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Abstract—In depth-image-based rendering (DIBR), a new
virtual viewpoint image is synthesized by mapping color pixels
from one or more reference views to the new image grid
using corresponding disparity values. However, due to necessary
roundings to the 2D grid, “rounding holes” appear in synthesized
objects, which are typically filled using local interpolation.
In this paper, leveraging on a recent 3D image compression
scheme called graph-based representation (GBR) that losslessly
codes disparity information, we propose instead to re-sample
and interpolate missing on-grid pixels of an object at decoder
using mapped off-grid color pixels as reference. Specifically, we
first describe the underlying data kernel for the desired signal
using a weighted graph, where the edge weights reflect non-
integer distances between reference and missing pixels. A graph-
signal smoothness prior is then assumed to complete missing
pixel values via iterative unconstrained quadratic optimization.
Experimental results show that the synthesized objects have
better quality than conventional local interpolation methods.

I. INTRODUCTION

In a typical multiview imaging system [1], a 1D array
of closely spaced cameras capture both texture (color) and
depth images of a 3D scene from different viewpoints. If
only a conventional 2D display is available, then a client only
observes one view of the scene at a time, but can interactively
request a view-switch from the server to transmit data of
a neighboring view—a scenario called interactive multiview
streaming (IMVS) [2]. In such IMVS scenario, the server
should exploit inherent inter-view correlation to minimize
transmission rate of the requested neighboring view. Previous
research has proposed efficient compression algorithms for
3D images while facilitating interactive view-switching in this
IMVS scenario [2–6].

Neighboring viewpoint images capturing the same 3D scene
are clearly correlated. Using geometric information provided
by captured depth images, the majority of pixels in one
viewpoint image can be synthesized from a neighboring one
via depth-image-based rendering (DIBR)1 [7]. In one notable
work, [8] argued that since disparity information provided by a
depth image is akin to motion information in motion prediction
during single-view video coding, like motion vectors disparity

1For simplicity, we assume here that the captured 3D scene is Lambertian,
meaning that a 3D voxel as observed from different viewpoints shows the
same color intensity.

information should be losslessly coded. The alternative of
lossily coding a depth image to convey disparity information
[9–11] can lead to geometric errors and result in synthesized
view distortions that can be estimated [12] but are difficult
to contain. [8] thus proposed a compact graph-based repre-
sentation (GBR) that losslessly encodes disparity information
to displace entire pixel patches from the original view to the
synthesized view. Pixels that are directly observable in the
synthesized view but not the original view (due to disocclu-
sion, out-of-view, etc) are encoded in addition and transmitted
separately. Compared to lossy depth map coding schemes [9–
11], GBR does not lead to geometric errors stemming from
lossy compression, resulting in much higher synthesized view
quality at the same bitrate [8].

When a pixel patch is displaced in the synthesized view
according to disparity information encoded in GBR, the dis-
placement vector is rounded to an integer position on the
2D image grid. That means an object with a width of N
pixels in the original view that becomes width M pixels in
the synthesized view, where M > N (e.g., if the object is
slightly closer to the camera in the synthesized view), will be
represented as multiple pixel patches in GBR, with missing
pixels transmitted separately. See Fig. 1 as an illustration.

Fig. 1: Illustration of GBR, where patches of uniform dispar-
ities are mapped from the first to the second view, and new
pixels are coded and transmitted separately.

However, this representation can be sub-optimal when the
surface of the object is entirely visible in the original view with
sufficient number of pixel samples, in which case one should



not transmit extra information beyond the N -pixel samples in
the original view.

In this paper, we propose a new re-sampling & interpolation
strategy at the decoder, so that the M pixels of the same
object in the synthesized view can be constructed using only
the available N pixels in the original view. In particular,
we propose two possible interpolation procedures. The first
method is local linear interpolation, where N original pixels
are first rounded to N on-grid locations in the synthesized
view, and the remaining M − N on-grid pixels are linearly
interpolated using neighboring mapped pixels. In the second
method, N original pixels are mapped to N off-grid locations
(no rounding) based on available disparity information, then
the new M on-grid pixels are interpolated using a graph-
signal smoothness prior [13, 14] and the N off-grid pixels
as reference. The recommended interpolation method per
patch is encoded as side information and transmitted with
GBR disparity information. Experimental results show that
our graph-based interpolation method can outperform the local
linear interpolation method by up to 1.9dB in smooth patches,
and enabling interpolation at the decoder can improve GBR
compression rate by up to 29% at reasonable PSNR range.

The outline of the paper is as follows. We first discuss
related works in Section II. We then overview our coding
and view synthesis sytem in Section III. Our proposed pixel
mapping strategy and interpolation method are discussed in
Section IV and V respectively. Finally, we present results and
conclusion in Section VI and VII respectively.

II. RELATED WORK

Optimizing DCT-based compression of depth images for
decoder-side DIBR view synthesis has been studied [10, 12,
15]. However, using fixed transforms like DCT can lead to
blurring of edges in decoded depth images, resulting in unde-
sirable bleeding artifacts during view synthesis that degrade
visual quality. One alternative is to employ edge-preserving
transforms [9, 11, 16, 17] and wavelets [18], but this requires
coding of object contours [19, 20] as an additional overhead.
In contrast, [8] proposed GBR to code minimally described
disparity information losslessly for subsequent view(s) given
transmitted first view as reference. It has been shown that at
high bitrate, GBR outperforms competing disparity representa-
tions due to its compactness and lossless coding. We overview
the operations in GBR next.

A. Overview of Graph-based Representation (GBR)

The aim of GBR is to first compactly represent disparity
information and then losslessly code the chosen representation
for accurate reconstruction of a given set of views. Specifically,
a pixel row in an original view is divided into patches, each
containing pixels with the same disparity value. Links are then
drawn from patch boundaries in the original view to pixel
locations in the synthesized view that delimit the new patch
locations. As an example, in Fig. 2 there are three links that
designate end locations of three patches in the synthesized

Fig. 2: Example of the connections of the GBR between two
views (The same colored pixels belong to a same object, the
numbers on the pixels correspond to the disparity

view. New pixels in the synthesized view (shown in yellow)—
appearing pixels that come into view due to view change and
disocclusion pixels that were not visible in the original view
due to foreground object occlusion—are coded separately. The
coding overhead of GBR is hence the coding of the graph that
indicates patch displacements, plus the coding of new pixels.
For the decoder, only pixel displacement and decoding of
new pixels need to be performed to reconstruct a synthesized
view. In contrast, our proposal further enables the decoder to
interpolate chosen new pixels, which will render the coding
of some pixels unnecessary and lower the coding overhead.

B. Graph-signal Priors for Image Interpolation

Image interpolation is an example of inverse imaging prob-
lem and can be solved using a variety of techniques, such as
bilateral filter [21], kernel regression [22], etc. With the recent
advances in graph signal processing (GSP) [23], graph-signal
priors have been developed for inverse imaging problems like
denoising [13, 14, 24] and interpolation [25, 26]. Leveraging on
these prior works, our proposed image interpolation scheme
builds a unique graph connecting off-grid and on-grid pixels
for signal reconstruction. See Section V for details.

III. SYSTEM OVERVIEW

Like [2] we assume an interactive multiview streaming sce-
nario, where a client requests a chosen neighboring view v±1
after observing view v, and in response the server transmits
data needed for correct decoding of the requested view. The
actual transmitted data is a version of GBR overviewed in
Section II-A: a graph describing displacement of patches,
plus coding of new pixels in the synthesized view. The key
difference is that we distinguish between disocclusion pixels
and rounding pixels: in our scheme only disocclusion pixels
are coded and transmitted. Disocclusion pixels are pixels
representing spatial areas that are not visible in the original
view due to occlusion of foreground objects. In contrast,
rounding pixels are surfaces of objects that are visible in
the original view, but because the objects take up slightly
more pixels in the synthesized view due to rounding, there
are insufficient number of pixels for one-to-one mapping from
the original view. Rounding pixels are thus interpolated using
available pixels in the original view using one of two possible
methods; the appropriate method per rounding hole based on



interpolation performance is signaled to the decoder using a
single encoded flag.

We propose two different interpolation methods, both of
which perform interpolation row-by-row. The first method
called linearInter first maps available pixels in the
original view to on-grid pixel locations in the synthesized
view and interpolates missing on-grid pixels using neighboring
mapped pixels. The second method called graphInter
maps available pixels in the original view to off-grid pixel lo-
cations in the synthesized view via a linear disparity function,
then interpolates all missing on-grid pixels via a graph-based
formulation. We discuss them in order next.

IV. FORMULATION OF THE PROBLEM

A. Mapping of reference pixels

To construct M on-grid pixels of the same object in the
synthesized view using N pixel samples of the original view
as reference, linearInter first maps N original pixels
to on-grid integer positions of the synthesized view given
disparity information provided by GBR. If M > N , then
there exist M − N extra pixels in the synthesized view that
have no corresponding pixels in the original view and require
interpolation. This is illustrated in Fig. 3, where the seven blue
pixels in the original view 1 are mapped to the seven red on-
grid pixels in view 2. There is an extra pixel between red
pixels 3 and 5. linearInter computes an arithmetic mean
of the surrounding mapped pixels (red pixels 3 and 5 in the
example) as the reconstructed value.

In contrast, graphInter interpolates all M new on-
grid pixels in the synthesized view using N pixel samples
in the original view. There are two steps. In the first step,
using the disparity information provided by GBR we first
compute a linear disparity function to map N pixel samples
in the original view to N off-grid locations in the synthesized
view. Fig. 3 shows the seven off-grid pixel samples in the
synthesized view 2 in light red. In the second step, we estimate
a signal of length N +M with M on-grid pixels (in dark red)
and N off-grid (in light red) samples mapped from the original
view using a graph-signal smoothness prior. We discuss these
two steps in order.

B. Computing the linear disparity function

To map N pixel samples in the original view to off-grid
locations in the synthesized view, we compute a linear dispar-
ity function f(x) via linear regression: given per-pixel integer
disparity information provided by GBR, we minimize the sum
of squared difference between mapped integer locations yi and
a fitted line f(x) = αx+ β:

(α∗, β∗) = argmin
α,β

N∑
i

(yi − (αi+ β))
2 (1)

Using computed (α∗, β∗), we can then map the N pixel
samples in the original view to off-grid positions in the
synthesized view via f(x).

Fig. 3: Position of known and unknown pixels in both views
according to the depth map

V. INTERPOLATION ALGORITHM

We now describe how the N +M sample signal is recon-
structed in the synthesized view. Note that to have a better
interpolation quality, we split the texture signals in block
segments of 16 pixels, which are optimized independently and
overlapped by two pixels on each side as shown in Fig. 4
to avoid blocking artifacts. We first describe the construction
of an appropriate graph for the length N + M signal. We
then formulate an optimization problem to compute the desired
signal efficiently.

Fig. 4: overlapping blocks of rows. The dark areas correspond
to the overlapped pixels

A. Graph construction

We construct a line graph with N +M nodes, each node
represents a pixel sample in the length N + M signal. In
the first iteration, we first connect neighboring pixels in the
graph with edges, and then connect neighboring off-grid pixels
in the graph with edges. See Fig. 5 for an illustration. The
reason is the following: while the N off-grid samples are
neighboring on-grid pixels in the original view with known
pixel intensities, the on-grid pixels in the synthesized view
do not have estimated intensities yet. We thus compute edge
weights differently. For weight wi,j of an edge connecting two
off-grid pixels, we use:

wi,j = exp

(
−‖Ii − Ij‖

2

σ2
I

)
(2)



Fig. 5: Graph construction example of one row, where the red
pixels are the M unknown pixels and the light red pixels are
the N known pixels

where Ii is the intensity of pixel i and σI is a scaling
parameter, which is tuned such that the values in the weighted
matrix are of the same order.

For weight wi,j of an edge connecting off-grid and on-grid
pixels, we use:

vij = exp

(
−‖zi − zj‖

2

σ2
z

)
(3)

where zi is the position of pixel i and σz is another scaling
parameter, tuned like σI .

For subsequent iterations, because the on-grid pixels now
have intensity estimates, we can simply use (2) to compute
weights of edges only connecting neighboring pixels in the
graph.

B. Defining the problem objective

Given the defined edge weights, we can write an adjacency
matrix A where ai,j = wi,j . The degree matrix D is a
diagonal matrix with diagonal entries di,j =

∑
j Ai,j . The

graph Laplacian L is defined as L = D − A [23]. If we
now define the desired N +M sample signal as a vector x,
then the graph-signal smoothness prior [13, 14] can be written
as xTLx. Unlike signal-independent smoothness priors like
total variation (TV) [27], it has been demonstrated [28, 29]
that graph-signal smoothness prior does not over-smooth and
can preserve edge structures in images well.

Second, we need a fidelity term so that the computed length
N +M signal is consistent with the N -pixel observation y
in the original view. Let H be a matrix that picks out the N
off-grid samples in the signal x. The fidelity term will thus
be: ‖y −Hx‖22.

Third, we require that our solution x to be consistent in
overlapped pixels with the previously computed solution xL
to the left. Enforcement of consistency in overlapped regions
helps eliminate undesirable blocking artifacts stemming from
separately optimized patch solutions, as demonstrated in [30].
Let BL and BR be matrices that pick out overlapping pixels
at the right and left boundaries, respectively. To ensure that the
overlapped segment is consistent, we can add a term ‖BLx−
BRxL‖22.

We finally arrive at the problem objective, which can now
be written as:

min
x
‖y −Hx‖22 + µxTLx+ δ‖BLx−BRxL‖22 (4)

where µ and δ are parameters to trade off among different
quantities. The problem in (4) is an unconstrained quadratic
optimization problem with a closed form solution. (4) is then
solved iteratively, each time the Laplacian L is updated with
new weights using the most recently computed solution x. The
algorithm terminates after 3 or 4 iterations, depending on the
resulted quality.

VI. EXPERIMENTS

We now demonstrate the performance of our pro-
posed scheme through a series of experiments. We first
show that our proposed graph-based interpolation scheme
graphInter can in some cases out-perform the default
scheme linearInter noticeably. We then show that when
employing our improved GBR coding scheme where trans-
mission of rounding pixels is avoided at encoder (which are
subsequently interpolated at the decoder), the bitrate reduction
over original GBR is significant.

To evaluate the quality of interpolation using our two
methods, we perform experiments on four image sequences:
Bowling, Laundry, Plastic, Baby from the Middlebury
database2. Given an original image and its corresponding
disparity information provided by GBR, we synthesize a
neighboring view row-by-row. The rounding holes (the dif-
ference in disparity values of surrounding pixel patches is less
than a threshold value of 4) are interpolated at the decoder
using one of our two proposed methods.

We observe that depending on the particular patch of a
given image, linearInter or graphInter may have
more superior interpolation performance. For illustration, for
each image we select particular patch examples, shown in
Fig. 6, 7, 8 and 9. First, we show the original view indi-
cating the locations of the patches. Then, for each patch,
the ground truth is shown, followed by the patch interpo-
lated using linearInter and the one interpolated using
graphInter. For objective measure we include a table
showing the PSNR for each of the patches, where the better
PSNR value of the two methods is colored.

From Tables I, II, III, IV and the interpolated patches,
we can see that graphInter is better in case of smooth
surfaces with little texture content, which is the signal type

2http://vision.middlebury.edu/stereo/data/scenes2006/



that graphInter can perform well. On the other hand,
linearInter is better when the object surface has fast-
varying textural content (e.g. Fig. 9 and Table IV).

(a) Original 1st view of Bowling

(b) orig. patch (c) linear inter. (d) graph inter.

(e) orig. patch (f) linear inter. (g) graph inter.

(h) orig. patch (i) linear inter. (j) graph inter.

Fig. 6: Resulting patches after linear or graph-based interpo-
lation

Finally, to compare the RD performance of original GBR
and our proposed scheme where rounding holes are not coded
at the encoder but interpolated at the decoder, we implemented
a compression scheme for hole pixel coding using graph
Fourier transform (GFT), similarly done in [16]. We vary the
quantization parameter (QP) for coding of the hole pixels to
induce different tradeoff points. In Fig. 10 we see the PSNR
versus rate curves using our proposed scheme compared to
original GBR for Laundry and Plastic. We observe a

TABLE I: Comparison of PSNR between linearInter and
graphInter for the patches in the image Bowling

test sequence linearInter graphInter
patch 1 37.84dB 38.41dB
patch 2 42.6dB 41.1dB
patch 3 39.7dB 39.6dB

TABLE II: Comparison of PSNR between linearInter
and graphInter for the patches in the image Laundry

test sequence linearInter graphInter
patch 1 33.2dB 33dB
patch 2 32.2dB 32.9dB
patch 3 39.7dB 39.4dB

large reduction in bitrate due to saving from not transmitting
rounding holes explicitly—up to a 60% reduction in bitrate for
the same PSNR. Fig. 11 shows similar curves for Bowling
and Baby. In this case, we observe similar large reduction
in bitrate, but because the interpolation quality is relatively
poorer, at high-bitrate our proposal is not competitive. This
means that at high-bitrate, the encoder should encode selected
rounding hole pixels to improve quality at the expense of larger
bitrate. This is left for future work.

VII. CONCLUSION

To enable efficient transmission of neighboring viewpoint
images during an interactive multiview streaming session,
previous graph-based representation (GBR) losslessly codes
disparity information of pixel patches, plus lossy coding of
new pixels in the virtual view in addition. In this paper, we
propose to improve GBR by enabling the decoder to re-sample
and interpolate M pixels of an object given N available pixel
samples of the same object in the original view. This means
that the M − N rounding pixels due the slight change of
object size from original to virtual view do not need to be
encoded, lowering the transmission cost. We propose two
interpolation schemes: i) map N available pixels from the
original view to on-grid pixel locations in the virtual view and
linear interpolate M −N new pixels locally; and ii) construct
an N +M sample signal in the virtual view using a graph-
signal smoothness prior. The chosen method per rounding
hole is signalled to the decoder as coded side information.
Experimental results first show that either linear or graph-
based interpolation can in some cases improve image quality,
and second show that bitrate reduction by not transmitting
coded pixels in the rounding holes can be significant.
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