a) high bit rate, (b) medium bit rate and (c) low bit rate.

Next, we provide an illustrative example of optimal UGFTs
for the same pixel block but at different target bit rates. Given
a pixel block with three smooth regions as shown in Fig. 8, the
minimal representation cost at high bit rates is achieved when
it is divided into three connected components corresponding
to the three smooth regions. This is because this derived
UGFT results in only three DC coefficients, leading to the
minimal and significantly smaller cost of quantized transform
coefficients (compared to other UGFTs resulting in many
high frequency coefficients) at high bit rates, which together
with the description cost results in the minimal representation
cost. At medium rates, the larger quantization parameter (QP)
quantizes more coefficients to zero, and a simpler UGFT
with similar quantized transform coefficient cost but smaller
transform description cost would be more attractive, resulting
in the graph in Fig. 8(b). Finally, at low rates, the large QP
quantizes most coefficients to zero, and the simplest UGFT is
best, as shown in Fig. 8(c).

VII. FAST IMPLEMENTATION OF GRAPH FOURIER
TRANSFORMS

In this section we propose a fast implementation of GFT
for practical deployment. As stated earlier, the online eigen-
decomposition for the construction of GFT is a hurdle to real-
time implementation. We avoid this by pre-computing and

storing most popular GFTs in a table for simple lookups.
Graph isomorphism is further exploited to optimize the table.
We first detail the construction of GFT lookup table, and then
compare the complexity of table lookup against that of online
eigen-decomposition.

The table size could be very large if we simply store all the
used GFTs. A large table would lead to high requirement in
storage and expensive lookup. Hence, we propose to construct
a GFT lookup table of relatively small size. Specifically, we
have three strategies:

1) We perform GFT on a LR block (4× 4), which admits
a smaller space of GFT variants to begin with.

2) Only the most frequently used LR-GFTs are stored.
3) Exploiting graph isomorphism, only one LR-GFT is

stored for all isomorphic graphs.
Due to self-similarity in images, the same or similar struc-

tures are likely to recur throughout. Hence, the underlying LR-
GFTs with respect to those structures are frequently used. We
thus store only the most popular LR-GFTs in our lookup table,
while covering a large fraction of the total used LR-GFTs.

We store one GFT for all isomorphic graphs. Two graphs G
and H are isomorphic if there exists such a function mapping
vertices of G to vertices of H:

f : V(G)→ V(H), (25)

that any two vertices i and j of G are adjacent in G if and only
if f (i) and f (j) are adjacent in H. Intuitively, the structures
of isomorphic graphs are the same.

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Fig. 9. An illustration of the 8 underlying isomorphic graphs with respect
to the same graph structure, i.e., the same GFT after appropriate permutation
of vertex labels.

For 4-connected graphs constructed on a pixel block, we can
construct 8 isomorphic graphs with respect to the same graph
structure, thus resulting in the same GFT after appropriate
permutation of vertex labels. See Fig. 9 for an illustration.
The corresponding mapping functions f include reflection and
rotation of graph vertices. Specifically, a graph can be mapped
to four of its isomorphic graphs by reflection with respect to
the central horizontal, vertical, diagonal and anti-diagonal axes
respectively, and three of its isomorphic graphs by different
degrees of rotation. Hence, we can reduce the table size by up
to a factor of 8 via graph isomorphism. During the encoding
and decoding, the actual GFT, if not directly stored, is retrieved
by mapping from the stored GFT.

With all the above factors considered, the lookup table can
be reduced to a manageable size. Experimentally, we collect
LR-GFTs from ten PWS images with diverse structures to
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build the lookup table. Note that, the training images are
different from the testing images in the final experimentation.
Statistical results show that 126 most popular LR-GFTs out of
a total 3749 LR-GFTs cover 88% of actual computed optimal
LR-GFTs. We thus set the table size L to 126 to store the most
popular LR-GFTs. Further, we encode the table indices by
Huffman Coding [40] based on the used frequency estimated
from test images, which is known at both the encoder and
decoder.

Having constructed the lookup table, during encoding we
search for the GFT (including UGFT and WGFT) for a
given block by finding out the one that gives the best RD
performance. Different from previous optimization (5), we
consider the resulting distortion for a given GFT during table
lookup. Recall that the expected distortion remains the same in
a statistical sense when we design GFTs for particular classes
of statistical signals. In contrast, during run-time when the
designed GFTs are fixed in the table, we can consider the
distortion of each block deterministically. We then transmit the
table index losslessly to indicate which LR-GFT is employed
for the given block, so that the decoder is able to identify the
correct inverse transform.

We now compare the complexity of using eigen-
decomposition for the derivation of GFT and that of table
lookup. The computational complexity of eigen-decomposition
at both the encoder and decoder for a

√
N ×

√
N (N = 16 in

our case) coding block is O(N3). In contrast, the complexity
of table lookup is O(L) (L = 126 in our setting) at the
encoder and O(1) at the decoder. Hence, table lookup leads to
significant reduction in complexity compared against on-line
eigen-decomposition at both the encoder and decoder.

VIII. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate our proposed MR-GFT coding system for PWS
signals, we use four test image sequences: 448 × 368 depth
maps of Teddy and Cones7, and graphics images of Dude
(800× 480) and Tsukuba8 (640× 480).

For the three transform candidates in the proposed coding
system, the block size of HR-DCT is 8 × 8, and that of LR-
WGFT and LR-UGFT is 4 × 4. The weighting parameter γ
in (22) is empirically assigned 3 in all the experiments. We
note that our experimental results are not very sensitive to the
specific choice of γ. For the calculation of the fractional edge
weight c, we collect pixel pairs of weak correlation from the
training images, and compute c to be 0.13 via (17).

We compare coding performance of our proposed scheme
against four compression schemes: H.264 intra (HR-DCT) [2],
the GFT coding (HR-UGFT) in [24], the shape-adaptive
wavelet (SAW) in [21], and our previous work MR-UGFT in
[34]. Note that intra prediction is used for all schemes.

B. Selection of Transform Modes

We first investigate the selection of transform modes for test
images. Fig. 10 shows an example of the mode decision in

7http://vision.middlebury.edu/stereo/data/scenes2003/
8http://www.cvlab.cs.tsukuba.ac.jp/dataset/tsukubastereo.php

Teddy. It can be observed that blocks containing pixel pairs
with weak correlation (weak boundaries) in red, generally
choose LR-WGFT, while blocks containing pixel pairs with
zero correlation (strong boundaries) in blue, generally choose
LR-UGFT. This verifies our design of WGFT and UGFT
for the representation of blocks containing pixels pairs with
different correlations. Note that some blocks with strong /
weak boundaries do not choose LR-WGFT / LR-UGFT, e.g.,
the blocks containing black holes. This is because those
blocks lose much energy during the low-pass filtering if LR-
WGFT or LR-UGFT is selected, which greatly degrades the
reconstruction quality. In these cases, HR-DCT will be chosen
for better preservation of details.

(a) The original (b) Transform Modes
Fig. 10. The selection of transform modes for a portion of Teddy. Blocks
in red choose WGFT and blocks in blue choose UGFT.

Further, we observe that GFTs corresponding to contigu-
ous boundaries are used more frequently, which verifies our
assumption for the proxy of transform description in (21).

C. Objective Comparison in RD Performance
We now compare the performance of the proposed MR-GFT

scheme against SAW, HR-UGFT, HR-DCT and MR-UGFT for
PWS images. Fig. 11 presents the RD performance of these
schemes for four test images with a typical PSNR range. The
proposed MR-GFT achieves significant gain in PSNR over a
wide range of bit rate. On average we have 6.8 dB gain over
HR-DCT, 5.9 dB gain over HR-UGFT, 2.5 dB gain over SAW,
and 1.2 dB gain over MR-UGFT.
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Fig. 11. RD performance comparison among different compression schemes
for PWS images.

The gain comes from three improvements: 1) the added edge
weight c, which leads to sparser GFT-domain representation
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via proper characterization of weak correlation; 2) minimiza-
tion of the total representation cost, which results in minimal
rate; and 3) the MR scheme, which down-samples each HR
block to LR and thus reducing coding bits.

D. Subjective Comparison

(a) HR-DCT (b) HR-UGFT

(c) SAW (d) MR-GFT

(e) HR-DCT (f) HR-UGFT

(g) SAW (h) MR-GFT

(i) HR-DCT (j) HR-UGFT

(k) SAW (l) MR-GFT
Fig. 12. The subjective quality comparison among different compression
schemes. (a) ∼ (d) Teddy at 0.10 bpp; (e) ∼ (h) Cones at 0.13 bpp; (i) ∼
(l) Dude at 0.13 bpp.

Fig. 12 demonstrates images reconstructed from different
schemes for Teddy, Cones and Dude. We observe that
our MR-GFT produces the cleanest images with the sharpest

boundaries among all methods, which validates the effective-
ness of the edge-preserving MR-GFT approach. In the images
reconstructed by HR-DCT, boundaries are severely corrupted
since the assumption of the near unity inter-pixel correlation in
the DCT is not valid along strong boundaries in PWS images.
Though GFT is employed in HR-UGFT, some boundaries in
the restored images by HR-UGFT are still corrupted. This is
because the DCT is chosen in those regions as GFT consumes
more bits due to the boundary coding. Images compressed by
SAW remain sharp along strong boundaries. However, weak
boundaries are often blurred. In contrast, MR-GFT preserves
both strong and weak boundaries, since we properly model
weak correlation using the fractional weight c.

E. Application to Depth-Image-Based Rendering

We conduct further experiments on depth maps, which is
an important class of PWS images. Instead of being observed
directly, depth maps generally facilitate various end applica-
tions, such as virtual view synthesis via depth-image-based
rendering (DIBR). Note that in this case, one can replace the
depth map distortion metric in (4) with a synthesized view
distortion metric. The synthesized view distortion still does not
change using different transforms, because the position error
in the synthesized view is a linear function of the distortion in
the depth map under some assumptions [41]. Hence, the GFT
training remains the same for depth map coding for DIBR.
During run-time, one can replace the depth map distortion
with a synthesized view distortion metric during table lookup.

We use a simple implementation of 3D warping [11] to
perform DIBR. Fig. 13 presents the RD curves for Teddy and
Cones, where the PSNR of synthesized views is evaluated at
various total rates of stereo depth maps. On average we achieve
2.2dB gain over HR-DCT, 1.8dB gain over HR-UGFT, 1.2dB
gain over SAW, and 1.0dB gain over MR-UGFT. Further, in
Fig. 14 we show the virtual views of Teddy and Cones syn-
thesized from stereo depth maps compressed using HR-DCT
and MR-GFT at the same bit rate. MR-GFT is observed to
produce more pleasant synthesized images, with fewer ringing
artifacts and corrupted boundaries. The good performance is
mostly due to the well-preserved depth map boundaries by
MR-GFT, which plays a critical role in DIBR.
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Fig. 13. RD performance comparison among different compression schemes
for depth maps tailored for DIBR.

IX. CONCLUSION

We propose a multi-resolution (MR) graph Fourier trans-
form (GFT) coding scheme for compression of piecewise
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(a) HR-DCT (b) MR-GFT

(c) HR-DCT (d) MR-GFT
Fig. 14. Subjective quality comparison of DIBR-synthesized images among
different compression schemes. (a)(b) Teddy; (c)(d) Cones.

smooth (PWS) images. Unlike fixed transforms such as the
DCT, the defined optimal GFT is adaptive to each local block
by minimizing the total representation cost, considering both
the sparsity of the signal’s transform coefficients and the
compactness of transform description. We develop efficient
algorithms to search for optimal GFTs in a defined search
space, based on graph optimization techniques such as spectral
clustering and minimum graph cuts. Further, we introduce
two techniques for practical implementation of GFT. One
is the MR scheme where GFT is deployed over a low-
pass filtered and down-sampled version of a high-resolution
block. The other is the pre-computation of the most popular
GFTs in a stored table for simple lookup instead of real-
time eigen-decomposition. Experimental results show that the
proposed scheme outperforms H.264 intra by 6.8dB in PSNR
on average at the same bit rate. By extension, while we tailor
our proposed approach for PWS image compression, it is
possible to implement our proposal as a coding mode during
compression of general images, so that when a code block is
deemed PWS, our coding scheme can be deployed.
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