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ABSTRACT

Images and videos are often captured in poor light condi-
tions, resulting in low-contrast images that are corrupted by
acquisition noise. To recreate a high-quality image for vi-
sual observation, the captured image must be denoised and
contrast-enhanced. Conventional methods perform these two
tasks in two separate stages: an image is first denoised, fol-
lowed by an enhancement procedure. In this paper, we pro-
pose to jointly denoise and enhance an image in one unified
optimization framework. The crux of the optimization rests
on the definition of the enhancement operator, described by
a graph Laplacian matrix H. The operator must enhance the
high frequency details of the original image without amplify-
ing additive noise. We propose a graph-based low-pass filter-
ing approach to denoise edge weights in the graph, resulting
in a more robust estimate of H. Experimental results show
that our proposed joint approach can outperform the separate
approach in demonstrable image quality.

Index Terms— image restoration, graph signal process-
ing

1. INTRODUCTION

Images and videos are often forced to be taken under non-
ideal lighting conditions. For example, surveillance cameras
capture videos in poorly lit offices and hallways at night be-
cause it is not economical to install permanent lighting. An-
other example is outdoor nighttime animal watching, where
excessive illumination would disturb the animals’ natural
nocturnal environments. While advanced image sensors1 can
now capture good quality images even in dark environments,
these high-end cameras tend to be very expensive. For the
majority of cameras then, one need to rely on post image
processing techniques to convert poorly lit images to high-
quality images pleasant for human observation. We focus on
this image transformation problem in the paper.

Technically, an image captured in low lighting suffers
from two shortcomings. First, few number of photons ag-
gregating on a pixel square means the acquired signal suffers
from noise due to low Signal-to-Noise Ratio (SNR). Second,

1A recent Science article describes a new image sensor requiring very few
photon counts [1].

low signal strength also means insufficient luminance con-
trast; the high-frequency details are too weak to be observable
by the human eye. The required post-processing thus needs to
perform both denoising and contrast enhancement. Naı̈vely,
one can perform the two tasks separately: first a denoising
method (e.g. bilateral filter [2]) is applied to remove visi-
ble noise, then a separate contrast enhancement procedure
(e.g. histogram-based OCTM [3]) is employed to amplify
details in the image. We argue that such separate approach
is sub-optimal in general. Denoising is a tradeoff between
smoothing (to remove high frequency components due to ad-
ditive noise) and detail preservation. Thus, a typical denoised
image has over-smoothed spatial regions, leaving little details
for the contrast enhancement engine to amplify.

In this paper, we present instead a joint denoising and
contrast enhancement optimization framework to accomplish
both tasks simultaneously. The crux of our proposal is the
design of the enhancement operator: while original image
should be suitably amplified, undesirable noise should instead
be attenuated. Leveraging on recent advance in graph sig-
nal processing (GSP) [4], we propose to use the normalized
graph Laplacian as the contrast enhancement operator. We
propose a graph-based low-pass filtering approach to denoise
edge weights in the graph that are estimated from observed
noisy pixels, resulting in a more robust enhancement oper-
ator. To the best of our knowledge, we are the first in the
literature to jointly denoise and contrast-enhance poorly lit
images. Experimental results show that our proposed joint
approach can outperform the conventional separate approach
in demonstrable subjective image quality.

The outline of the paper is as follows. We first review re-
lated work in Section 2. We describe our problem formulation
and corresponding optimization procedures in Section 3 and
4, respectively. Finally, experimentation and conclusions are
presented in Section 5 and 6.

2. RELATED WORK

Image denoising is the simplest inverse imaging problem and
has been studied extensively in the literature. Popular meth-
ods including bilateral filter (BF) [2], nonlocal means (NLM)
[5], and sparse coding [6]. While our work also assumes



sparse representation of an image patch (each signal can be
represented by a sparse linear combination of learned dictio-
nary atoms), we formulate a joint denoising and contrast en-
hancement problem and fulfill both tasks simultaneously.

Contrast enhancement has become an active research
topic in image processing. One widely used method manip-
ulates the histogram of the input image to separate the gray
levels of higher probability further apart from the neighbor-
ing gray levels. Representative works include the well-known
histogram equalization and its variant [7, 3]. Wu [3] presented
a more rigorous study of histogram-based contrast enhance-
ment method, and proposed optimal contrast-tone apping
(OCTM) to solve contrast enhancement problem by maxi-
mizing the expected contrast gain subject to an upper limit on
tone distortion. Another line of attack is to increase contrast
through edge enhancement and high-boost filtering [8, 9].
For example, in [9] the fractional filter is used to promote the
variance of texture so as to enhance the image. We differ from
these approaches in that a graph-based enhancement operator
is used to boost contrast in the signal, where the edge weights
in the graph are computed robustly.

With the recent advances in GSP, newly developed GSP
tools such as graph Fourier transforms (GFT) [4] are now be-
ing used for traditional image processing tasks such as image
compression [10, 11], denoising [12, 13, 14] and interpolation
[15, 16] with demonstrable gains. The key to much of these
previous work is that with appropriate edge weights, a tar-
get graph-signal contains mostly low graph frequencies and
thus can be compactly represented. In contrast, in our work
we construct a dual graph to represent edges in the original
graph; edge weights in the original graph will be the target
graph-signal in the dual graph. We then assume low graph
frequencies to perform denoising of edge weights in the dual
graph.

3. PROBLEM FORMULATION

Let x and y be the captured (sub-)image under poor light con-
ditions and the restored (sub-)image in vector form, respec-
tively. We perform joint contrast enhancement and denoising
by minimizing the following objective function:

min
{y,α}

‖y − (I + H)x‖22 + λ
(
‖y −Φα‖22 + γ‖α‖1

)
(1)

where I is the identity matrix, H is the (high-pass) graph
Laplacian matrix (to be discussed in details in Section 3.1).
The first term in the objective function enables contrast en-
hancement via the Laplacian operator H. The last two terms
describe a standard sparse coding formulation to denoise the
enhanced image y with respect to an online learned dictio-
nary Φ. λ and γ are chosen parameters to trade off between
contrast enhancement and denoising, and between sparse rep-
resentation fidelity and sprasity, respectively. From (1), we
observe that the two optimization variables y and α are inter-
dependent; reconstructed image y must be close to an en-

hanced version of observed x and to a sparse representation
Φα at the same time.

Instead of (1), one can consider an alternative formula-
tion:

min
{y,α}

‖y − (I + H)Φα‖22+λ
(
‖x−Φα‖22 + γ ‖α‖1

)
(2)

Unlike (1), in this formulation, observed x is first denoised
via sparse coding (second term), before the sparsified result
Φα is contrast-enhanced (first term). In fact, the optimal y
given α is simply (I + H)Φα, which means the optimiza-
tion in (2) is separable: without loss of optimality, α can be
first solved independently via sparse coding, before y is com-
puted given α. This is the conventional separate denoising /
contrast-enhancement approach described in the Introduction.
We argue that the separate denoising / contrast-enhancement
approach is sub-optimal in general. Image denoising is the
process of optimizing the tradeoff between smoothing (to re-
move additive noise) and preserving details. An intermedi-
ate denoised image is thus very likely over-smoothed in some
parts, eliminating important spatial details and rendering the
contrast-enhancing operator H ineffective.

In contrast, in (1) the sparse coding driven denoising is
applied to the enhanced image y instead. This ensures that
there is no over-smoothing prior to contrast enhancement. On
the other hand, it is now possible to amplify noise rather than
original details of the image via operator H, which will make
the subsequent denoising task more difficult. Our solution is
to properly design contrast-enhancement operator H so that
only spatial locations with reliably detected textural details
are enhanced. We discuss the design of H next.

3.1. Graph Laplacian Operator

(a) pixel graph (b) dual graph

Fig. 1. Examples of graphical representation of: (a) pixels in a
target patch connected by edges with weights; (b) inter-pixel simi-
larities in a target patch. (b) is the dual graph of (a).

In GSP for image processing [11, 12, 13, 16, 17], a graph
G is used to model inter-pixel correlation or similarities for a
target pixel patch. Typically, a four-connected graph is em-
ployed to connect each pixel (represented as nodes in G) to its
immediately neighbors vertically and horizontally. Fig. 1(a)
illustrates a graph representing a 3 × 3 pixel patch. An edge
weight wi,j between two connected nodes vi and vj is con-
ventionally computed using the pixel intensity difference,
modulated by a Gaussian kernel, i.e.,

wi,j = exp
{
−‖Ii − Ij‖22/σ

2
}

(3)



where Ii is the intensity value at pixel i, and σ is a Gaussian
parameter. wi,j = 0 if vi and vj are not connected.

Having computed edge weights wi,j , one can define an
adjacency matrix A where Ai,j = wi,j , and a diagonal de-
gree matrix D where Di,i =

∑
j Ai,j . A combinatorial or

unnormalized graph Laplacian L is defined as the difference
between D and A [4]: L = D−A. A normalized Laplacian
is simply L scaled by the degree matrix:

H = D−
1
2 LD−

1
2 (4)

To avoid excessive signal amplification, we employ the
normalized Laplacian H as the contrast enhancement opera-
tor. The crux in the design of H is in the computation of edge
weights wi,j when the observed pixel values are corrupted by
noise and hence not reliable. We discuss this next.

3.2. Edge Weight Filtering using Dual Graph

To compute a set of reliable weights wi,j for the contrast
enhancement operator H, we perform the following proce-
dure. Observing that computing the observed pixel differ-
ence Ii − Ij directly will result in twice the noise variance
of a single noise-corrupted pixel, as a pre-processing step, we
first perform bilateral filter (BF) [2] on observed x, result-
ing in a locally denoised version s. Using s, we compute
weights wi,j using (3). We then perform graph-based low-
pass to remove noise in the computed weights wi,j . The idea
is that edge weights themselves are correlated locally. For ex-
ample, if a pixel patch contains portions of both foreground
and background regions, then edges connecting pixels exclu-
sively in the foreground / background would contain large
weights (since pixels in foreground / background are similar),
while edges that connect foreground pixels in background
pixels would contain small weights. The edge weights them-
selves thus result in a piecewise smooth signal, and perform-
ing graph-based low-pass filtering can remove noise among
the weights as done in [12].

Specifically, we first construct a dual graph, where each
node now represents an edge with weight wi,j in the original
graph. See Fig. 1(b) for the dual graph to the original graph
in Fig. 1(a). Each node is connected to its neighbors repre-
senting original edges that are diagonal from the represented
edge. We then compute link weights in the dual graph using
also a Gaussian kernel reflecting the similarities of the repre-
sented edge weights. Computed link weights lead to another
combinatorial Laplacian L. We then solve the following for a
filtered version of the edge weights z:

min
z
‖w − z‖22 + λzTLz (5)

The filtered edge weights z are then used to compute the
contrast enhancing graph Laplacian H described previously.

4. OPTIMIZATION

After obtaining the Laplacian operator H, we now describe
how to compute the optimal solution to optimization in

Eq. (1). The objective function is not jointly convex in y
and α, but is convex in one variable if the other is fixed.
Therefore, we can employ an alternating procedure to op-
timize these variables iteratively. Specifically, to tackle the
objective function we separate the objective function into
two sub-problems, which we describe in details next. This
procedure is repeated until convergence or after a maximum
number of iterations T has been reached. In what follows, we
will describe the initialization process, three sub-problems
and their optimal solutions.

4.1. Initialization Process

We first perform bilateral filter on the input image x to get an
initially denoised version x̂. Then, the initial Laplacian oper-
ator H0 is computed using the dual graph strategy described
in the previous section. Given x̂ and H, we can compute an
initial estimate of y: y0 = (I + H0)x.

4.2. Optimization with respect to α

Given y, the optimal α can be derived by solving the follow-
ing problem:

arg min
α

{
‖y −Φα‖22 + γ‖α‖1

}
. (6)

This is a well-known standard sparse coding problem. The
optimization solution of α can be effectively and efficiently
solved using a fast `1-minimization algorithm, known as Aug-
mented Largrangian Methods (ALM) [18].

Dictionary plays a critical role in the above sparse cod-
ing problem. In our method, locally adaptive dictionaries
are learned because natural images typically exhibit non-
stationary statistics, consisting of many heterogeneous re-
gions of significantly different geometric structures or sta-
tistical characteristics. Specifically, for a local patch yi,
we take advantage of the non-local self-similarity of natural
images, and collect similar patches by non-local patch group-
ing (NLPG) in the training data set. The NLPG procedure
guarantees that only the similar sample blocks are used in
dictionary learning. The resulted similar patch group is then
subject to principle component analysis (PCA). PCA gener-
ates the dictionary Φi whose atoms are the eigenvectors of
the covariance matrix of Ψi. Finally, all sub-dictionaries are
concatenated together to form an over-complete dictionary.

4.3. Optimization with respect to y

Given α, the optimization problem with respect to y reduces
to the following form:

min
y
‖y − (I + H)x‖22 + λ ‖y −Φα‖22 . (7)

Setting the first-order derivative to zero:

∂J

∂y
= 2(y − (I + H)x) + 2λ(y −Φα) = 0, (8)



Fig. 2. Results of different methods on four images. (a) Degraded image. (b) OCTM. (c) OCTM+BM3D, separately. (d) Our joint method.

the optimal solution can be finally computed as:

y∗ =
(I + H) x + λΦα

1 + λ
. (9)

5. EXPERIMENTATION

We present experimental results in this section. We compare
our proposed joint denoising / contrast-enhancement method
with contrast enhancement only, and separate contrast en-
hancement / denoising methods. We choose OCTM [3] as
the competing contrast enhancement algorithm, and BM3D
[19] as the competing denoising algorithm. Both of them can
be considered state-of-the-art. Our method involves two pa-
rameters λ and γ, which are set as 0.3 and 0.001 in practical
implementation, respectively.

Fig. 2 shows the original images captured under poor
lighting in (a) and processed images using different methods
in (b) to (d). We see that the captured images in (a) are dark
and corrupted by noise. As shown in (b), OCTM can improve
the contrast, but it also enhances the noise. Images in (c)
show the results of performing OCTM followed by BM3D
separately. We can observe that BM3D suppresses noise
effectively. However, it also removes enhanced details by
OCTM, therefore reduces the effect of OCTM. We see that
the resulting images in (c) is darker compared with that in (b).
We observe that our proposed method achieves the best over-
all visual effect: it not only enhances the contrast, but also

suppresses noises. Our method casts denoising and enhance-
ment into a unified framework, and therefore can achieve
a good tradeoff between high-frequency enhancement and
noise removal for the final images. Our method works bet-
ter than the separate approach of employing state-of-the-art
OCTM and BM3D in two stages.

6. CONCLUSION

Images captured in poor lighting conditions require denoising
and contrast enhancement post-processing. In this paper, we
propose to perform both tasks simultaneously via a joint de-
noising and contrast enhancement framework. The crux of the
optimization rests on the design of the enhancement operator,
so that only textural details of the original image are enhanced
and not the acquisition noise. We propose a graph-based en-
hancement operator, where the graph weights are computed
robustly via a graph-signal smoothness prior. Experimen-
tal results show cleaner and better contrast-enhanced images
compared to previous proposals.
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