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4 patrick.lecallet@univ-nantes.fr

Abstract—A depth image provides geometric information of
a 3D scene, namely the shapes of physical objects captured
from a particular viewpoint. This information is important for
synthesizing images corresponding to different virtual camera
viewpoints via depth-image-based rendering (DIBR). Since it has
been shown that blurring of object contours in the depth images
leads to bleeding artefacts in virtual images, the most effective
way to compress depth images relies on edge-adaptive image
codecs that preserve contours, which are losslessly coded as side
information (SI). However, lossless coding of the exact object
contours can be expensive. In this paper, we argue that the
contours themselves can be suitably approximated to save bits,
while the depth images piecewise smooth (PWS) characteristic
stays preserved. Specifically, we first propose a metric that
estimates contour coding rate based on edge statistics. Given
an initial rate estimate, we then pro-actively approximate object
contours in a way that guarantees rate reduction when coded
using arithmetic edge coding (AEC) as SI. Given the sharp but
approximated contours, we finally encode the image using an
edge-adaptive image codec with graph Fourier transform (GFT)
for edge preservation. We show in our experiments that by
maintaining sharp but slightly inaccurate object contours, the
resulting quality of virtual views synthesized via DIBR exceeds
those synthesized using depth images compressed with edge-
adaptive codecs that losslessly encode object contours as SI, in
particular when the total coding rate budget is low. This confirms
that optimized coding of depth images results from an effective
tradeoff in the representation of contour and respective depth
information.

I. INTRODUCTION

The advent of depth sensing technologies like Microsoft
Kinect means that one can now acquire depth images (per-
pixel distances between physical objects and capturing camera)
of a 3D scene easily. Each depth map provides important geo-
metric information—object shapes and contours from a camera
viewpoint—which can be used, together with texture images
(color images like RGB) from the same camera viewpoint(s),
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to synthesize novel images as observed from virtual viewpoints
via depth-image-based rendering (DIBR) [1]. This ability
of virtual view synthesis enables a plethora of 3D imaging
applications, including free viewpoint TV [2], immersive video
conferenceing [3], etc.

To enable decoder-side virtual view synthesis, depth im-
ages must be compressed together with texture images for
bandwidth-constrained network transmission. It has been
demonstrated [4] that blurring of object contours in a depth
map leads to bleeding artefacts in virtual images synthesized
via DIBR. Thus state-of-the-art depth image compression algo-
rithms employ edge-adaptive transforms [5, 6] and wavelets [7]
to preserve sharp object contours, which are losslessly coded
separately as side information (SI). However, the SI coding
cost can be expensive at low rates, amounting to 60% of the
total bit budget in some cases [6].

In this paper, we argue that while it is important to maintain
a depth image’s piecewise smooth (PWS) characteristic even
during lossy compression, the object contours themselves can
be suitably approximated to reduce SI coding costs. Specif-
ically, we first define a notion of complexity that estimates
the SI coding costs of object contours in a given depth map
based on edge statistics. Given an initial rate estimate, we then
pro-actively approximate object contours in such a manner
that guarantees rate reduction when the simplified contours
are coded using arithmetic edge coding (AEC) [8]. Given the
sharp but approximated contours, finally we encode the depth
image using an edge-adaptive image codec with graph Fourier
transform (GFT) for edge preservation [6, 9].

Through extensive experiments, we demonstrate that by
maintaining sharp but slightly inaccurate object contours, even
at the same compressed depth image PSNR, the resulting
quality of DIBR-synthesized virtual views using our com-
pressed depth images far exceeds those synthesized using
depth images compressed with DCT-based codecs such as
JPEG that blur edges at low bitrates. Further, we show that
approximating object contours is indeed more beneficial at low
bitrates than encoding the original detected contours losslessly



for edge-adaptive transform coding [9], demonstrating the
benefit of contour approximation while maintaining the PWS
characteristic. To the best of our knowledge, we are the first in
the literature to systematically approximate 2D images with a
PWS constraint via contour approximation and edge-adaptive
coding.

The outline of the paper is as follows. We first overview
related work in Section II. We then discuss how the PWS
signal can be modeled and approximated for the 1D case and
the 2D case in Section III and IV, respectively. Experiments
and concluding remarks are presented in Section V and VI,
respectively.

II. RELATED WORK

Typical image coding algorithms employ fixed block-based
transforms like DCT [10] [11] and can only represent image
patches with horizontal and vertical edges well. Directional
transforms [12] can adapt to diagonal edges, but cannot
deal with more arbitrarily shaped edges such as “L” and
“V”. Practically, that means coarse quantization of the high-
frequency components in these transforms at low bit rates will
lead to blurring of arbitrarily shaped edges in the reconstructed
depth map.

Having observed that depth map edges play an important
role in the quality of the DIBR-synthesized view [4], edge-
preserving image coding algorithms have been proposed.
[13] modeled depth images with piecewise linear functions
(platelet) in each block. However, the representation inherently
has a non-zero approximation error even at high rates, since
depth images are not strictly piecewise linear but PWS. [14]
and [7] proposed edge-adaptive wavelets, and [5] proposed
block-based unweighted GFT for depth map coding. Extending
[5], [6] used instead a weighted graph for GFT in a multi-
resolution framework. In all these works, detected edges are
encoded losslessly as SI, which can cost up to 60% of the
total budget at low rates.

[8] [15] introduced a lossless AEC method for coding
of contiguous object contours: the probabilities for possible
directions of the next edge along a contour are estimated and
used as context for arithmetic coding of the true edge. In
this paper, we extend [8] to approximate object contours by
selecting the direction with the largest estimated probability
in an edge prediction model to reduce edge coding cost. With
the approximated contours, depth maps are subsequently coded
using GFT as done in [6].

III. GEOMETRY APPROXIMATION: 1D CASE

We start our discussion on approximation of PWS signals
with the simpler 1D case first (depth pixel row). We first
define a notion of complexity for 1D PWS signals, which we
can use to estimate a signal’s bit count during actual coding
implementation. We then present an approximation algorithm
that can reduce a signal’s complexity while maintaining its
PWS characteristic.
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Fig. 1. (a) a two-state Markov model for PWS signal; (b) an example of 1D
PWC signal F (x) in black, and an approximated signal F ′(x) in red.

A. PWS Signal Complexity: 1D Case

It is observed that depth maps exhibit the PWS characteristic
[5, 9], i.e., smooth surfaces divided by sharp edges. For a
1D discrete signal (a pixel row), PWS means a smooth 1D
signal interrupted occasionally by discontinuities. Given that
the smooth portions can be efficiently coded using edge-
adaptive wavelets [7] and transforms [5], we are interested
here only in the complexity of representing the set of dis-
continuities. To model this set, we build a 2-state Markov
model as shown in Fig. 1(a): S and J are the “smooth” and
“jump” (discontinuity) states respectively, with state transition
probabilities Pr(J|S) = α and Pr(S|J) = β. We now define
the complexity of the 1D PWS signal as the entropy H(φ) of
state random variable φ ∈ {S,J}, where

H(φ) = log(α+ β)− α

α+ β
logα− β

α+ β
log β (1)

We assume that there cannot be two back-to-back disconti-
nuities for a 1D signal, hence β = 1 and the complexity is:
H(φ) = log(1 + α) − α

1+α logα. The more discontinuities a
PWS signal has, the larger Pr(J|S) = α is, and the larger
the complexity H(φ) is. Fig. 2(a) shows complexity H(φ) as
a function of α (α ≤ 0.5) for different values of β.
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Fig. 2. (a) The entropy H(φ) in (1) as a function of α with different values
of β; (b) The contour coding bits with respect to our complexity metric H(φ)
for 2D depth map multiplied by the length of contour Ne.

We argue that complexity H(φ) of a PWS signal is pos-
itively correlated with the bit count required to encode the
signal’s discontinuities as side information (SI). In Fig. 2(b),
we plotted the bit count of encoded contours in a 2D depth
image using AEC (to be discussed), versus complexity of
the contours multiplied by the contour lengths. We observe a
positive correlation between bits per symbol and complexity.



B. Approximation of 1D PWS Signal

If the complexity H(φ) of a contour is large and hence
a large coding cost, then one can reduce the number of
discontinuities in the signal, resulting in a smaller α and
H(φ). For simplicity, we assume further that the 1D signal
is piecewise constant (PWC). It can be shown that an original
PWC signal containing N jumps is best approximated (in
mean squared error (MSE)) by a signal with only K jumps,
K < N , by selecting K of the original N jump positions. The
value of each new longer constant signal segment spanning
multiple original pieces is simply the average of those pieces.
Fig. 1(b) shows an example approximating original signal
F (x) to signal F ′(x). We compute the best approximate signal
via dynamic programming (DP) to identify the best K jump
locations among N possible choices as follows.

Denote by x a PWC signal with N+1 constant pieces and N
jumps. A PWC signal x′ with K jumps that best approximates
x must eliminate (N−K) original jumps. We define Dx(i, k)
as a recursive function that returns the minimum MSE from the
i-th constant piece of x to the (N +1)-th piece, given k more
jumps need to be eliminated. We first define dx(i, j) as the
MSE when a constant signal segment approximates j − i+ 1
pieces with indices from i to j, where j ∈ [i,N + 1] and
dx(i, i) = 0. dx(i, j) eliminates j − i jumps between i-th and
j-th pieces. Dx(i, k) selects the j-th piece that results in the
minimum total distortion:

Dx(i, k) = min
j∈[i,N+1]

{
dx(i, j)+Dx(j+1, k− (j− i))

}
(2)

With appropriate base cases defined, recursive call of
Dx(1, N −K) would yield the minimum total distortion for
approximating signal x with K jumps.

IV. GEOMETRY APPROXIMATION: 2D CASE

We now generalize our previous approximation of 1D PWS
signal to 2D. We will first introduce a similar notion of
complexity for contours in a depth map—an estimate of the
overhead for contour coding in the image. Then, to reduce
the complexity we describe a procedure to approximate the
contours to simpler ones.

A. PWS Signal Complexity: 2D Case

PWS signal in 2D means smooth spatial regions separated
by sharp edges. In a 2D depth image, we first detect the
edges as done in [6], which outline contours of physical
objects and exist between pixels. Fig. 3 shows an example
of a 4×4 block with between-pixel edges {e1, . . . , e6}—each
edge is defined between two vertically or horizontally adjacent
pixels—separating foreground and background depth values.
The set of edges composing the contour is a 4-connected chain
code, i.e., next edge starts where current edge terminates, and
thus can take on only one of three relative directions: straight
~vs (same direction as previous edge), left ~vl and right ~vr
(relative to previous edge). This contour representation is also
known as differential chain code (DCC) [16].

Using a window of previous edges, [8] proposed a linear
regression model to estimate the probabilities of the three
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Fig. 3. Edges e1, . . . , e6 in a 4× 4 block that separate foreground F from
background B.

possible directions of the next edge, which are subsequently
used as context for arithmetic coding of the true next edge.
Using a window of K previous edges {et, · · · , et−K+1}, one
can construct a best fitting line l with direction ~ul via linear
regression to predict the direction of next edge et+1. The Von
Mises probability distribution model 1 is then used to assign
probabilities to the three possible directions {~vs, ~vl, ~vr} given
their angles with respect to ~ul; smaller angle between a pos-
sible direction ~v and ~ul will result in a larger probability. The
computed probabilities, which are synchronously computed at
both the encoder and decoder, are then used as context for
arithmetic coding of actual edge et+1. See [8] for details.

The described linear model provides a notion of “smooth-
ness” in 2D: a smooth contour is one that is accurately
predictable by the model. We can thus easily apply our 2-
state Markov model for 1D PWS signal to 2D depth map for
complexity computation. Among the three possible directions
{~vs, ~vl, ~vr} for the next edge et+1, we term the one with
the largest estimated probability the predicted direction ~vp.
If et+1’s direction is indeed the same as ~vp, then we label
the state S. Otherwise, predicted ~vp is incorrect, and we label
the state J. We thus have the same 2-state Markov model in
Fig. 1(a), where Pr(J|J) = 1−β > 0, and we can also define
the complexity of contours in 2D depth map as the entropy
H(φ) in (1).

Fig. 4(a) shows an example of using K = 3 previous edges
{e1, e2, e3} to predict the fourth edge e4. With the best fitting
line l, the predicted direction ~vp, one closest to the direction
~ul of the constructed line l, is ~vr.

B. Approximation of 2D PWC Signal

We now describe a procedure to reduce the complexity
H(φ) by approximating contours if complexity H(φ) (and
hence bit count for coding the contours) is too large. We first
define horizon h, which is the size of a window of candidate
edges in which we will consider contour approximation. A
larger h will naturally lead to a larger search space, resulting in
a larger amount of approximation. At a given endpoint et, with
a sequence of K previous edges {et, . . . , et−K+1} of original
contour E , we compute the predicted direction ~vp using the
previously described linear regression model. We then consider
an approximate contour E ′ that replaces the original edge
et+1 with ~vp, and continues to replace future edges with next

1http://en.wikipedia.org/wiki/Von Mises distribution
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(a) Edge Prediction [8] (b) Contour approximation

Fig. 4. (a) Edge Prediction: ~vp = ~vr ; if edge e4 is in direction ~vr , the state
will be S. If edge e4 is in direction ~vs or ~vl, the state will be J. (b) Contour
Approximation: the original contour E (in black) is approximated by contour
E ′ (in red). Here K = 3 and h = 13. Edges in blue means original and
approximated edges are coincident.

predicted ~vp, until either: i) a predicted edge ~vp is actually
part of the original contour E , or ii) the approximation has
reached length h. If it is the earlier termination condition,
then we have successfully replace a section of the original E
with a new segment that is perfectly predicted by the linear
regression model, thus lowering α and the complexity H(φ).
If it is the latter termination condition, then no approximation
is executed, and the procedure repeats at edge et+h.

Fig. 4(b) shows an approximated contour E ′ to orginal E .
Fig. 5 shows a subjective result of our approximation for the
teddy image, where larger h leads to smoother contours.

C. Edge-adaptive Coding of Depth Blocks

Given the approximated contours, coded losselessly using
AEC [8], we now describe how actual pixel values of a
depth image can be coded edge-adaptively block-by-block via
GFT [9], preserving the image’s PWS characteristic. First,
pixel values on a depth image are exchanged according to
the approximated contours, so that foreground depth values
fall on one side of a contour and background depth values
fall on the other. Then, for each pixel block a 4-connected
graph is constructed, where each node corresponds to a pixel.
An edge weight is assigned 1 if the connected pixels are
on the same side of a contour, and 0 otherwise. Given the
constructed graph, the transform is the eigen-matrix of the
graph Laplacian. This weight assignment (deducible from the
encoded contours) means filtering across sharp boundaries are
avoided, preventing blurring of edges. The computed transform
is multiplied with the vectorized depth block signal for the
transform coefficients, which are quantized and entropy-coded
into a bitstream. See [6] for details.

V. EXPERIMENTATION

A. Experimental Setup

We performed extensive experiments to validate the effec-
tiveness of our proposed depth map contour approximation
method using texture-plus-depth image sequences from the
Middlebury dataset2. We first approximated contours in each

2http://vision.middlebury.edu/stereo/data/

(a) teddy

(b) (c) (d) (e)

Fig. 5. (a) teddy. (b) original interception of (a). (c) ∼ (e) are the
approximation results with increasing value of h. The contour becomes
smoother with h increasing.

original depth map with different horizon scale α, where the
horizon value h is equal to the length of contours times the
scale. We then deployed GFT [5] to code pixel blocks in
depth maps (termed approximated GFT or AGFT for short).
Finally combining with original or JPEG compressed texture
maps, we synthesized middle views via DIBR [1], which were
compared against original middle view images for distortion
computation.

B. Results: Comparing with Original Depth Map

We first demonstrate the benefit of effectively approx-
imating contours before edge-adaptive image compression.
We compared the RD curves of virtual views synthesized
using depth maps compressed by our proposed AGFT with
those synthesized using depth maps compressed using GFT
with original detected edges losslessly coded (termed GFT).
JPEG was used to compress texture maps. Fig. 6 shows the
RD curves for cones, Dolls, Rocks2 and Lampshade2
sequences, respectively. The x-axis is the depth map coding
rate in bits per pixel (bpp), and the y-axis is the synthesized
view quality in PSNR. The computed BG gains [17] are shown
in Table I, where we see that the average BG gain in PSNR
achieves 1.68dB over GFT and 4.67dB over JPEG.

Our approximated depth maps resulted in better RD perfor-
mance at low bit rates, since by approximating contours we
can save significant coding bits while the synthesized view
distortion due to approximation is negligible. Subjective results
will be shown in next subsection.

C. Results: Comparing with JPEG Compressed Depth Map

We now demonstrate the importance of edge preservation
in compressed depth maps. We compared synthesized images
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Fig. 6. Synthesized virtual view RD curves for cones, Dolls, Rocks2 and Lampshade2, respectively. Here ’original’ means virtual view synthesized
using depth maps compressed adaptive to original edges. “α” referred curves meaning virtual view synthesized with correspondingly approximated depth map
based on our proposed method.

TABLE I
BG GAIN IN PSNR FOR MIDDLEBURY SEQUENCES

Sequences GFT JPEG
teddy 1.29 1.45
cones 0.92 3.34
Dolls 2.17 2.41
Rocks2 2.30 7.14
Lampshade2 1.72 9.01
Average 1.68 4.67

using depth images compressed by our AGFT, which preserves
sharp edges, with depth images compressed by JPEG. Fixed
DCT-transform coding in JPEG compression leads to blurred
edges at low bitrates. Since it has already been demonstrated
in [9] that GFT outperformed JPEG in depth map compression
in terms of RD performance, we show here that even for sim-
ilar depth map PSNR, the resulting synthesized images using
AGFT compressed depth maps outperform images synthesized
using JPEG compressed depth maps, since AGFT maintains
the PWS characteristic.

Fig. 7 shows the AGFT and JPEG compressed depth maps
and the corresponding synthesized virtual views. We observe
that AGFT compressed depth map (a) have sharper edges
comparing with JPEG compressed result (c), even though
they have nearly equal PSNR values (the difference is less
then 0.1dB for both left and right depth maps). (b) and (d)
are the corresponding synthesized views. We enlarged the
right-bottom corner for each image to enhance the visual
quality, where there are corrupted edges in (d) while (b)
looks clearer with sharp edges. This is also reflected in the
corresponding PSNR values. The results illustrated that even
for the similar quality of depth maps, an edge preserved depth
map can result in a higher quality of synthesized view, which
supports the importance and effectiveness of our edge adaptive
approximation method.

Sub-regions of the synthesized views for the previous men-
tioned four sequences are shown in Fig. 8. The first row are
synthesized by AGFT compressed depth maps and second row
are by JPEG compressed depth maps, where the depth map
quality are of nearly the same PSNR values. There are a

(a) By AGFT, 34.93dB (b) Virtual View, 29.54dB

(c) By JPEG, 34.87dB (d) Virtual View, 27.60dB

Fig. 7. For teddy, the same quality of depth maps compressed by AGFT
(a) (coding bits: 0.20 bpp) and JPEG (c) (coding bits: 0.72 bpp), respectively.
Together with original texture maps, the corresponding synthesized views are
shown in (b) and (d). Visually, (d) has a lot of noise around edges while (b)
is very clean. The right-bottom corner is enlarged for better visual quality.

lot of corrupted edges in the JPEG compressed results (e.g.
cones and Rocks2), which badly affected visual quality.
For AGFT compressed results, although there is also some
distortion around edges due to approximation, the edges in
synthesized views still look very sharp (e.g. Dolls).

VI. CONCLUSION

Efficient coding of depth image is essential for decoder-
side virtual view synthesis via depth-image-based rendering
(DIBR). Existing works either employ fixed transforms like
DCT that blur depth image’s sharp edges at low rates, or
use edge-adaptive transforms that require lossless coding of
detected edges as side information, which accounts for a large



(a) cones (b) Dolls (c) Rocks2 (d) Lampshade2
Fig. 8. Sub-regions of the synthesized views by original texture maps and AGFT / JPEG compressed depth maps, respectively, where the PSNR quality of
depth maps compressed by AGFT and JPEG are almost the same. The first row are by AGFT compressed while the second row are by JPEG. Rocks2 and
Lampshade2 are enlarged to be more distinct. (We strongly recommend readers to read an electronic version to distinguish the differences.)

share of the bit budget at low rates. In this paper, we propose
to first approximate object contours to lower the edge coding
cost, then use edge-adaptive graph Fourier transform (GFT)
for block-based coding so that sharp edges are preserved
and the piecewise smooth (PWS) characteristic is maintained.
Experiments show noticable performance gain over previous
coding schemes using either fixed transform or edge-adaptive
transform with lossless coding of detected contours.
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