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ABSTRACT

Depth sensors like Microsoft Kinect can acquire partial geo-
metric information in a 3D scene via captured depth images,
with potential application to non-contact health monitoring.
However, captured depth videos typically suffer from low
bit-depth representation and acquisition noise corruption, and
hence using them to deduce health metrics that require track-
ing subtle 3D structural details is difficult. In this paper, we
propose to capture depth video using Kinect 2.0 to estimate
the heart rate of a human subject; as blood is pumped to circu-
late through the head, tiny oscillatory head motion can be de-
tected for periodicity analysis. Specifically, we first perform a
joint bit-depth enhancement / denoising procedure to improve
the quality of the captured depth images, using a graph-signal
smoothness prior for regularization. We then track an auto-
matically detected nose region throughout the depth video to
deduce 3D motion vectors. The deduced 3D vectors are then
analyzed via principal component analysis to estimate heart
rate. Experimental results show improved tracking accuracy
using our proposed joint bit-depth enhancement / denoising
procedure, and estimated heart rates are close to ground truth.

Index Terms— health monitoring, image enhancement,
graph signal processing

1. INTRODUCTION

As the general population ages in the developed countries,
cheap and non-invasive health monitoring has become more
in demand. Among available health monitoring systems are
image-based systems with the distinct advantage of being
completely non-contact and thus non-intrusive. Of particular
interest are systems based on new depth sensors like Micosoft
Kinect that can acquire fairly accurate 3D geometric data
from captured depth images, and can be fully functional even
in dark rooms—useful for applications such as sleep monitor-
ing. Previous depth-image-based systems [1, 2] have demon-
strated that certain human vital signs like respiratory rate can
be accurately estimated, so that medically urgent events like
sleep apnoea (temporary suspension of breathing) can be de-
tected. However, due to limitations of the depth sensing tech-
nologies, captured depth videos typically suffer from low bit-
depth representation (e.g., Kinect 2.0 has bit-depth of 13 bits
for each captured depth pixel) and sensory noise corruption.

This means that it is difficult to design depth-image-based
systems to estimate health metrics that require tracking subtle
3D structural details in the scene.

In this paper, we strive to overcome this difficulty and pro-
pose to capture depth video of a human subject using Kinect
2.0 to estimate his/her heart rate. It has been previously shown
[3] that as blood is pumped from the heart to the head for
circulation, the head will oscillate slightly due to Newtonian
mechanics, and tracking this oscillatory movement can lead to
a heart rate estimate. Unlike previously used high-resolution
color video [3], the key challenge using depth video is to over-
come the low bit-depth representation and sensory noise in-
herent in the observed data. Towards this end, we first propose
a joint bit-depth enhancement / denoising procedure to im-
prove the quality of the captured depth images, using a graph-
signal smoothness prior for regularization [4]. We then track
an automatically detected nose region throughout the depth
video to deduce 3D motion vectors of the subject. Finally, the
deduced 3D motion vectors are analyzed via principal com-
ponent analysis (PCA) to estimate heart rate. Experimental
results show improved tracking accuracy using our joint bit-
depth enhancement / denoising procedure, and our estimated
heart rates are close to ground truth.

The outline of the paper is as follows. We first discuss
related work on Section 2. We then overview our heart rate
detection system in Section 3. We present our depth video
pre-processing algorithms in Section 4, and the heart rate es-
timation algorithm in Section 5. We present experimental re-
sults and conclude remarks in Section 6 and 7, respectively.

2. RELATED WORK

In [5], [6], [7], the human subject is recorded using a conven-
tional RGB camera, and the heart rate is extracted from the
recorded video using the subtle colour changes in the facial
skin due to blood circulation. In contrast to our approach, all
these approaches require high-resolution coloured video of
the skin. In [3], similarly to our work, the detection of sub-
tle head oscillations in videos during the cyclical movement
of blood from the heart to the head is used to measure the
pulse rate. In contrast to our work, [3] uses coloured video
to extract feature points, which are tracked throughout the
video to deduce motion. The motion of the feature points
are then analysed using PCA to estimate heart rate. Though



also motion-based, again we differ from [3] in that only depth
video is used for analysis, which is not affected by external
lighting conditions.

In [8], a thermal infrared sensor (TIRS) is used to capture
subtle temperature changes in the sub-nasal skin surface for
heart rate detection. However, a good TIRS (over $1000) is
far more expensive than a Kinect sensor. In [9], a Kinect sen-
sor is used to estimate respiratory and heart rates. However,
the system is very restrictive and impractical, requiring a sub-
ject laying supine with chest unclothed to observe the neck
and thorax areas used for motion tracking.

In [1] and [2], an MS Kinect 1.0 depth sensor is used for
detecting episodes of sleep disorder, namely apnoea and hy-
popnoea, by extracting the respiratory rate from the tracked
chest and abdomen movements. The depth video of the pa-
tient sleeping is recorded in complete darkness, temporal de-
noising is performed to mitigate effects of temporal flicker-
ing, and Support Vector Machine or graph-based signal pro-
cessing, is then used in [1] and [2], respectively, to detect
episodes of apnea / hypopnoea. Oscillatory head movements
due to heart beat are much smaller than respiratory chest
movements and much harder to detect in depth videos, how-
ever, and hence the challenge in this paper.

3. SYSTEM OVERVIEW

We first overview our depth-video-based heart rate detection
system in Section 3.1. We then derive a simple depth image
noise model from collected observed data in Section 3.2. We
discuss the graph-signal smoothness prior we employ for joint
bit-depth enhancement / denoising in Section 3.3. Finally, we
describe our selection of target region for head tracking in
depth video in Section 3.4.

3.1. Heart Rate Estimation System

In terms of hardware, our system is composed of a Kinect 2.0
camera connected to a standalone laptop. For simplicity, we
assume that the camera is placed in front of the human subject
at a distance of roughly 75 to 80cm. Depth video is captured
at 30 frames per second (fps) at 512x424 spatial resolution.
Each captured depth image is corrupted by sensory noise, and
thus denoising is one important pre-processing task. Deriva-
tion of an appropriate noise model for Kinect 2.0 is discussed
in details in Section 3.2.

Each captured pixel is represented by 13 bits, which trans-
lates to a depth granularity of no smaller than 1mm (the gran-
ularity varies according to the physical distance between the
captured subject and the capturing camera). Because the head
movement due to heart beat is very slight (roughly Smm ac-
cording to [3]), this granularity is coarse for our tracking algo-
rithm. Thus another key challenge is to enhance bit-depth in
the captured depth video prior to analysis for improved heart
rate detection.

Algorithmically, our method can be divided into three
parts. First, we define a target region x; within the human

subject’s face in frame 1—one that is amenable to robust head
tracking in the captured depth video. Second, we jointly en-
hance the bit-depth and denoise each of the depth frames us-
ing our proposed pre-processing algorithm. Finally, we track
the target region throughout the depth video, so that the de-
duced 3D vectors can be analyzed via PCA to estimate heart
rate. The joint bit-depth enhancement / denoising optimiza-
tion is discussed in Section 4, while the heart rate estimation
procedure is discussed in Section 5.

3.2. Derivation of Noise Model

We first derive a suitable noise model for Kinect 2.0 captured
pixels in a depth video frame, which we will use later for our
to-be-described denoising algorithm. For model derivation,
we placed statically a flat board on a table and recorded a
depth video of 7" frames. Let xﬁ ; be the depth pixel inten-
sity at location (i, j) of frame ¢. For each location (i, ), we
first compute the empirical mean f; ; as % Zthl x;j, i.e., the
average pixel intensity value at the same location over all T’
frames. Given image size of M x N pixels, we can estimate

the horizontal auto-correlation Cy, (k) as:
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where we assume that the variance o is the same for any
pixel location. One can estimate the vertical auto-correlation
Cy (k) similarly:
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Fig. 1: Empirically computed C}, (k) and C,, (k) (1 < k < 10)
for the horizontal and vertical dimension, respectively.

Fig. 1 shows the auto-correlation plots tested on a se-
quence of 7' = 15000 frames computed on a flat 30x30
(M x N) square surface at a distance 77.1cm from the cam-
era. We observe that the auto-correlation in both cases de-
crease rapidly as k increases, which means that the correla-
tion with immediate neighboring pixels is strong but weakens
considerably thereafter. We can thus construct a suitable noise
model as follows. Assuming a Gaussian Markov Random
Field (GMRF) noise model, which was heuristically found
to model well the measured noise, the likelihood Pr(y|x) of
observing a depth pixel patch y given the original patch is x

= (y —x)"P(y — X)>
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where P is the precision matrix (inverse of the covariance ma-
trix). To model neighboring pixel correlation using GMREF,
we set the entries in P as follows [10]:

1/0? ifi=j
P — C’; gl) if 2 and j are horizontal neighbors
J 70,;7(21) if ¢ and j are vertical neighbors
0 otherwise

“
P will be used in our denoising algorithm in a later section.
We note that, to the best of our knowledge, Kinect 2.0 ac-
quisition noise has not been studied formally. However, our
results are consistent with those of [11] for depth image noise
modelling for time-of-flight cameras.

3.3. Graph-signal Smoothness Prior

As in other inverse imaging problems, a signal prior for
the desired signal is needed for regularization. As done in
[4, 2], in this paper we also employ a graph-signal smooth-
ness prior; i.e., a depth block x is piecewise smooth if xTLx
is small, where L is the graph Laplacian for block x. Specif-
ically, we first construct a graph G where the nodes in the
graph correspond to pixels in block x. We connect each node
to its horizontal and vertical neighbors to yield a 4-connected
graph. The edge weight w; ; between two nodes 7 and j is the
exponential of their pixel intensity difference:

I — I,
wj,j = exp <—|2]|> )

o7

where I; is the pixel intensity of pixel ¢ and o7 is a scaling
parameter.

Having defined edge weights, one can define the adja-
cency matrix W where the (4, j)-th entry is W ; = w; ;. The
degree matrix D is a diagonal matrix where the ¢-th diagonal
entryis D; ; = > j W;. ;. The combinatorial graph Laplacian
L is then defined as the difference between the degree matrix
D and the adjacency matrix W:

L=D-W. (6)

It can be shown that the Laplacian regularizer x” Lx is
a measure of variation in the signal x modulated by weights
Wy 5

XTLx =Y w; (2 — x;)%. 7
2]

Thus x” Lx is small if the squared signal variations (z; —
2 are small or the modulating weights w; ; are small.

Given L is positive semi-definite, one can perform eigen-
decomposition on L to obtain non-negative eigen-values A
and eigen-vectors ¢5. We can then express x” Lx alterna-

tively as:
xTLx = Z )\kai ®)
k

;)

where eigen-value Ay can be interpreted as the k-th graph fre-
quency, and oy, = ¢} x is the coefficient for the k-th graph
frequency. In this interpretation, a small x” Lx means that
the energy of the signal x is concentrated in the low graph
frequencies.

3.4. Target Region Selection

We discuss next how we select the rarget region x;. The re-
gion needs to be sensitive to head movements due to blood
circulation and easily tractable from frame to frame. For sim-
plicity, we assume that the target region is of fixed size H x H
pixels, where H is an odd number. When the subject is fac-
ing the camera, the nasal tip is typically the closest point and
contains sharp edges that can be tracked. Thus, we select the
target region to be the nasal tip surface area.

Specifically, we treat the nasal tip as a 3D object with
its corresponding cross section that is parallel with the im-
age plane as its base. The shape of this object resembles
that of a C4y-symmetry [12] square pyramid. Thus to iden-
tify the nasal tip surface area, we find the best-matched block
to the Cy-symmetry square pyramid. A strong feature of a
C4v-symmetry square pyramid is that the gradient direction
of each apex-connected edge of the Cy,-symmetry square
pyramid is constant. We thus formulate the following gradi-
ent direction-based target region selection process. For each
candidate block x§ within the face region denoted by X, we
first obtain the H x H gradient direction map, VX1, where

the element in the sth row and jth column, Vﬁ-, is calculated
counterclockwise from the direction of increasing column co-
ordinates and —7 < Vi < 7w, 1 < i,j < H. Fig. 2(a)
shows the gradient direction map of the sample nasal tip area.
It can be seen from the figure that the main diagonal and
anti-diagonal entries of VX1, shown counterclockwise in red,
green, black, and magenta, without considering the central
one v)(<1¥1+1)/2, H+1)/2> AT€ close to those of a C 4 -symmetry
square pyramid with H x H square base shown in Fig. 2(b).
Thus, we select the target region x; as a region within X4
whose main diagonal and anti-diagonal entries of the gradi-
ent direction map without the central one are closest to those
of C4y-symmetry square pyramid with H x H square base.
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(a) a sample nasal tip block (b) a square pyramid
Fig. 2: Quiver plots of gradient direction maps.

Mathematically, we divide V*1 into four quadrants, de-

noted as Vf;,}, 1 <4 < 4, and formulate the following opti-
mization problem to select x;:

(H-1)/2 - L
. . xi T2 X7 2
X1 = arg min Eﬁ (Vg 4) +(Vas, T )
3



where V;‘;p, 1 <p < (H — 1)/2 denotes the main diagonal
or anti-diagonal entries of V*1 that are in the ith quadrant,
for even and odd i, respectively; e.g., Vf;ip denotes the anti-
diagonal entries of VX7 that are in the first quadrant, shown
in red in Fig. 2(a), and V’qu, Vfg,p, and Vf;jp, are shown in
Fig. 2(a), in green, black, and magenta, respectively.

4. DEPTH VIDEO PRE-PROCESSING
4.1. Joint Bit-depth Enhancement / Spatial Denoising

We first discuss the procedure to perform spatial denoising for
the first frame. Denote the observed region of depth values,
in vector form, by y. It is a quantized (low bit-depth) and
noise-corrupted version of the original vector of depth values

x: x4n
y—round< ) )Q (10)

where () is the quantization parameter due to coarse depth
precision by the Kinect sensor, and n is the additive noise.
The objective is to recover the original x given y. Using
a maximum a posteriori (MAP) formulation, we can derive
the objective as follows. Let z = x + n be the noise cor-
rupted signal before quantization. Using the total probability
theorem, likelihood Pr(y|x) can be written as:
Pr(y|x) = /Pr(z|x)P7‘(y|z,x)dz a1

z

Pr(y|z,x) evaluates to 1 if y = round (5) @ and 0 other-

wise. Equivalently, conditiony — Q/2 < z < y + /2 must
be satisfied for Pr(y|z,x) to be non-zero. Thus, likelihood
Pr(y|x) can be simplified to

z—x)TP(z — x)

””M:LRQWP( E

Yy

] dz (12

where P is the precision matrix defined in (4), o2 is the noise
variance, and Ry = {z|y; — Q/2 < z; < y; + Q/2}.

Pr(y|x) in the form (12) is still difficult to use. We thus
approximate it as:

Pr(ylx) max

y—§<z<y+4

@—xﬁgw—xq

pr
o

13)

One can see that (12) and (13) have similar shapes. Pr(y|x)
in (12) must integrate z over region R, within a Q-
neighborhood of y, where the integrating exponential func-
tion is large if z is close to x. Hence Pr(y|x) is large if y is

close to x or () is large. This is also true for Pr(y|x) in (13).
4.1.1. Objective Function

Given likelihood in (13) and the graph-signal smoothness
prior, one can now derive the MAP objective by minimizing
the negative log of the likelihood and prior:

min (z - x)"P(z—x) +pux'Lx

X,z

fa)

st. yi—-9$<z<y+9 Vi (14)

where p is a parameter to trade off the first fidelity term and
the second signal smoothness prior term that depends on the
signal-to-noise ratio (SNR).

4.1.2. Optimization Procedure

With two inter-dependent variables x and z and a constraint
on z, the optimization (14) is difficult to solve directly. We
hence propose to alternately solve for one variable while
keeping the other fixed and iterate. In particular, when z is
fixed, the optimal x can be solved in closed form by taking
the derivative in (14) with respect to x and setting it to zero:

x* = (P + uL) 'Pz (15)
On the other hand, when x is fixed, the optimal z to mini-

mize the fidelity term (the graph-signal smoothness term does
not involve z) while satisfying the constraint is:

vi+Q/2—¢ if x>y +Q/2
Zz* = Yi —Q/2 if x; <y, —Q/2 (16)
Z; O0.W.

where € is a small positive constant. The two variables are
optimized alternately until the solution converges. Note that
the edge weights w; ; in the graph Laplacian L needs to be
updated using (5) each time a new signal x is computed.

4.2. Joint Tracking / Temporal Denoising

H—
Xl—l

frame #-1 frame ¢
Fig. 3: Illustration of tracking target region Y (v) in frame ¢,

given tracked region X;_; in previous frame ¢ — 1.

To track a target region 7 over a sequence of frames, we
perform the following procedure. We first perform joint bit-
depth enhancement / spatial denoising on new frame ¢ as de-
scribed in the previous section. We then formulate the follow-
ing optimization for joint tracking / temporal denoising. Let
Y; be the observed frame at time instant t. A motion vector
(MV) v; points to a sub-region Y;(v;) inside Y that cor-
responds to the target region 7 in frame ¢. Let X;_; be the
denoised target region 7 in previous frame ¢ — 1. The op-
timization thus becomes the search for MV v; and denoised
patch x; that minimize three terms: i) a fidelity term with
respect to observation Y;(vy), ii) a graph-signal smoothness
term x! Lx;, and iii) a motion estimation term [|X;—1 — x¢||3
that measures how well the designated target regions match
in the two frames:

(zt — x¢)TP(ze — x;) + puxI Lix;
+y %e—1 — %13

st Ye(ve) -9 <z <Yivo)+$€ (A7

min
Vi,Zt,X¢



4.2.1. Optimization Procedure

To solve (17), we use a similar alternating method as follows.
We first search for the optimal v; that minimizes the motion
estimation term ||X;_1 — Y(v;)||3. We then fix v;, and alter-
nately solve for z; and x;, where the optimal x; given v; and
Z4 1S:

' x; = (P + pL+ 1) 7 (Pz; +9%,—1)  (18)
where I is the identity matrix. The optimal z given fixed x is
solved using (16).

5. HEART RATE ESTIMATION

In this section, we first describe the analysis of the tracked
movement vectors via PCA, and then explain the procedure of
heart rate estimation based on the PCA decomposition result.

5.1. Principal Component Analysis

Given X;, the tracked and denoised target region 7 in frame
t, we designate the centre coordinate of X, as horizontal po-
sition h; and vertical position v; of X;, and the depth inten-
sity at centre coordinate as axial position a; of X;. Since
h: contains most of equilibrium movement [3] that can af-
fect heart rate estimation, we remove h;, and use a 2D vector
(v, at) to denote vertical and axial positions of X;. We find
that the granularity of vertical component is approximately
1.6992mm per pixel coordinate, and azial component is ap-
proximately 1.0147mm per depth intensity, at capturing dis-
tance 77.1cm. Therefore we unify the measurement of v; and
a; into mm unit, denoted as A; = (v"™, )T’ before we
apply PCA.

Let A be the 2 x T tracked movement matrix, A =
[A1,...,Ar]. We calculate the 2 x 1 mean matrix A and
2 X 2 covariance matrix O as:

A-l ET: A, (19)
T =1
0= 1 ZT:(Ai —-A)A; -A)T = LpnT (20)
T =1 / T

where H = [A;—A, ..., A7 —A]. PCA [13, 14] determines
the eigenvectors of the movement by solving the following
algebraic eigenvalue problem:

OE = EA 1)

where E = [e1, e3] denotes the eigenvectors of the 2D move-
ment and e; and es are in descending order according to the
amplitude of their corresponding eigenvalues, and A denotes
a diagonal matrix of the corresponding eigenvalues A1, As.

Next, similarly to [3], we project A onto e;, i =
1, 2, to get time plots of the projected movement SfCA =
[HprojeiAl ||2 ey ||pr0jei ATHQ]’ then assess the periodic-
ity of each SF'“A as the percentage of the spectral power on
the frequency with maximum power and its first & harmon-
ics over the total spectral power, and finally choose the most
periodic SFCA.

5.2. Heart Rate Estimation

We first pass the most periodic SY“# through a second-order
Butterworth lowpass filter with 0.25 normalized cutoff fre-
quency, and then remove the linear trend of the filtered signal.
We denote the resulting signal as SfCA. Next, we estimate
the heart rate (HR) by first applying Fast Fourier Transform
(FFT) on STC4, to get single-sided amplitude spectrum of
SPCA  The sampling frequency is 30Hz, to be consistent with
the 30fps depth video frame accusation, and the window size
is 15secs. Then we find the frequency f* with the largest peak
in the single-sided amplitude spectrum of SY“4, and estimate
HR as HR = 60x f* beats/minute.

6. EXPERIMENTAL RESULTS

In the experiments, we test 7 subjects. Data are collected si-
multaneously using a Kinect 2.0 depth camera and a finger
pulse oximeter (ANAPULSE ANP100, Ana Wiz Ltd, UK)
which we assume provides ground truth HR reading. The
system is implemented in Matlab R2014a on a laptop running
Windows 8.1, with Core i7 2820QM 2.3GHz CPU and 16GB
RAM. The mean computational time is 0.847s per frame. In
this section, we first present tracking results without and with
the proposed depth video pre-processing, and then compare
the estimated heart rate based on the tracking results with
depth video pre-processing to the ground truth.

Fig. 4(a) shows a sample result of the middle 15-second
session of the 30-second tracking without the proposed depth
video pre-processing (only tracking as described in Sec-
tion 5). The corresponding tracking result with depth video
pre-processing (joint tracking / temporal denoising), shown in
Fig. 4(b), indicates cleaner subtle head movements than only
tracking. Fig. 4(c) and (d) show the single-sided amplitude
spectra of Fig. 4(a) and (b), respectively, which further indi-
cates clearer subtle head movements by applying joint track-
ing / temporal denoising than solely tracking. Fig. 4(e) shows
estimated 15-second HR by applying FFT with 15-second
window size on the corresponding whole 30-second sample
result of Fig. 4(b) at 30Hz sampling frequency, denoted as
HRp.

Next, to compare the result with the ground truth HR
reading from the finger pulse oximeter, denoted as HR¢, we
first unify the sampling frequencies of HRp and HRg to
30Hz (Fig. 4(f) shows corresponding 15-second frequency-
unified HR), then compute mean percentage error (MPE)
of HRp wrt HRg. In this example, the mean HRp is
79.52 beats/minute, the mean HR (ground truth) is 80.61
beats/minute, and the MPE of HRp wrt HR is 3.02%. Look-
ing back to the frequencies at the largest peaks in Fig. 4(c)
and (d), the estimated HR of Fig. 4(a) (solely tracking),
60x1.001 = 60.06 beats/minute, is far different from the
ground truth, while the estimated HR of Fig. 4(b) (joint track-
ing / temporal denoising), 60x 1.3184 = 79.10 beats/minute,
is close to ground truth.
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Fig. 4: Tllustration of the proposed depth video motion track-
ing and the corresponding heart rate estimation. (a) 15-second
solely tracking. (b) 15-second joint tracking / temporal de-
noising. (c) Single-sided amplitude spectrum of (a) using
FFT. (d) Single-sided amplitude spectrum of (b) using FFT.
(e) 15-second estimated heart rate of the corresponding whole
30-second sample result of (b). (f) Corresponding 15-second
frequency-unified ground truth heart rate reading from the fin-
ger pulse oximeter.

Table 1 shows the comparison result of mean HRp (HRp)
and mean HR¢ (HRq) of 1-minute sample for each subject.
Overall, the MPEs are always within 10%, showing that our
proposed system can effectively estimate heart rate based on
subtle motion tracking in depth videos.

7. CONCLUSION

In this paper, we propose a heart rate estimation system based
on motion tracking in Kinect 2.0 depth videos. It can operate
in complete darkness, thus is useful in applications such as
sleep monitoring. We pre-process captured depth videos via
joint bit-depth enhancement / denoising, and detect and track
the nasal tip area for head motion via joint tracking / temporal
denoising. The tracked motion vectors are then analyzed us-
ing PCA. Finally, we estimate heart rate via FFT. Experimen-
tal results demonstrate that our depth video pre-processing
can effectively enhance tracking accuracy, and our estimated
heart rates are close to ground truth measurements. Though
we performed experiments using a single depth camera placed
in front of a test subjects to track the nasal tip area, in practice,
multiple appropriately located depth cameras would cover the

Subject HRp HRg MPE
1 68.56 7192 6.33%
2 84.38 9142 9.25%
3 89.65 88.77 2.51%
4 7792 79.63 597%
5 7826 7415 7.12%
6 8237 8526 4.83%
7 78.24  76.85 5.72%

Table 1: Comparison result of HRp and HRg of 1-minute
sample for each subject with MPEs.

majority of the subject’s pose to improve system robustness.
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