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Abstract

Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely

chosen viewpoint. An intermediate virtual viewpoint image is typically synthesized using two pairs of

transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based

rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse

effects of network packet losses that may arise during texture and depth video transmission. Towards

this goal, we develop an integrated approach that exploits the representation redundancy inherent in the

multiple streamed videos—a voxel in the 3D scene visible to two captured views is sampled and coded

twice in the two views. In particular, at the receiver we first develop an error concealment strategy that

adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the

more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimiza-

tion of reference picture selection (RPS) during real-time video coding, so that blocks containing pixel

samples of voxels that are visible in both views are more error-resiliently coded in one view only, given

adaptive blending will mitigate errors in the other view. Further, synthesized view distortion sensitivities

to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks

can be computed for system-wide RPS optimization. Finally, quantization parameter (QP) is adaptively

selected per frame, optimally trading off source distortion due to compression with channel distortion due

to potential packet losses. Experimental results show that the proposed scheme can outperform previous

work by up to 2.9dB at 5% packet loss rate.
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I. Introduction

The demand for ever improving quality of video communication has already made high definition

video conferencing a basic feature not only on computers, but smart-phones as well. A free-viewpoint

video conferencing system [1] that continuously alters the displayed images according to a user’s real-

time selected viewpoints—e.g., through motion parallax [2], where detected head movements trigger

corresponding rendering of virtual images as viewed from the observer’s viewpoint—can enhance an

observer’s depth perception in the 3D scene, and bring video communication to a new level of immersion

and realism. The techniques for capturing [3], representing [4], [5], and synthesizing [6], [7] free-viewpoint

video have been well studied. Instead, in this paper we address the problem of robust low-latency

streaming of free-viewpoint video over packet-loss prone networks.

We adopt the widely employed depth-image-based rendering (DIBR) approach [7] to synthesize free

viewpoint images. As the name suggests, in addition to typical RGB images (texture), DIBR requires

also depth images (per-pixel physical distances between captured objects in the 3D scene and capturing

camera) to synthesize a freely chosen viewpoint image. Depth maps can be obtained by estimation

algorithms like stereo-matching, or depth sensors like time-of-flight cameras [8]. While recent proposals

such as [9], [10] suggest transmission of one pair of texture and depth maps from a single camera-

captured viewpoint for synthesis of a defined neighborhood of viewpoints, this usually leads to larger

disoccluded regions1 in the synthesized view that require image inpainting [11], [12] to complete the

image, resulting in high complexity. We hence assume the more customary approach of transmitting

texture and depth maps of two neighboring captured views [2], [13] to ensure quality reconstruction of

freely chosen intermediate virtual views.

The transport of texture and depth videos for multiple views presents both challenges and opportuni-

ties. On one hand, the complex dependency of rendered view quality on both depth and texture maps

of captured views needs to be adequately modeled to realize effective error-resilience measures. On the

other hand, the inherent representation redundancy in multiple texture-plus-depth videos—a voxel2 in the

3D scene visible to two captured views is sampled and coded twice in the two views—suggests that errors in one

view can be ameliorated by correct delivery of another view. Towards this end, we develop an integrated

approach in this paper where receiver and sender are jointly designed to exploit and manipulate the

inherent representation redundancy present in depth and texture videos from multiple views.

To exploit representation redundancy at the receiver, we first develop an error model that tracks

1Disoccluded region is a spatial region in the synthesized view with no corresponding pixels in the reference views during
DIBR. This issue is discussed in details in Section IV.

2A voxel is a volume element representing a value on a regular grid in 3D space [14].
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the reliability of each code block in each transmitted view given observed packet loss events. During

DIBR-based rendering of a virtual view, where a synthesized pixel is typically computed as a convex

combination of the two corresponding pixels in the two captured views, we perform adaptive blending,

so that the corresponding pixel from the more reliable transmitted view is assigned a heavier weight.

To exploit representation redundancy at the sender, we optimize reference picture selection (RPS)

during real-time video coding, so that blocks containing pixel samples of voxels that are visible in both

views are more error-resiliently coded (e.g., through intra-coding or using a reference block in a previous

frame that has been acknowledged) in one view only. This is possible because aforementioned adaptive

blending is performed at decoder, suppressing errors in one view if corresponding blocks in the other

view are correctly delivered. The expected reconstructed error of a block predicted from a given past

frame is computed via a set of recursive equations we derive with computation efficiency in mind.

Further, because depth maps are auxiliary information that only aid in the construction of the syn-

thesized views but are not themselves directly observed, the synthesized view distortion sensitivities to

errors in depth maps are clearly different from errors in texture maps. To guide preferential protection, we

analyze synthesized view distortion sensitivities to texture versus depth errors, so that relative importance

of texture and depth code blocks can be computed for system-wide RPS optimization. Finally, quantization

parameter (QP) is adaptively selected per frame at encoder based on observed packet loss events to-date,

so that source distortion due to compression can be optimally traded off with channel distortion due to

potential packet losses for best overall performance. Experimental results show that the proposed scheme

can outperform previous work by up to 2.9dB at 5% packet loss rate.

The rest of the paper is organized as follows. We first discuss related work in Section II. We then

overview our streaming system in Section III. We discuss our receiver error concealment strategy using

adaptive blending in Section IV. We discuss our sender RPS optimization in Section V. In Section VI,

an analysis of the added computational load of our proposed optimizations is presented. Finally, exper-

imental results and conclusions are presented in Section VII and VIII, respectively.

II. RelatedWork

We divide the discussion of related work into three sections. We first discuss related work in multiview

and free-viewpoint video coding. We then discuss related work in error-resilient video streaming and

error concealment for conventional 2D video. Finally, we juxtapose the contributions of this paper to our

own earlier work on the same topic.
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A. Multiview and Free Viewpoint Video Coding

Multiview video coding (MVC) is concerned with the compression of texture videos captured from

multiple nearby viewpoints. Early works in MVC [4], [15] focused on exploiting signal redundancy across

view using disparity compensation for coding gain—matching of code blocks between neighboring view

pictures for efficient signal prediction. However, given temporal redundancy has already been exploited

via motion compensation, and neighboring temporal frames tend to be more similar than neighboring

inter-view frames due to typical high-frame-rate videos captured by cameras, it was shown that additional

coding gain afforded by disparity compensation is noticeable but not dramatic [15]. Given our goal is

loss-resilient video streaming, to avoid potential inter-view error propagation in disparity compensated

multiview video, we perform motion estimation / compensation independently in each view3.

While MVC offers view-switches at receiver only among the discrete set of captured and coded views,

transmitting both texture and depth videos of nearby views—known as “texture-plus-depth” format [5]—

enables the observer to choose any intermediate virtual view for DIBR-based image rendering and display.

Given compression of texture maps has been well studied in the past decades (e.g., coding standards such

as H.264 [17]), recent work has focused specifically on depth map compression. These can be divided into

three classes. The first class [18]–[20] designed specific coding tools (e.g., graph-based transform (GBT)

[18], [20]) tailored to the unique signal characteristics of depth maps, such as sharp edges and smooth

interior surfaces. In our streaming system, for simplicity we assume H.264 is employed for standard-

compliant compression of texture and depth videos in each captured view. However, we note that new

coding tools such as GBT can be incorporated into our streaming optimization easily.

The second class [21]–[25] of works recognized that a depth map is a source of auxiliary information

that assists in the virtual view synthesis at decoder, but is itself never directly observed. Thus, one can

design coding optimizations that minimize the indirect synthesized view distortion rather than the direct

depth map distortion. Our analysis of synthesized view distortion sensitivities to errors in texture and

depth maps is an extension of [24] from coding optimization to loss-resilient streaming optimization.

The third class [26], [27] exploited correlations between texture and depth maps of the same view (such

as common edge patterns) for compression gain. In our previous study [28], we have concluded that an

important depth block (e.g., one that contains an edge between a foreground object and background)

can be more critical to synthesized view quality than a texture block. Predicting depth blocks from

corresponding texture blocks (as done in [26] as an extension of HEVC video coding standard to texture-

3We note further that having independent encoders for different views fits the multiterminal video coding paradigm [16], which,
besides benefits of lower overall encoding complexity, holds promises of better compression performance in the future via
distributed source coding theory.
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plus-depth format) would entail unnatural dependency of a more important depth block on a less

important texture block. Given depth video typically requires roughly 10% of the total bitrate and the

goal is loss resiliency of free viewpoint video streaming, we choose to forego inter-component prediction

and code texture and depth videos of the same view independently using H.264.

B. Error-resilient Video Streaming

The problem of error control and concealment has been actively studied for many years, and an

overview of general approaches can be found in [29]. One particular effective mechanism to control

error propagation for systems with live encoder is reference picture selection (RPS). In reactive RPS,

a live encoder reacts to receiver feedbacks by avoiding the use of notified loss-affected past frames

as reference for coding of future frames. In proactive RPS, long prediction chains are avoided during

video encoding without incorporating real-time client feedback information. Reactive RPS incurs higher

bit overhead only when needed, but suffers error propagation of up to one round-trip time (RTT) at

decoder. Proactive RPS incurs an overhead regardless of whether there are actually losses, and should

only be applied preferentially to more important parts of the video. A study of adaptively choosing

different RPS approaches in streaming of single-view H.264 video is given in [30]. In contrast, we employ

at sender proactive RPS with feedbacks [31] (called proactive-feedback in the sequel) for selected code

blocks in the depth and texture sequences during real-time video encoding, so that the likelihood of long

error propagation—typical in differentially coded video—is minimized for blocks containing pixels vital

to adaptive rendering at receiver. Our proactive-feedback approach integrates feedback by computing

estimated distortion for all frames with and without known loss information.

There are many other techniques developed for improving resilience of single-view video, including

error concealment, retransmissions and use of error correcting codes. In addition to commonly employed

Reed-Solomon codes, there are also recent low-delay “streaming codes” that allows fast recovery of earlier

transmitted packets without requiring all losses to be corrected [32]. Modern video compression formats

also have syntax support for error resilience. For example, flexible macroblock ordering (FMO) [33] is an error

resilient tool in H.264 that can avoid loss of large contiguous regions to make error concealment more

effective. Another example is data partitioning [34], which allows decomposition of compressed single-

view video into layers of different importance for preferential protection. Furthermore, it is possible

to explicitly transmit additional data in various forms to aid error concealment [35]. Many of these

techniques are applicable to free-viewpoint conferencing and are complementary to multi-view error

concealment methods as well as to adaptive error-resilient source coding methods.
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Joint optimization of compression, concealment, and channel loss has also been considered. For ex-

ample, the work in [36], considers a formulation that allocates transmission power to jointly optimize

the average and variance of distortion for single view video. Finally, though there have been streaming

optimizations proposed in the literature for stereoscopic video [37] and multiview video [38], to the best of

our knowledge we are the first to propose loss-resilient coding specifically for interactive free-viewpoint

video where texture and depth maps of two neighboring camera viewpoints are transmitted [39].

C. Contribution over Our Previous Work

In [40], a similar scheme to minimize expected synthesized view distortion based on selection of

reference frame at the block level was proposed for depth maps only. In another previous work [28], we

extended the idea in [40] to encoding of both texture and depth maps.

In this work, we make significant contributions over our earlier works. First, given that an intermediate

virtual view pixel is computed as a convex combination of corresponding texture pixels of its two

neighboring captured views, an error concealment strategy can be performed where the source pixel

with higher reliability is weighted more heavily during blending. Further, for pixels of the two views

that sample the same voxels in the 3D scene, the encoder can protect pixels from only one view more

heavily. Finally, we optimize the selection of QP during source coding at sender, so that the overall

expected distortion due to source compression and channel losses is minimized.

III. Real-time Free Viewpoint Video Streaming System

TEXTURE + DEPTH

A PAIR OF VIEWS IS
CHOSEN AT A GIVEN TIME
FOR TRANSMISSION

Channel

S
C

E
N

E

Left

Right

Fig. 1. A bandwidth-efficient free-viewpoint video streaming system dynamically selects two views for transmission.

We overview our proposed real-time free viewpoint video streaming system in this section. At sender,

we assume a large array of closely spaced cameras are capturing videos of a 3D scene simultaneously.

See Fig. 1 for an illustration. Specifically, cameras are deployed in a 1D parallel arrangement with narrow

acquisition angles and a baseline between cameras of the order of 5 cm [41]. Rectification, performed
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prior to encoding, is often necessary to eliminate misalignments and provide views in linear and parallel

arrangement. These conditions guarantee that disparities between views are limited to 1D shifts along

the x-axis. Naturally, accuracy in camera calibration parameters is also required. Furthermore, color

consistency among cameras should be assured upon capturing and/or enforced through image processing

methods [42] prior to encoding.

Besides texture maps, we assume depth maps of the same resolution and from the same camera view-

points as the texture maps are available. Armed with both texture and depth maps, intermediate virtual

views can be synthesized via a depth-image-based rendering (DIBR) technique like 3D warping [43],

enabling user to select and render image at any desired viewpoint for observation. The ability to choose

any viewpoint for image rendering is called free viewpoint [42].

The number of cameras capturing video at the same time can be quite large—up to 100 cameras were

used in [3]. Hence real-time encoding and transmitting all of them from sender to receiver would translate

to a very large network cost. Instead, we assume here that the index of the current virtual view v that

the receiver is observing is constantly fed back to the sender. The sender can then estimate the range of

virtual views the receiver will choose to observe during the next round-trip time (RTT), and then select

only two neighboring camera views that can enable rendering of those virtual views for real-time coding

and transmission of the corresponding texture and depth maps. This idea of selecting only a subset

of camera captured views for efficient network transmission is also exploited in [13]. In this paper, we

focus on the optimal transmission and error concealment of the texture and depth maps from those two

selected views (called left and right views in the sequel).

IV. Error Concealment Strategy for DIBR-based Synthesis

We first review a common DIBR view synthesis procedure that assumes no information loss in ei-

ther depth or texture maps. We then derive formulas to estimate texture and disparity error for every

macroblock (MB) due to packet losses in motion-compensated video. Finally, we discuss how an error

concealment strategy for the synthesized view—adaptive blending—can be performed given the estimated

texture and disparity errors.

A. Standard Loss-free View Synthesis

In a multiview DIBR system, an intermediate virtual view is interpolated using texture and depth

maps of two neighboring captured views via a DIBR technique like 3D warping [43]. We focus on

the fundamental view blending step upon which our proposal is based. Note that prior to blending,
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mechanisms aimed at robustness, such as consistency checks, may first pre-process respective texture or

depth maps. We refer readers to [7] for a complete description of view synthesis procedures.

As a convention, we label left and right views as 0 and 1, respectively. Given the texture maps of the

left and right views, X0
t and X1

t , at time t, the pixel value Sv
t (i, j) at coordinate (i, j) of a synthesized view

v depends on whether we can find corresponding pixels (i, j0) and (i, j1) from the left and right views,

respectively. Specifically, the synthesized image of view v, 0 ≤ v ≤ 1, has pixel value Sv
t (i, j) at coordinate

(i, j) given by:

Sv
t (i, j) =



(1 − v) X0
t (i, j0) + v X1

t (i, j1) if left & right corresponding pixels exist

X0
t (i, j0) if only left corresponding pixel exists

X1
t (i, j1) if only right corresponding pixel exists

hole o.w.

(1)

where the weights 1 − v and v are inversely proportional to the virtual view’s distance to view 0 and 1.

A chosen inpainting algorithm like [11], [12] is then applied to fill in a small number of hole pixels that

have no correspondence in both views 0 and 1. In other words, weighted blending is performed if two

correspondences are found, while single-pixel mapping and inpainting are invoked if one or zero corre-

spondence is found, respectively. See [7] for details of a standard DIBR view synthesis implementation.

A corresponding pixel (i, j0) in the left texture map X0
t is a pixel that, given associated disparity Y0

t (i, j0)

between left and right views subject to normalization, shifts horizontally by Y0
t (i, j0) ∗ v ∗ η pixels to

synthesized pixel of coordinate (i, j) in virtual view Sv
t , where η is a scaling factor determined by the

distance between the capturing cameras. We can write j0 and j1 for the two corresponding pixels in left

and right texture maps as:

j = j0 − Y0
t (i, j0) ∗ v ∗ η

j = j1 + Y1
t (i, j1) ∗ (1 − v) ∗ η (2)

One interpretation of (1) is that the same physical point in the 3D scene (called voxel in computer

graphics literature [44]) has observed intensities X0
t (i, j0) and X1

t (i, j1) from views 0 and 1, respectively.

Hence, the intensity of the same voxel at an intermediate view can be modeled as a convex combination of

the two corresponding values. If the surface of the observed physical object has Lambertian reflectance [44],

then a voxel will have (roughly) the same intensity from different viewpoints; i.e., X0
t (i, j0) ≈ X1

t (i, j1). In

such case of redundant representation (same intensity value is recorded in two corresponding coordinates

at left and right maps), synthesized pixel Sv
t (i, j) can be perfectly reconstructed even if one of the
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Fig. 2. Motion prediction in differentially coded video causes error propagations from predictor block to target block.

two corresponding pixels, X0
t (i, j0) and X1

t (i, j1), is corrupted by channel noise, assuming the decoder

knows which corresponding pixel is erred. Based on this observation, and assuming that the majority of

synthesized pixels are of objects with Lambertian reflectance surfaces4, we develop the following error

concealment strategy during view synthesis.

The key idea of the error concealment strategy for DIBR view synthesis is as follows. When there are

two corresponding pixels X0
t (i, j0) and X1

t (i, j1) for a given synthesized pixel Sv
t (i, j), decoder can choose

to reweigh the combination of the pixels depending on the reliability of the two reconstructed pixels. For

example, decoder can use only one corresponding pixel for synthesis if the other corresponding pixel

is deemed totally unreliable. We next discuss how we estimate the reliability of the two corresponding

texture pixels X0
t (i, j0) and X1

t (i, j1) at decoder given observed packet losses in the transmitted maps.

B. Estimating Texture Error at Decoder

We first compute the reliability of the two corresponding texture pixels X0
t (i, j0) and X1

t (i, j1), assuming

the corresponding disparity pixels Y0
t (i, j0) and Y1

t (i, j1) are correct. Let m = b(i, j0) be the MB that contains

texture pixel (i, j0), and let et,m be the texture error due to packet losses in MB m given differential coding

of texture maps. Depending on whether MB m is received correctly or not, et,m will result in error e+
t,m

and e−t,m, respectively:

et,m =

 e+
t,m if MB m is correctly received

e−t,m o.w.
(3)

Consider first e+
t,m. If MB m is an intra-coded block (independently coded) and is correctly received at

decoder, then e+
t,m = 0. If MB m is an inter-coded block (differentially coded using a block of a previous

frame as predictor) pointing to a previous frame τt,m with motion vector (MV) vt,m, then e+
t,m depends on

the errors of predictor block in frame τt,m. Note that because the predictor block indicated by MV vt,m

can be located among several coded MBs in frame τt,m, there are typically multiple error propagating

4While objects like glass and mirrors do not have Lambertian surfaces, if the two captured viewpoints are sufficiently close,
voxels of these objects can nonetheless be approximated as having the same intensity values from different but nearby viewpoints.
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MBs, k ∈ vt,m, that can potentially contribute to e+
t,m. See Fig. 2 for an illustration. Thus, we write e+

t,m

recursively as follows5:

e+
t,m(τt,m, vt,m) =

 0 if MB m is Intra

γ
∑

k∈vt,m
αk eτt,m,k o.w.

(4)

where αk’s are the weights for the summation in (4) based on the amount of pixel overlaps between

the designated predictor block and the error propagating MBs, and γ < 1 is the attenuation factor that

reflects the dissipating effect of error in an earlier frame over a sequence of motion-compensated frames.

In our simulations, γ is chosen to be 0.9.

If MB m of frame t is not correctly received, then we assume that the decoder performs a block copy

from the same MB m from previous frame t− 1. The resulting error is then error et−1,m of MB m in frame

t − 1, plus δ, which is the change in intensity between MBs m in frame t − 1 and t:

e−t,m = et−1,m + δ (5)

δ can be estimated at decoder as follows. If there is a corresponding block in texture map of the

other captured view that is more reliably received, then δ is approximated as the difference between

the corresponding blocks in the previous frame and the current frame of the other view. If there is no

corresponding block in the other view or the corresponding block is also erred, then we estimate δ as

the difference among co-located blocks of the previous two frames within the current view. If one or

two previous frames are not available or not correctly received, δ is estimated from spatially neighboring

blocks with similar disparity values (blocks with similar depth are likely to belong to the same physical

object).

C. Estimating Disparity Error at Decoder

Similarly, we can compute the error in left disparity pixel Y0
t (i, j0) by estimating the error in the MB

m = b(i, j0) that contains it. (Right disparity pixel Y1
t (i, j1) can be estimated in a similar manner.) We can

estimate the disparity error6 εt,m in MB m using recursion as done for et,m in (3). In this case, derivation

of disparity errors due to correctly received and lost MBs are analogous to the equations presented in (4)

and (5), respectively, with the exception that δ is always estimated from co-located blocks in the previous

frames.

5Though we have already argued that inter-view prediction is not a sensible coding option for our loss-resilient free viewpoint
video streaming system, (4) can nonetheless be modified easily to account for inter-view dependencies if deployed.

6If a depth block is predicted from the corresponding texture block of the same view as done in [26], (4) can be easily modified
accordingly to reflect the inter-component dependency.
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The effect of a disparity error on the synthesized pixel (i, j), however, is more indirect; a disparity

error causes the wrong corresponding pixel X0
t (i, j#) to be used for synthesis of pixel (i, j) in virtual view

Sv
t . Now if the pixel patch around the local neighborhood of texture pixel X0

t (i, j0) is monotone, then

using a texture pixel from a slightly erred location (i, j#) will result in very small increase in synthesized

distortion. On the other hand, if the patch around texture pixel (i, jo) has high texture variation, then the

resulting synthesized distortion can be significant.

D. Proposed View Synthesis

Having computed the estimated texture error et,m and disparity error εt,m for the two MBs m that contain

corresponding texture pixel X0
t (i, j0) and depth pixel Y0

t (i, j0) of the left view respectively, as described in

the past two sections, we now derive the worst case distortion d0(i, j0) for left corresponding pixel X0
t (i, j0).

Then, left reliability term r0 can be subsequently computed. Together with right reliability term r1, they

determine how the two corresponding texture pixels X0
t (i, j0) and X1

t (i, j1) should be reweighed for our

adaptive, error-aware pixel blending.

Because disparity error leads to the selection of a wrong texture pixel for blending, given the estimated

disparity error εt.m, we will consider the possible adverse effect of using texture pixel X0
t (i, l) for synthesis

instead of X0
t (i, j0), where l in the range [ j0 − εt.m, j0 + εt.m]. Specifically, for each texture pixel X0

t (i, l), we

consider both the pixel-to-pixel texture intensity difference |X0
t (i, l) − X0

t (i, j0)| and the estimated texture

error due to channel losses et,b(i,l) for texture pixel X0
t (i, l). Mathematically, the worst-case distortion d0(i, j0)

for texture pixel X0
t (i, j0) considering all pixels (i, l) in the range is computed as follows:

d0(i, j0) = max
l= j0−εt,m,..., j0+εt,m

{
et,b(i,l) + |X0

t (i, l) − X0
t (i, j0)|

}
(6)

As done for δ, the pixel intensity difference |X0
t (i, l) − X0

t (i, j0)| in (6) can be estimated at decoder using

either corresponding pixels in texture map of the other captured view that is more reliably received, or

MBs of previous correctly received frames of the same view with similar disparity values.

Having derived worst case distortions d0(i, j0) and d1(i, j1) for texture pixels, X0
t (i, j0) and X1

t (i, j1), we

now define a reliability metric, r0, inversely proportional to distortion:

r0 =
1

d0(i, j0) + c
(7)

where c is a small positive constant chosen so that r0 is well defined even if d0(i, j0) = 0. Reliability metric

r1 is defined analogously in terms of d1(i, j1).

Depending on reliability, corresponding pixels from left and right views are now reweighed in synthesis
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of view v as

Sv
t (i, j) = w0

t X0
t (i, j0) + w1

t X1
t (i, j1) (8)

where weights w0
t and w1

t are computed as

w0
t =

r0(1 − v)
r0(1 − v) + r1v

w1
t =

r1v
r0(1 − v) + r1v

. (9)

The weights have the following properties: i) default to (1 − v) and v in (1) when reliability r0 = r1; ii)

converge to 1 and 0 when r0
� r1; and iii) sum to 1.

V. Block-level Reference Picture Selection

Having described the error concealment strategy deployed during view synthesis at the receiver, we

now turn our attention to optimization at the sender. At the sender side, during real-time encoding of

both texture and depth maps, the encoder has the flexibility to select any MB in any past coded frame

for motion compensation (MC) to encode each MB in a current frame t. Using a well matched MB from

the immediate previous frame t− 1 for MC would lead to a small encoding rate, but may result in large

expected distortion at receiver due to a possibly long dependency chain of differentially coded MBs. Using

a MB from a frame further into the past for MC (or an intra-coded MB), will lead to a larger encoding

rate, but will also result in a smaller expected distortion. Exploiting this flexibility of reference picture

selection (RPS), the goal is to pro-actively minimize the overall expected distortion of an intermediate

view at instant t, synthesized via DIBR using texture and depth maps of two adjacent coded views at

decoder as described in the previous section, and subject to a transmission rate constraint. Leveraging

our derivation for estimated texture and disparity errors at the receiver in the previous section, we first

discuss how synthesized distortion in an interpolated view is estimated at the sender. We then present

the mathematical formulation of our proactive-feedback block-level RPS optimization.

A. Estimating Texture & Disparity Error at Sender

We first estimate the expected texture error et,m of a MB m in frame t at sender in differentially coded

texture video as follows. Let et,m(τt,m, vt,m) be the texture error given it is motion-compensated using a

block identified by MV vt,m inside a previous transmitted frame Xτt,m , τt,m < t. Let p be the probability

that MB m is correctly received. Similar to (3), we can write et,m(τt,m, vt,m) in terms of e+
t,m(τt,m, vt,m) and

e−t,m, the expected texture error of MB m if it is correctly received and lost, respectively. Unlike (3), there
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are now two additional considerations. First, the expression is probabilistic and depends on p, because

the delivery status of packet that contains MB m is not known deterministically at sender in general. A

feedback channel can be used to provide packet delivery status information for transmitted packets with

RTT delay. We write et,m at sender as follows:

et,m(τt,m, vt,m) = p e+
t,m(τt,m, vt,m) + (1 − p) e−t,m (10)

Second, because encoder can control the source compression ratio via a quantization parameter (QP),

we consider the effects of source coding error as well. Hence unlike (4), we in addition account for source

coding error es
t,m—a function of QP qt for frame t—when writing e+

t,m mathematically as follows:

e+
t,m =

 es
t,m(qt) if MB m is Intra

γ
∑

k∈vt,m
αk ec

τt,m,k
+ es

t,m(qt) o.w.
(11)

In words, (11) states that if MB m is correctly received, then the expected error e+
t,m is: i) only the source

coding error es
t,m if it is coded as Intra, or ii) a weighted combination of channel errors ec

τt,m,k
’s propagated

from predicted blocks plus es
t,m if it is differentially coded. Note that source coding error of predicted

blocks do not accumulate in descendant blocks.

For error computation of blocks in future frames, we can compute the channel error ec
t,m for MB m as

follows. First, if MB m has been ACKed (notified by receiver that it is correctly decoded), then obviously

ec
t,m = 0. Otherwise, if MB m is intra-coded, then there is a channel error only if the block is lost with

probability 1 − p. In this case, the channel error is the same error as the same located block in the

previous frame, ec
t−1,m, plus the difference between the co-located blocks of the two frames δ. If MB m is

differentially coded, then even if it is correctly received, the channel errors of the predicted blocks will

nonetheless propagate. Summarizing the above, we can write ec
t,m as follows:

ec
t,m =


0 if MB m is ACKed

(1 − p)
(
ec

t−1,m + δ
)

else if MB m is Intra

pγ
∑

k∈vt,m
αk ec

τt,m,k
+ (1 − p)

(
ec

t−1,m + δ
)

else

(12)

e−t,m can be computed recursively using previously derived (5). Expected disparity error εt,m(ρt,m,ut.m)

given MV ut,m in previous disparity frame Yρt,m can be computed in a similar fashion.

B. Computing Expected Synthesized View Distortion at Encoder

Having derived expected texture and disparity errors e0
t,m and ε0

t.m for a given MB m in texture and

disparity frames X0
t and Y0

t of view 0, we now analyze the adverse effects of these errors to expected
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Fig. 3. Synthesized distortion and quadratic model functions for one pixel are shown in (a) for image Akko and Kayo [45] view
47 in (b). The resulting curvatures for for entire image are shown in (c).

distortion in the synthesized image Sv
t of virtual view v at receiver. One way to compute the expected

synthesized distortion is to use a similar distortion expression as (6) for receiver that ties both error

terms together in a non-trivial way. However, this introduces inter-dependency among MBs in texture

and depth maps, rendering the subsequent block-level RPS optimization very difficult.

Instead, we will use the following simplification. Texture error e0
t,m, as discussed in Section IV-B,

contributes directly to the synthesized distortion. To estimate the adverse effects of disparity error ε0
t,m to

synthesized distortion, we model synthesized distortion as a quadratic function g0
t,m( ) of disparity error

ε0
t,m:

g0
t,m(ε0

t,m) =
1
2

a0
t,m

(
ε0

t,m

)2
(13)

where a0
t,m is the single parameter that describes the curvature of the quadratic function g0

t,m(ε0
t,m).

This quadratic modeling of synthesized distortion was first used in [24] for depth map coding. The

key idea is to capture the synthesized view distortion sensitivity to disparity error in MB m in a single

parameter a0
t,m. In general, if the textural area corresponding to the depth MB m is smooth and inside a

physical object, then synthesized distortion will not be sensitive to disparity error. The reason is that small

error ε0
t,m leading to mapping of wrong texture pixels of similar intensities in the local neighborhood will

result in only small synthesized distortion. On the other hand, if the textural area corresponding to the

depth MB m has large frequency contents inside a physical object or contains boundary pixels between

foreground object and the background, then synthesized distortion will be sensitive to disparity error.

1) Computing block curvature a0
t,m: Specifically, we compute parameter a0

t,m for each MB m as follows.

First, synthesized distortion d0
t,m of MB m is computed as a sum of its constituent pixels (i, j)’s distortions.

As discussed in Section IV-A, a texture pixel X0
t (i, j) in the left texture map can be mapped to a shifted

pixel X1
t (i, j−Y0

t (i, j) ∗ η) in the right texture map. We thus express d0
t,m(ε0

t,m) as the sum of the differences
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in texture pixel values between left pixels X0
t (i, j)’s and mapped right pixels X1

t (i, j − (Y0
t (i, j) + ε0

t,m) ∗ η)’s

due to disparity error ε0
t,m:

d0
t,m(ε0

t,m) =
∑

(i, j)∈MBm

|X0
t (i, j) − X1

t (i, j − (Y0
t (i, j) + ε0

t,m) ∗ η)| (14)

As the disparity error ε0
t,m increases, i.e., the depth value moves away from ground truth, synthesized

distortion function d0
t,m(ε0

t,m) increases generally, as illustrated in Fig. 3(a). Our model g0
t,m(ε0

t,m) will simply

be the sharpest of the two quadratic functions fitted to d0
t,m(ε0

t,m). For such, we identify the nearest boundary

disparity values below and above the ground truth where d0
t,m(ε0

t,m) exceed a pre-defined threshold and

construct parabolas with slope zero at ground truth, see Fig. 3(a). a0
i,m in (13) is the average of all chosen

curvatures of pixels in m. As an example, in Fig. 3(b) and (c), the original frame from view 47 of Akko

and Kayo [45] and the per-pixel curvatures of the quadratic model functions of the corresponding depth

map are shown. We can clearly see that larger curvatures (in white) occur at object boundaries, agreeing

with our intuition that a synthesized view is more sensitive to depth pixels at object boundaries.

Combining synthesized distortion due to disparity error ε0
t,m with that of texture error e0

t,m, we can

write the combined distortion for MB m in texture and depth maps of view 0 as:

D̄0
t,m(τ0

t,m, v
0
t,m, ρ

0
t,m,u

0
t,m, qt) = e0

t,m(τ0
t,m, v

0
t,m, qt) + g0

t,m(ε0(ρ0
t,m,u

0
t,m, qt)) (15)

where D̄0
t,m denotes the expected distortion for a MB in frame t. In words, (15) says that the expected

distortion for MB m is a simple sum of: i) expected texture error e0
t,m, and ii) a quadratic term of the

expected disparity error ε0
t,m. This simple model for distortion will play a significant role in simplifying

the to-be-discussed RPS optimization procedure.

2) Consideration for Receiver’s Error Concealment: Because of the error concealment scheme performed

at decoder for MBs that are visible from both captured views, as discussed in the previous section,

distortion due to errors in MB m of frames X0
t and Y0

t in view 0 will contribute to the actual synthesized

view distortion only if errors in the corresponding pixels in frames X1
t and Y1

t of view 1 are worse.

Otherwise, pixels in X1
t and Y1

t will be re-weighted more heavily in the view synthesis process. Given the

above observation, we can rewrite the expected synthesized view distortion D̄0
t,m in (15) due to texture

and depth errors in MB m of texture and depth frames t of view 0, as:

D0
t,m(τ0

t,m, v
0
t,m, ρ

0
t,m,u

0
t,m, qt) = min

{
e0

t,m(τ0
t,m, v

0
t,m, qt) + g0

t,m(ε0
t,m(ρ0

t,m,u
0
t,m, qt)), max

k∈S1
m

[
e1

t−1,k + g1
t−1,k(ε1

t−1,k) + δ
]}

(16)
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where S1
m is the set of MBs in view 1 that contains pixels corresponding to MB m in view 0. In words,

(16) states that the synthesized distortion due to errors in MB m of view 0 is the smaller of distortion

due to view 0 and distortion due to view 1. Note that we write distortion due to view 1 using errors

in previous frames X1
t−1 and Y1

t−1 plus δ, so that D0
t,m will not have dependency on MVs of current frames

X1
t and Y1

t of view 1. (Recall δ is the change in intensity between MBs in frame t − 1 and t.) This avoids

inter-dependency of free variables, simplifying the to-be-discussed optimization algorithm.

C. Formulation for Block-level Reference Picture Optimization

We are now ready to formally define our optimization for block-level reference picture selection. Our

objective is to minimize the sum of induced synthesized distortion from MB m in both view 0 and 1:

min
qt,

{
τi

t,m,v
i
t,m,ρ

i
t,m,u

i
t,m

} ∑
i∈{0,1}

∑
m∈L̄t

D̄i
t,m(τi

t,m, v
i
t,m, ρ

i
t,m,u

i
t,m, qt) +

∑
m∈Lt

Di
t,m(τi

t,m, v
i
t,m, ρ

i
t,m,u

i
t,m, qt)

 (17)

where L̄t and Lt are the set of of MBs in frame t without and with corresponding MBs in the opposing

captured view, respectively. Note that there are two sets of optimization variables: QP qt for the entire

frame, and MVs for individual blocks m’s in the frame.

The optimization is subject to the bitrate constraint Bt at instant t:

∑
i∈{0,1}

∑
m

bi
t,m(τi

t,m, v
i
t,m, qt) + ζi

t,m(ρi
t,m,u

i
t,m, qt) ≤ Bt (18)

where bi
t,m and ζi

t,m are the resulting bit overhead required to code MB m in texture and depth frame

of view i, Xi
t and Yi

t, respectively, given selection of reference frame / MV pair, (τi
t,m, v

i
t,m) and (ρi

t,m,u
i
t,m),

respectively, and QP qt.

D. Algorithm for Block-level Reference Picture Optimization

We propose an alternating two-step algorithm to solve the optimization problem. First, we fix QP qt

and solve for the reference frame / MV pairs independently as follows. Instead of solving the constrained

optimization problem (17) and (18), we can solve the corresponding Lagrangian problem for given

multiplier λ > 0:

min
{τi

t,m,v
i
t,m,ρ

i
t,m,u

i
t,m}

∑
i∈{0,1}

 ∑
m∈L̄t

D̄i
t,m(τi

t,m, v
i
t,m, ρ

i
t,m,u

i
t,m) +

∑
m∈Lt

Di
t,m(τi

t,m, v
i
t,m, ρ

i
t,m,u

i
t,m)

 +

+λ
∑

i∈{0,1}

∑
m

bi
t,m(τi

t,m, v
i
t,m) + ζi

t,m(ρi
t,m,u

i
t,m) (19)

To solve (19) optimally, it is clear that we can separately optimize each pair of MBs m in texture and
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TABLE I
Important Variables in RPS Optimization

Symbol Description Symbol Description
e texture block error ε disparity block error
(τ, v) texture block’s RP index and MV (ρ,u) depth block’s RP index and MV
d worst case pixel synthesis distortion r pixel synthesis reliability
δ intensity change of co-located blocks g model of synthesis distortion due to ε
D̄ expected block distortion D D̄ considering error concealment
λ Lagrangian multiplier R bitrate constraint
b texture block coding rate ζ depth block coding rate

disparity frame Xi
t and Yi

t. For MB m that has no corresponding MB in opposing view, i.e., m ∈ L̄t:

min
τi

t,m,v
i
t,m,ρ

i
t,m,u

i
t,m

D̄i
t,m(τi

t,m, v
i
t,m, ρ

i
t,m,u

i
t,m) + λ

[
bi

t,m(τi
t,m, v

i
t,m) + ζi

t,m(ρi
t,m,u

i
t,m)

]
∀i,m (20)

In this case, D̄i
t,m separates into two terms, ei

t,m and gi
t,m, and the texture and depth map MB variables

can be optimized separately.

For MB m that has a corresponding MB in opposing view, D̄i
t,m is replaced by Di

t,m in (20). There is

now an inter-dependency between texture and depth map MB variables in the distortion term. We can

simplify (20) into the following two equations, where (τi,∗
t,m, v

i,∗
t,m) means the best MV that minimizes texture

error ei
t,m only, so that the searches for MV for texture and depth maps can be performed separately:

min
τi

t,m,v
i
t,m

Di
t,m(τi

t,m, v
i
t,m, ρ

i,∗
t,m,u

i,∗
t,m) + λ bi

t,m(τi
t,m, v

i
t,m) ∀i,m

min
ρi

t,m,u
i
t,m

Di
t,m(τi,∗

t,m, v
i,∗
t,m, ρ

i
t,m,u

i
t,m) + λ ζi

t,m(ρi
t,m,u

i
t,m) ∀i,m (21)

Equation (21) is an approximation to (20) in the following sense. If errors in the opposing views in (16) are

relatively large, then errors ei
t,m and εi

t,m can indeed be separately optimally traded off with their respective

rate terms bi
t,m and ζi

t,m, as done in (21), with no loss in optimality. If errors in the opposing views are

relatively small, then errors in current view can actually be ignored. Hence by setting MV of texture map

to be best error-minimizing one (τi,∗
t,m, v

i,∗
t,m) when optimizing MV of disparity map, we are forcing the

optimization to minimize induced synthesized distortion unless errors in opposing views are very small

comparatively. This conservative approach ensures the combined resulting induced synthesized distortion

from texture and disparity errors will not be large. (21) is minimized by searching through all feasible

MVs in all valid reference frames. This can be done efficiently, for example, in a parallel implementation.

A summary of the important variables employed in our optimization and error concealment strategy is

provided in Table I.

1) Optimizing QP qt: Having discussed how (19) can be minimized assuming QP qt is fixed, we now

discuss how qt can be optimized given the reference frame / MV pairs are fixed. We first note that
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(19) needs to be solved for an appropriately chosen λ, so that the rate constraint (18) is met with little

unused bandwidth Bt left over. Practically speaking, λt for frame t can be locally adjusted given λt−1

used in previous frame t − 1, using a search strategy such as [46]. Having solved (19) for frame t with

an appropriate λt, we then locally search for a QP qt so that the Lagrangian cost (19) is minimized. In

particular, the Lagrangian cost is expected to have a unique local minimum at the optimal qt. So one

strategy is to first identify the change direction in qt where the Lagrangian cost decreases, then continue

the change of qt in that direction until the cost increases. Having found the locally optimal qo
t , we then

fix QP qo
t and search for optimal reference frame / MV pairs for blocks in the frame again. We alternate

between these two steps until the variables converge.

The above strategy involves multiple encodings of frame t, which is not amenable to real-time en-

coding. Instead, we propose the following variation. Given QP qt for frame t, we first search for the

optimal reference frame / MV pair (τo
t,m, v

o
t,m) that minimizes (19) for MB m as described previously.

Using (τo
t,m, v

o
t,m), we compute in addition the objective (19) for a local neighborhood N(qt) of qt, e.g.,

N(qt) =
{
qt − 2, qt − 1, . . . , qt + 2

}
, and store the results to a table. Note that QP q only affects source coding

error es
t,m(q) and bitrate bt,m(τt,m, vt,m, q) in the texture component of the objective function (similarly for

depth component). If we assume error es
t,m(q) and rate bt,m(τt,m, vt,m, q) are both exponential functions of

QP q:

es
t,m(q) = e

q

σ2
e

bt,m(τt,m, vt,m, q) = e
−

q

σ2
b , (22)

we can estimate the model parameters σe and σb using available empirical data es
t,m(qt) and bt,m(τt,m, vt,m, qt).

We can thus compute objective (19) for QP neighborhood N(qt) without re-encoding.

Having compute the neighborhood values for all blocks m in frame t, we check if a different QP q in

neighborhood N(qt) would lead to a lower Lagrangian cost than chosen qt for frame t. If so, the optimal

QP will be used for the next frame t + 1. In essence, we are performing the local search for QP across

temporal frames to avoid multiple encodings of the same frame.

VI. Complexity Analysis

The proposed strategies introduce additional complexity costs for both the sender and receiver of the

free-viewpoint conferencing system. At the sender side, the proposal with largest computational load is

the determination of the curvature parameters representing sensitivity to disparity errors employed in

(13). Though in our current implementation we compute a0
t,m for block m in (13) by first painstakingly
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computing curvature parameters for each pixel in the block as described in Section V-B, one can approx-

imate a0
t,m in a computation-efficient manner by simply examining the high frequency DCT components

of block m and its neighboring blocks in texture and depth maps (high frequencies can indicate depth

edges and fast changing textural content.) As fast curvature parameter approximation is not the main

focus of this paper, we simply assume curvature parameters can be computed efficiently and discuss

complexity of our proposed optimization procedures.

Still at sender, the loss-resilient coding proposals encompass the estimation of texture/disparity errors

and the optimization of RPS. Texture error estimation involves determining e+ and e− as combined in

(10) and defined by (4) and (5), respectively. When correctly received, e+ of a non-Intra MB of size N×N

involves a weighted average over all the MB pixels and thus N×N multiplication operations. The error e−

of an incorrectly received MB is a function of δ which is taken as the difference between the current MB

and the co-located MB of the previous frame. This difference contributes in N×N subtraction operations

to the complexity count. Complexity analysis of disparity error estimation for encoding provides similar

results. Lastly, the optimization algorithm, described in sub-section V-D, considers the tradeoff between an

expected distortion measure comprised of texture and disparity errors across both views and rate terms

for selecting reference pictures. It is used in substitution of the standard rate-distortion optimization

at MB level employed in coding of texture and depth and thus imposes no additional computational

complexity costs. The proposed QP optimization is performed at frame level, using previous estimates,

as described in sub-section V-D1. The aforementioned coding proposals represent a modest complexity

increment in terms of arithmetic operations. In our implementation, an average increase of only 1.9% in

execution time with respect to coding with reactive feedback channel was registered. Note that for these

simulations fast motion estimation was used and file I/O operations, used in our implementation, were

not considered.

At the receiver, texture and disparity error estimation for decoding present a computational cost similar

to the one determined for the sender. Nonetheless, when decoding, the estimation of δ in (5) is dependent

on whether packets of both views are lost simultaneously or whether packets in only one view are lost.

In the former case, delta is the difference among co-located MBs in the two previous frames, representing

N×N subtraction operations. In the latter case, prior to estimating δ as a difference of MBs, the correctly

received pixels from the adjacent view are projected onto the view with losses, representing an extra

N ×N addition operations. Furthermore, at the receiver, the worst case distortion defined in (6) must be

calculated for the virtual view prior to adaptive blending. This calculation represents N ×N × (2εt,m + 1)

subtraction operations. Here, the disparity error εt,m is content dependent and generally small except
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along boundary pixels with large intensity differences. The adaptive blending step, based on worst case

distortion estimates, is equivalent in complexity to the standard blending procedure which it substitutes.

In conclusion, our decoding proposals also impose a modest complexity increment in terms of additional

arithmetic operations.

VII. Experimentation

We verify the merits of our proposed block-level RPS encoding strategy (proactive-feedback) at sender

as well as our error-concealment strategy during view synthesis (adaptive blending) at receiver through

extensive experiments in this section. We first describe our experimental setup, then present streaming

results in terms of objective measures (PSNR and SSIM) and subjective comparisons.

A. Experimental Setup

Our proposed proactive-feedback RPS encoding strategy is compared to two RPS-based error resilient

alternatives. In all RPS strategies we assume that a lossless feedback channel is present. This channel is

used for transmission of acknowledgment packets from receiver to sender, after a round-trip-time delay

(RTT), informing the status of transmitted packets (i.e., correctly received or lost). In our experiments

RTT is fixed to 133 ms (4 frames of delay at 30 fps).

The first RPS alternative reacts to feedback information by avoiding the use of loss-affected regions in

past frames as reference for coding of future MBs. This alternative is termed reactive-feedback and serves

as a baseline for comparison. Note that loss-affected regions include those of confirmed loss in a frame

RTT or further into the past, and regions of frames of more recent past whose encoding was predicted

from an area of confirmed loss.

The second RPS alternative employed in our tests is based on our previous work [28]. Though it also

uses receiver-sent feedbacks to define loss-affected regions, encoding is performed more proactively: it

recursively computes loss probabilities and resulting errors for all reference areas in texture and depth

maps. Feedback information is additionally used to reduce probabilistic dependency chains and estimate

texture / disparity errors more precisely.

Our proposed proactive-feedback RPS encoding strategy differs from [28] in two important respects.

First, the encoder considers inter-view redundancy when estimating distortion of the synthesized view,

given the receiver performs adaptive blending. Second, source distortion is also considered during error

estimation, and a newly designed QP optimization procedure is employed in addition to minimize the

combined effect of source and channel errors.
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Along with proactive-feedback RPS at encoder, our proposed adaptive blending view synthesis strategy

at decoder is also assessed. Adaptive blending has been implemented inside the MPEG View Synthesis

Reference Software (VSRS v3.5) [6]. Comparisons are drawn against alternatives employing the standard

version of the software.

From the described RPS encoding and synthesis components, three setups are tested in the following

sections:

1) RFC: encoding with reactive feedback channel (and fixed QP) plus standard blending,

2) RPS: proactive RPS encoding [28] with feedback (and fixed QP) plus standard blending,

3) ARPS: proposed proactive-feedback RPS encoding plus the proposed adaptive blending.

All results are evaluated in terms of synthesized view quality. Specifically, for each multi-view sequence,

we first select three neighboring views and transmit only the left and right views, reserving the center

view for synthesis at decoder and comparison to uncoded captured images. We use test sequences from

the Nagoya University database [45]. The selected sequences are the first 150 frames of: Pantomime

(1280 × 960 pixels), Kendo (1024 × 768 pixels) and Akko and Kayo (640 × 480 pixels), all at 30fps. For

Pantomime view 40 was synthesized using views 39 and 41. For Kendo view 2 is interpolated from view 1

and 3. For Akko and Kayo views 47 and 49 are used to synthesize view 48. The view synthesis software [6]

was set to work with integer pixel precision.

Our encoding scheme is implemented only for P16 × 16 mode in H.264/AVC JM reference software

v18.0 [47]. Thus, only modes available in all simulations are P16 × 16, Skip or Intra blocks (i.e., no sub-

block partitions are allowed). More extensive comparison using larger number of available modes is a

subject of future study.

Four transport packets are used for each depth map frame, while twelve are used for each texture

frame packets due to higher associated bit rates. Simulations include packet loss rate of 2%, 5% and 8%

for both texture and depth maps. We assume the picture parameter set (PPS) and sequence parameter

set (SPS) are reliably transmitted out-of-band. Both depth maps and texture are encoded using 128 pixel

search window for motion estimation, CABAC entropy encoder and IPPP predictive frame structure.

When a MB is lost during transmission, the co-located block from the previous frame is used as simple

error concealment.

We compute permissible transmission bit budget for each sequence (texture plus depth) and each

packet loss rate as follows. First, we compute the raw source compression bitrate if QP is fixed at 28: 8.4

Mbps for Pantomime, 5.1 Mbps for Kendo and 5.3 Mbps for Akko and Kayo. Then, for each packet loss

rate, we add a sufficiently large bit budget overhead for transmission schemes to combat packet losses.
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TABLE II
Bitrates used in all setups (considers both views and depth maps)

Sequence Loss Rate Bitrate

Pantomime

2% 8.7 Mbps
5% 9.0 Mbps
8% 9.4 Mbps

Kendo

2% 6.3 Mbps
5% 6.6 Mbps
8% 6.9 Mbps

Akko and Kayo

2% 6.5 Mbps
5% 6.9 Mbps
8% 7.3 Mbps

The resulting transmission bitrates for each sequence, for each percentage of lost packets, are shown in

Table II. Each transmission scheme must meet this transmission bit budget; for RFC and RPS, it would

mean through the proper control of λ during optimization. For ARPS, it will have in addition the control

of QP.

Operational bitrate is in general inversely proportional to λ, and sophisticated procedures to find the

best λ can be devised [46]. Note that in practice, however, the choice of λ does not have to be complicated;

one that is used in previous frame can be reused for current frame, with an optional local adjustment if

the resulting rate is too far below or above the rate constraint.

B. Comparison of Selected Coding Modes

We now illustrate how coding modes are selected by the standard (H.264 without modifications), RFC

and ARPS encoding schemes. In Table III, the percentages of different MB modes chosen during encoding

across all frames of views 39 and 41 of Pantomime are shown. The modes are Intra, Skip, and two sub-types

of P16× 16 mode: Pt−1 when the previous frame is used as reference and Pt−n when the chosen reference

frame is further into the past. We first observe that both RFC and ARPS selected smaller percentages

of Pt−1 mode than standard encoding. This is because Pt−1 can lead to long dependency chains due to

differential coding, which can lead to long error propagation. Instead, RFC and ARPS selected larger

percentage of Pt−n mode, which is by comparison more loss-resilient. We also observe that ARPS selected

fewer Intra mode than RFC. While both Intra and Pt−n offer loss resiliency, Pt−n can do so at a smaller

encoding cost, illustrating the advantage of ARPS over RFC.

In Fig. 4, view 39 and 41 of frame 48 are shown. The chosen encoding modes are indicated by color.

It can be observed in view 39 that RFC encodes several blocks as Intra to improve loss resiliency, while

in ARPS most of these MBs are encoded as Inter mode which is more coding efficient. Also, in view 41

of ARPS more blocks are coded as Skip in comparison to view 39, mostly due to the fact that they have
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TABLE III
Percentage of encoding modes of Pantomime at 5% error rate

View Mode Standard RFC ARPS

39

Skip 68.26% 66.46% 65.01%
Pt−1 26.43% 22.84% 24.77%
Pt−n 4.55% 6.12% 9.37%
Intra 0.76% 4.58% 0.85%

41

Skip 68.34% 62.27% 66.01%
Pt−1 26.30% 21.43% 22.35%
Pt−n 4.34% 8.12% 9.71%
Intra 1.02% 7.68% 1.94%

(a) RFC view 39 (b) ARPS view 39

(c) RFC view 41 (d) ARPS view 41

Fig. 4. Encoding modes used in Pantomime, frame 48. Skip, Intra and Inter (P16× 16) blocks are shown in green, blue and red,
respectively.

already been protected in view 39 and are therefore redundant in view 41.

C. Objective Streaming Performance

We now present experimental results using PSNR and SSIM [48] as objective quality metrics. A

summary of average PSNR results obtained for synthesized views (assuming original views as ground

truth) can be found in Table IV. Averages are computed across all frames for each sequence for all three

comparison schemes.

We first observe that RPS, based on previous work [28], already outperforms RFC. Note that these gains

increase as the error rates increase for all sequences. Nevertheless, the largest gains in average PSNR

are obtained for ARPS setup relative to RPS. For Pantomime at 5% error rate, gain is as high as 2.91dB.



IEEE TRANSACTIONS ON MULTIMEDIA, APRIL 2014 24

TABLE IV
Average PSNR over all frames for tested setups.

Sequence Loss Rate Avg. PSNR
RFC RPS ARPS

Pantomime

2% 31.77 dB 32.05 dB 33.57 dB
5% 28.77 dB 29.10 dB 32.01 dB
8% 26.86 dB 27.44 dB 30.12 dB

Kendo

2% 32.63 dB 32.86 dB 33.45 dB
5% 30.20 dB 30.61 dB 32.24 dB
8% 28.63 dB 29.14 dB 30.50 dB

Akko and Kayo

2% 26.40 dB 26.45 dB 26.89 dB
5% 25.68 dB 25.81 dB 26.71 dB
8% 25.52 dB 25.74 dB 26.35 dB

For Kendo and Akko and Kayo at the same error rates, gains are 1.63dB and 0.90dB, respectively. These

gains can be explained by the two intrinsic novelties of our proposed strategy: i) exploiting inter-view

dependency during encoding allows us to achieve the same level of protection for each MB with a smaller

bitrate and improve synthesis at decoder through adaptive blending, and ii) considering source distortion

and adjusting frame QP using our proposed joint optimization allows more MB’s to benefit from RPS

without significant increases in bitrate.

In Fig. 5, PSNR values for the proposed ARPS and the baseline RFC are presented for each frame.

Both schemes consider a 5% packet loss rate. Due to the use of feedback, we see that both schemes are

generally able to avoid continuous propagation of errors due to losses. Nevertheless, our method can

better withstand the transient effect of packet losses by providing stronger protection to more important

regions. For specific frames, significant gains, far above average values, can be achieved in PSNR: 4.98dB

for Pantomime (frame 55), 4.09dB for Kendo (frame 29) and 1.46dB for Akko and Kayo (frame 126).

In terms of SSIM, ARPS consistently outperforms RFC for every tested frame. For Pantomime the

average SSIM over all frames using RFC is 0.9314, while using ARPS is 0.9551, with a maximum difference

of 0.0218. For Kendo, average values are 0.9372 and 0.9442 for RFC and ARPS, respectively, with a

maximum gain of 0.0151. For Akko and Kayo, the maximum difference between both setups is 0.0241,

RFC has an average value of 0.7652 and ARPS of 0.7738. Despite of the improvements in SSIM, scores

for Akko and Kayo are relatively low for both schemes, which can be explained by poor view synthesis

quality for this particular 3D video sequence.

D. Subjective Comparison

For subjective comparisons, Fig. 6-8 show, for each sequence, synthesized views using encoding schemes

RFC and ARPS. The more significant differences among images are circled in red. Visual comparisons

between the two methods are significant for all sequences, and they can be easily perceived at normal
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Fig. 5. PSNR per frame for ARPS and RFC at 5% packet loss rate for different sequences.

frame rate 30 fps. The PSNR and SSIM indeces of each image are also indicated.

In Kendo, for example, we can see errors in the RFC image (Fig. 7(a)) on the hands and sword of the

swordsman of the right, around the audience and around the plant. The errors in the background, around

audience and plant, are residue created by using co-located blocks to conceal errors in past frames which

were not yet acknowledged by the feedback channel. Errors on the hands and sword are most likely

caused by lost packets in depth maps, generating erroneous horizontal shifts. Note that using ARPS

(Fig. 7(b)) visible errors on the hands of the swordsman are greatly reduced. The unequal protection

during coding of the depth maps provided by ARPS helps conserve the sharp edges around sword and

hands. The proposed adaptive blending significantly improves the synthesized view by applying weights

that consider the estimated error in each pixel. The residue errors around the audience is minimal in

Fig. 7(b), resulting in a more pleasing subjective viewing.

Similar results may be observed in Fig. 6 for Pantomime on the left hand and hat of the clown on the

right, and on the left leg of the other clown. For Akko and Kayo (Fig 8) the subjective gains are more

noticeable around the heads of both persons.

VIII. Conclusion

To enable free-viewpoint video conferencing, in this paper we study a real-time streaming system where

texture and depth videos from two captured viewpoints are transmitted, so that synthesis and display of

any intermediate viewpoint at receiver is enabled via depth-image-based rendering (DIBR). To provide

resiliency over loss-prone transmission networks, we propose first to adaptively blend a synthesized pixel

at receiver, so that the pixels from the more reliable transmitted view is weighted heavier during synthesis.

We then propose a reference picture selection (RPS) scheme at sender, so that pro-actively important code

blocks containing pixels vital to synthesized view quality are predicted from older past frames, lowering

their expected error due to error propagation in differentially coded video. Finally, we analyze synthesized
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(a) (b)

Fig. 6. Synthesized views for Pantomime, frame 55, at 5% packet loss with (a) RFC (PSNR: 28.81dB, SSIM: 0.9413) and (b) ARPS
(PSNR: 33.78dB, SSIM: 0.9626).

(a) (b)

Fig. 7. Synthesized views for Kendo, frame 107, at 5% packet loss with (a) RFC (PSNR: 28.82 dB, SSIM: 0.9297) and (b) ARPS
(PSNR: 30.80 dB, SSIM: 0.9383).

(a) (b)

Fig. 8. Synthesized views for Akko and Kayo, frame 12, at 5% packet loss with (a) RFC (PSNR: 27.84 dB, SSIM: 0.8163) and (b)
ARPS (PSNR: 28.88 dB, SSIM: 0.8297).

view distortion sensitivities to texture versus depth errors, so that relative importance can be determined

for texture and depth code blocks for system-wide RPS optimization. Experimental results show that our
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proposed scheme, combined with feedback information, can significantly outperform a reactive feedback

channel, not only by objectives metrics, but subjectively as well.
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