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Abstract—Transmitting depth maps captured from multiple
viewpoints of a 3D scene enables a wide range of receiver-side
3D applications, including virtual view synthesis via depth-image-
based rendering (DIBR). Observing that compressed depth maps
from different viewpoints constitute multiple descriptions (MD)
of the same signal, we propose to reconstruct 3D surfaces of the
scene by considering multiple compressed depth maps jointly.
Specifically, we propose an alternating projection algorithm, in-
spired by the theory of projection onto convex sets (POCS), which
at convergence returns a 3D surface that satisfies three sets of
conditions: spatial smoothness prior, quantization bin constraints
in the block transform domain, and inter-view consistency. We
present a theoretical proof that shows convergence of our algo-
rithm under benign conditions. Compared to existing multiview
depth map denoising schemes and single image de-quantization
schemes, our proposed solution achieves higher objective quality
for both reconstructed depth maps and synthesized virtual views.

Index Terms—Multiview video plus depth, precision enhance-
ment, projection onto convex sets

I. INTRODUCTION

By transmitting depth maps captured from multiple view-
points of the same 3D scene, a receiver can recover partial
geometry of the scene, enabling a wide range of 3D applica-
tions, including geometry modeling [1–3], depth-aware image
processing such as matting [4] and refocusing [5], gesture
recognition [6], and virtual view synthesis via depth-image-
based rendering (DIBR) [7]. Transmitting multiple depth maps
constitutes a large transmission cost, however, and thus there
are recent proposals on efficient multiview video coding algo-
rithms [8–13]. In this paper, we focus instead on an orthogonal
problem at the decoder: how to best reconstruct 3D surfaces
in the scene given the compressed multiview depth maps?

We propose to reconstruct 3D surfaces by jointly consider-
ing multiple compressed depth maps of different viewpoints.
The key observation is that each depth map is a unique de-
scription of the 3D scene, which implies that multiview depth
maps constitute multiple descriptions (MD) of the same 3D
scene. Recall that in multiple description scalar quantization
(MDSQ), a scalar x is quantized via two different quantizers
Q1 and Q2 into quantization bins (q-bin) Q1(x) and Q2(x)
with corresponding quantization indices (q-index) transmitted
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to the receiver. At the receiver, if both q-indices are received,
the receiver can conclude that the target signal resides in the
intersection of the two q-bins, i.e., x ∈ Q1(x) ∩ Q2(x). This
results in a higher-precision reconstructed signal than the case
where only one q-index is received. Analogously, in our case
where compressed multiview depth maps of the same 3D scene
are received at the decoder, we seek to reconstruct a high-
precision 3D surface which is inside the intersection of the
quantized descriptions of the multiple views.

By 3D surface we mean its chosen representation, which
is the set of multiview depth maps in this paper. So re-
constructing a high-precision 3D surface is formulated as
reconstructing high-precision multiview depth maps. Inspired
by the theory of projection onto convex sets (POCS) [14, 15]
and its applications to signal recovery [16–19], we propose
an alternating projection algorithm to reconstruct multiview
depth maps. In the case of two views, an estimated left depth
map is first warped to a depth map as observed from the right
view via DIBR. A q-bin projection (to ensure the reconstructed
depth signal lies inside q-bins) and spatial filter (to ensure
the reconstructed depth map agrees with spatial smoothness
prior) are then applied in order. The updated right view depth
map is then warped back to a depth map as observed from
the left view again for q-bin projection and spatial filtering.
The alternating steps terminate when the computed depth
maps converge in both views. Our proposed algorithm can be
applied more generally to any number of views, as explained
in Section IV-B. Experiments show that our algorithm out-
performs existing multiview depth map denoising algorithms
and single image de-quantization schemes in objective quality
of the reconstructed multiview depth maps as well as DIBR-
synthesized virtual views.

This letter is organized as follows. We first overview the
related works and the system of our proposal in Section II
and III respectively. Then we present our proposed algorithm
and justification in Section IV and V. Experiment results and
conclusions are shown in Section VI and VII, respectively.

II. RELATED WORK

There are recent proposals that jointly denoise multiview
depth maps corrupted by acquisition or estimation noise [20–
26], where inter-view consistency among multiview depth
maps is considered as an additional constraint for depth map
denoising. The problem we are addressing, however, is not
denoising of noise-corrupted depth maps, but de-quantization
of compressed depth maps. In our problem, transform coef-
ficients of a depth block are mapped to q-bin indices during
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quantization in lossy compression, resulting in deterministic
q-bin constraints: a reconstructed coefficient must live inside
the q-bin designated by the transmitted q-index. We will
show in our experiments that multiview depth map denoising
algorithms, when applied naı̈vely to our problem setting, are
inferior to our proposal that is specialized for de-quantization
of compressed multiview depth maps.

There are also works that de-quantize a single block-
transform-coded image to alleviate blocking artifacts [17, 18].
In our problem, since multiview depth signals describe the
same 3D scene, our proposed method considers both inter-
view consistency and q-bin constraints, leading naturally to a
POCS-inspired algorithm for joint reconstruction of multiview
depth maps. We will show in our experiments that our proposal
outperforms single image de-quantization schemes.

III. SYSTEM OVERVIEW

For simplicity, we consider a scenario where the 3D surface
is represented by two depth maps (left and right), which
are compressed by a conventional block-based codec (e.g.,
H.264 [27], JPEG [28]). Each (residual) block is transformed
to frequency domain via a fixed transform such as Discrete
Cosine Transform (DCT), and the resulting coefficients are
quantized and entropy-coded. At the decoder, we seek to
reconstruct two depth maps with higher precision by jointly
considering quantized transform coefficients of both maps. We
assume that the acquisition noise in pre-compressed depth
maps is sufficiently small that the captured 3D surface live in
the non-empty intersections of q-bins in the two descriptions.

Let dol denote the original pre-compressed left depth map
of resolution H × W . The transform coefficients are col =
T (dol − dpre

l ), where T (·) is the block-based transform op-
erator, and dpre

l is the predictor. In a conventional decoder
that decodes each view separately, the reconstructed left depth
map is danc

l = T−1(cql ) + dpre
l , where cql denotes the q-bin

centers of quantized coefficients. Symbols for the right view
can be similarly defined. In this work, reconstructed left and
right depth maps are denoted by dopt

l and dopt
r . The inputs to

our problem are: i) H ×W matrices of quantized transform
coefficients cql and cqr for the left and right views, and ii)
H ×W matrix of q-step size κ (same for both views).

IV. PROPOSED ALGORITHM

A. Problem Formulation

We formulate our multiview depth map de-quantization
problem with the following signal prior and constraints.

1) Spatial Smoothness Prior: Unlike color images, depth
images do not capture textural contents of objects, and thus
are known to be piecewise smooth (PWS) [29–31]. PWS here
means that while depth images contain sharp edges (e.g.,
contours that outline shapes of foreground objects), surfaces
away from edges are slow-varying in space.

To enforce a PWS prior in images, one can apply an edge-
adaptive low-pass filter to eliminate high-frequency compo-
nents that are not sharp edges. As in [2], in this work we use
the well-known bilateral filter [32–34] which preserves edges
and suppresses strong quantization noises well for depth maps.

2) Quantization Bin Constraints: We require the transform
coefficients of the reconstructed depth maps to fall within the
q-bins designated by the transmitted q-indices. Mathemati-
cally, we write for each coefficient index i:

c(i) ∈
[
cq(i)− κ(i)

2
, cq(i) +

κ(i)

2

]
, ∀i (1)

To enforce q-bin constraints (1), one can simply clip each
coefficient by the corresponding q-bin boundaries:

min

(
cq(i) +

κ(i)

2
,max

(
cq(i)− κ(i)

2
, c(i)

))
, ∀i (2)

3) Inter-view Consistency: This constraint means that the
warping of the left reconstructed depth map to the right view
must be consistent with the right reconstructed depth map,
and vice versa. Let wl→r(·) be the warping operator1 that
performs DIBR to transpose a left depth map to the right
view. Because of disocclusion and out-of-view problems, not
every 3D voxel observable in the right view is visible from the
left view, and the warped image wl→r(dl) will contain holes
(i.e., wl→r(dl)(i) < 0 for some pixels i). Thus for inter-view
consistency, we only require the available valid pixels in the
warped view wl→r(dl) to match the right depth map dr:

|wl→r(dl)(i)− dr(i)| ≤ ε, ∀ {i | wl→r(dl)(i) ≥ 0}
|dl(i)− wr→l(dr)(i)| ≤ ε, ∀ {i | wr→l(dr)(i) ≥ 0}

(3)

Note that we require a pixel match in (3) to be within
a threshold, because rounding and interpolation operations
performed after warping to ensure each warped pixel lands
on the 2D image grid will inherently introduce errors [21].

Our goal is to construct left and right depth maps dopt
l

and dopt
r that satisfy the above signal prior and constraints

simultaneously. We describe our reconstruction algorithm next.

B. Proposed Alternating Projection Algorithm

To de-quantize multiview depth maps that represent a 3D
surface with enhanced precision, we propose a POCS-inspired
alternating projection algorithm shown in Algorithm 1.

At iteration k, step 2 of Algorithm 1 is to obtain d
(k)
r from

d
(k−1)
l . Specifically, we first warp d

(k−1)
l to the right view by

operator wl→r(·). Holes in d
(k)
r are then filled using available

d
(k−1)
r . For a pixel i (at column col(i)) in the non-hole regions,

d
(k)
r (i) is interpolated by taking the average of depth values

of the pixels in d
(k−1)
l whose warped pixels locate at columns

(off 2D pixel grid) in range [col(i) − 0.5, col(i) + 0.5), and
whose pixel values are in range [d

(k−1)
r (i)−τ,d(k−1)

r (i)+τ ].
Constant τ is a threshold to reject outliers (e.g., foreground
pixels that wrongly warped to the background, and vice versa).

Algorithm 1 is applicable to scenarios when there are N > 2
multiview depth maps. To assure small distortions, our view
warping direction is as follows: one iteration of our algorithm
contains the view warping from view 1 to 2, then 2 to 3 etc.
until N , then backwards from view N to N − 1, etc.

One iteration of Algorithm 1 is composed of view warping,
block-based DCT, coefficient clipping, block-based inverse

1For rectified views, warping operator simply translates a pixel in the left
view to a horizontally shifted location in the right view and vice versa [35].
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Algorithm 1

1: Initialize depth maps d(0)
l = T−1(cql )+dpre

l , d(0)
r = T−1(cqr)+

dpre
r . Iteration index k = 1.

2: Warp left depth map d
(k−1)
l to right view, obtaining d

(k)
r by

average interpolation and hole-filling.
3: Perform block-DCT, and clip coefficients cr = T (d

(k)
r − dpre

r )
to inside designated q-bins via (2).

4: Inverse-transform back to pixel domain d
(k)
r = T−1(cr)+dpre

r ,
and apply bilateral filtering.

5: Warp right depth map d
(k)
r to left view, obtaining d

(k)
l by

average interpolation and hole-filling.
6: Perform block-DCT, and clip coefficients cl = T (d

(k)
l − dpre

l )
to inside designated q-bins via (2).

7: Inverse-transform back to pixel domain d
(k)
l = T−1(cl)+dpre

l ,
and apply bilateral filtering.

8: k = k + 1, repeat 2-7 until cl and cr converge.

DCT, and bilateral filtering for N views. Complexity of view
warping and coefficient clipping is O(HW ). Block-based
DCT and inverse DCT are essentially matrix multiplication,
so the complexity is H

B
W
B O(B3) = O(HW ) where B is the

block size. We adopt the constant-time bilateral filter [33, 34]
whose complexity is also O(HW ). Thus the complexity for
one iteration is O(NHW ) which is linear to the number of
pixels. Algorithm convergence is proven in the next section.

V. CONVERGENCE PROOF

We now prove the convergence of Algorithm 1 for a simpler
case where we consider one row of pixels on the epipolar plane
of two rectified views. Now dl,dr ∈ RW are 1D signals in
Hilbert space H. To begin with, we make two assumptions.

Assumption 1: 1D signals dl and dr are bandlimited, i.e.,
their non-zero frequency components are no larger than ω =
2π · 1

2T = π
T , where T is the sampling interval.

This means that the corresponding continuous signals dcl
and dcr can be perfectly reconstructed via Whittaker-Shannon
interpolation formula: dcl (x) =

∑N
n=1 dl[n] sinc

(
x−nT
T

)
.

When ω is small enough, this also means that no points on left
signal dcl (x) is occluded in the right view since self-occlusion
occurs when the signal gradient is unbounded.

Assumption 2: the view warping processes can be approx-
imated as fixed linear transforms.

This means that left and right depth maps are related by a
W ×W matrix M; i,e., dr = Mdl (here we only consider
the 3D voxels which are visible in both views).

Based on the assumptions, we next prove that Algorithm 1
essentially cyclically projects variable dl onto the following
4 closed convex sets in H: 1) Sql : the set of dl whose DCT
coefficients cl = T (dl−dpre

l ) are within the q-bin constraints
in the left view; 2) Sqr : the set of dl whose DCT coefficients
cr = T (Mdl − dpre

r ) are within the q-bin constraints in
the right view; 3) Sωl : the set of dl that are bandlimited by
frequency ω; and 4) Sωr : the set of dl satisfying Mdl are ban-
dlimited by ω. According to [15], cyclic projections in Hilbert
space are guaranteed to converge to the intersection of convex
sets. Therefore to prove the convergence of Algorithm 1, we
only need to prove the following propositions:

1) Sql , Sqr , Sωl and Sωr are convex sets for dl.

2) Mapping onto Sql (Sqr ) is a projection in H.
3) Mapping onto Sωl (Sωr ) is a projection in H.

Proof: Each q-bin constraint for a DCT coefficient is
convex, and jointly considering a set of convex constraints
also leads to a convex set Sql for dl. For Sqr , due to the linear
transform, a convex set for dr is also a convex set for dl.

Consider two signals d1
l and d2

l that are bandlimited by fre-
quency ω. Clearly a convex combination dl = λd1

l +(1−λ)d2
l

is also bandlimited by frequency ω. Hence Sωl is a convex set
for dl. Likewise Sωr is a convex set for dr. Because of linear
transform, Sωr is also a convex set for variable dl.

Block-DCT coefficient clipping in the left view is a projec-
tion in space H, as the minimum change in energy (distance)
is induced to bring dl to inside convex set Sql . So step 6 is
a projection. Due to uniform rotation of the space, right view
coefficient clipping (step 3) is also a projection in H.

A low-pass filter that removes only high frequency energy
(those over ω) achieves minimum distance to Sωl , and hence
is a projection in H, so step 7 is a projection. Due to uniform
rotation of the space, step 4 is also a projection in H.

VI. EXPERIMENTS

ANC BLF DBLK JVDF IVDC PROP-1V PROP
JPEG 33.06 33.63 32.64 33.36 33.75 36.15 36.66

QF=25 29.39 29.50 28.69 29.12 29.89 32.99 33.33
JPEG 35.36 36.39 34.88 35.71 36.19 42.16 43.03

QF=50 29.99 30.82 29.66 30.11 30.56 34.77 34.77
JPEG 38.71 40.97 37.64 39.38 39.82 46.81 47.12

QF=75 31.16 32.16 30.71 31.35 31.72 36.02 35.60
H.264 36.94 37.91 35.56 37.53 38.20 42.05 42.32
QP=35 30.78 31.21 29.95 30.96 31.29 34.02 34.92

(a) dude (2 views, angle= 5◦)

ANC BLF DBLK JVDF IVDC PROP-1V PROP
JPEG 34.50 34.72 33.91 34.59 34.44 36.02 36.68

QF=25 29.04 29.17 28.37 28.82 29.55 30.20 30.49
JPEG 37.22 37.62 36.38 37.37 37.40 40.03 41.22

QF=50 29.84 30.02 28.93 29.69 30.53 31.33 31.89
JPEG 40.67 41.54 39.51 40.98 40.54 47.25 47.61

QF=75 30.54 30.93 29.59 30.70 31.24 32.83 33.01
H.264 38.26 38.60 36.79 38.57 38.59 41.01 41.33
QP=35 30.15 30.37 29.22 29.82 30.88 31.91 32.76

(b) new tsukuba (2 views)

ANC BLF DBLK JVDF IVDC PROP-1V PROP
JPEG 36.42 36.72 35.44 36.77 36.84 37.95 38.33

QF=25 31.54 31.54 31.25 31.45 31.81 32.62 33.13
JPEG 38.83 39.29 37.89 39.23 39.35 41.59 42.33

QF=50 31.95 32.21 31.88 32.11 32.30 33.45 34.00
JPEG 41.58 42.51 40.57 42.16 42.27 47.51 48.26

QF=75 32.54 32.81 32.66 32.38 32.67 34.40 34.68
H.264 38.71 39.02 37.64 39.51 39.86 41.30 41.57
QP=35 31.85 32.04 31.89 32.09 32.26 33.26 33.74

(c) bowling (2 views)

ANC BLF DBLK JVDF IVDC PROP-1V PROP
JPEG 33.72 34.01 33.05 34.03 33.74 35.09 35.40

QF=25 27.07 27.27 26.56 27.14 27.33 27.95 28.33
JPEG 35.64 36.12 35.11 36.08 35.67 38.49 39.10

QF=50 27.60 28.02 27.33 27.88 28.17 29.04 29.37
JPEG 38.22 39.18 37.58 38.92 38.35 44.79 45.10

QF=75 28.14 28.51 27.88 28.29 28.59 29.62 29.89
H.264 36.06 36.40 34.85 36.68 36.37 38.86 39.15
QP=35 27.64 27.79 27.01 27.76 28.02 28.74 29.13

(d) aloe (2 views)

TABLE I: PSNR results in dB. For each table cell, the upper value is the
average PSNR of the reconstructed multiview depth maps, the lower value is
the PSNR of the corresponding synthesized color image at the center view.
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Fig. 1: Iterations vs. depth PSNR gain over ANC in experiment “JPEG
QF=50” of Table I(a). Two sub-figures correspond to the left and right views.

To reconstruct the compressed multiview depth maps, we
employ the following schemes for comparison: 1) ANC:
anchor method that decodes depth maps separately, with
output danc; 2) BLF: direct bilateral filtering on the separately
decoded depth maps danc; 3) DBLK: a single image de-
blocking method [17], applied on each compressed depth map
separately; 4) JVDF: joint-view depth filtering proposed in
[20] that denoises multiview depth maps by improving inter-
view consistency; 5) IVDC: inter-view depth consistency test
and enhancement [23, 24], which has a similar idea with JVDF
except that it iteratively denoises multiview depth maps from
a statistical perspective; 6) PROP: our proposed method, with
output dopt = T−1(c(k

∗)) + dpre (Algorithm 1 converged at
iteration k∗); and 7) PROP-1V: our proposed method without
view warping, which can be viewed as the modified version
of DBLK using bilateral filter instead of Gaussian filter.

Test sequences include dude (480×800) consisting of mul-
tiview depth maps of a synthesized human model [36]; new
tsukuba (480 × 640) synthesized stereo depth maps [37];
as well as bowling and aloe (368× 416) which are stereo
depth maps of natural scenes [38]. For conformity, all test im-
ages were 8-bit disparity maps (depth values can be calculated
from disparity values). Test images were compressed using
JPEG (Quality Factor=25,50,75) and H.264 (Quantization Pa-
rameter=35). For H.264 compression of multiview depth maps,
we alternated across views to either intra-code the original dis-
parity image as I-frame, or intra-code the difference image—
a pre-computed difference image between target image and
the predictor image constructed via warping from adjacent
independently coded images. We use 3×3 bilateral filter with
range filter’s σr around 10. Domain filter’s σd = 0.6 and
0.5 for JPEG and H.264 compression respectively. For view
interpolation, we set τ = 10 to reject outliers.

Algorithm 1 terminates when the mean-absolute-difference
between iterations is smaller than 10−8 for both cl and cr,
or the iteration number reaches the maximal allowed value
(40 in our experiments). As shown in Fig. 1, we observed
convergence of proposed Algorithm 1 for each view in around
30 iterations. Similar convergence behaviors were observed in
both the JPEG and H.264 experiments.

We measure the performance of different methods using the
Peak Signal-to-Noise Ratio (PSNR) of both the reconstructed
multiview depth maps and their synthesized color views2.
Uncompressed depth maps and the corresponding synthesized
views served as the ground-truth. Table I summarizes the nu-
merical results. In terms of quality of reconstructed multiview

2We exclude hole pixels from synthesized view PSNR calculation as they
account for a very small portion of pixels.

Fig. 2: Left-view depth error maps in experiment “JPEG QF=50” of Table I(d).
From left to right: method ANC, IVDC, PROP.

depth maps, we see our PROP, PROP-1V achieved the best
performance. The reason BLF performed poorly is because
it does not consider information from multiple views. JVDF
and IVDC performed poorly because they are designed for
denoising, not de-quantization. DBLK performed the worst
because it uses low-pass filter rather than edge-preserving
filter so important depth edges are blurred. Comparing PROP-
1V and PROP, we verified that combining information from
multiple viewpoints reduced the distortion of reconstructed
depth maps. The PSNR results of synthesized virtual views
using the reconstructed depth maps in Table I also verified the
effectiveness of PROP and PROP-1V. The reason is that our
proposed method strongly suppressed quantization distortions
along object edges (demonstrated in Fig. 2), so the synthesized
view naturally exhibited smaller color distortion.

2 views 3 views 5 views 7 views
θ = 0◦ 42.42 42.42 42.42 42.42
θ = 1.5◦ 43.01 43.41 43.61 43.77
θ = 3◦ 43.03 43.77 43.70 43.95
θ = 5◦ 43.48 43.97 44.22 44.37
θ = 10◦ 43.03 43.63 43.72 43.68
θ = 20◦ 43.02 43.34 43.48 43.48

TABLE II: Depth PSNR at a fixed view of dude (JPEG QF=50)

Table II shows the PSNR of a depth map reconstructed
by PROP under varying baselines and number of views for
dude. θ is the view angle between adjacent cameras (baseline
∝ tan(θ/2)). Comparing results for different baselines, we see
that the PSNR results increased then decreased, as baseline
increased from zero. This was because if the camera distance
was too small, then multiview depth maps provided almost
identical information of the 3D scene; on the other hand,
large baseline led to large positional errors in view warping
procedure which degraded the performance. Comparing results
under different number of viewpoints, we see that in general
PSNR results increased as more views were involved. This
was because more views were likely to introduce more new
information of the 3D surface, thus multiview depth maps were
reconstructed with higher precision.

VII. CONCLUSION

Observing that depth maps captured from different view-
points are actually different descriptions of the same 3D
scene, we propose to de-quantize multiview depth maps by
jointly considering their compressed versions, so that specified
uncertainties in multiple views are considered simultaneously
to enhance the overall precision of the represented 3D surface.
Experiments verify the effectiveness of our proposed 3D
surface precision enhancement method.
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