
1

Incentive Analysis for Cooperative Interactive Multiview Video Streaming

Bo Hu ∗, H. Vicky Zhao ∗ and Gene Cheung #

∗University of Alberta, # National Institute of Informatics

Abstract

In interactive multiview video streaming (IMVS), users can periodically select one out of many

captured views available for observation. In single-view video streaming, cooperative strategies where

peers share received packets of the same video have proven to be effective in reducing server’s upload

burden, and incentive mechanisms are designed to stimulate user cooperation. However, exploiting user

cooperation in higher dimensional IMVS is difficult, since users watching different views makes it difficult

to establish partnership, and users switching views frequently and independently makes it difficult to

maintain partnership over time. In this paper, we use a multiview video frame structure for IMVS to

support cooperative view-switching, where peers may help each other even if they are observing different

views. We then model peers’ interaction as an indirect reciprocity game, where each user is assigned

a reputation level. To gain a higher reputation level, users help others, which in turn leads to a higher

likelihood to receive others’ help later. In this work, we focus on how view switching, the key feature

of IMVS, affects user cooperation. By modeling users’ decision making as a Markov decision process,

our analysis shows that users tend to cooperate at some views but not others: given peers can predict

their future view navigation paths probabilistically, for a peer who is likely to enter a view-switching

path not requiring others’ help, he also has less incentive to cooperate. Furthermore, we observe that

the game may have multiple Nash Equilibria corresponding to different cooperation levels, e.g., users

cooperate at all views in the full cooperation equilibrium, while users only cooperate at certain views

in the partial cooperation equilibrium. The particular equilibrium the game will converge to depends

on the initial cooperation level of the game. To stimulate user cooperation at all views, we propose a

Pay-for-Cooperation (PfC) scheme at the beginning of the game to drive the game to the full cooperation

equilibrium to improve system efficiency. Our simulation results show the effectiveness of PfC.

I. INTRODUCTION

Multiview video refers to the simultaneous capturing of multiple videos of the same scene by a large

array of closely spaced cameras (e.g. more than 100 cameras in [1]) from different viewpoints. In the

emerging interactive multiview view streaming (IMVS) service [2], a client can periodically select one
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out of many captured views available for observation as the video is played back in time. In response, a

server sends only pre-encoded data for the single requested view (rather than all the captured views) to

lower streaming rate. However, in this client-server model based multiview video streaming, the server

can be easily overloaded when many users request service at the same time.

In single-view video streaming, to ease server’s burden to upload the same video to many users,

user cooperation [3]–[5] has been exploited where peers share received packets of the same video, so

that a single server can serve a large number of clients. However, exploiting user cooperation in high

dimensional IMVS is difficult. First, a small number of peers in a local area are likely to watch different

views among a large number of available views, making it difficult for a peer to find partners watching

the exact same view to cooperate. In the literature, the work in [2] designed frame structures using

distributed source coding (DSC) [6] (based on information theory developed in [7], [8]) for IMVS to

enable users watching different views to help each other switch view and to achieve bandwidth-efficient

view switching. The work in [9] used DSC for both view switching and cooperative packet loss recovery

in a WWAN multiview video multicast system. Following the above works, in this work, we use a DSC

based multiview video coding structure to facilitate cooperative view-switching, where a user can get

help from another peer who has the video data in neighboring views.

Second, even if a peer can find cooperative partners at a time instance, it is difficult to maintain such

partnership over time, since peers switch views frequently and independently. This makes it difficult

to design incentive mechanisms for cooperation stimulation. In the literature, incentive mechanisms for

single view video streaming system have been studied extensively. The works in [10]–[14] proposed

direct reciprocity mechanisms, where a user i helps another user j because user j helped i previously.

The direct reciprocity schemes are effective when users expect to maintain a long-term partnership, which

may not be suitable for IMVS, where users usually have short-term partnerships. The work in [15]–[17]

proposed payment-based schemes, where a user earns points by uploading data to others and pays points

to request others’ data. These schemes work for the scenario where users change partners frequently.

However, users make decisions based on the short-term payoffs only. If the gain from others’ payment

is smaller than the cost to help, users will not cooperate. The works in [18]–[21] proposed indirect

reciprocity games, where each user is assigned a reputation level. A user helps others to gain a higher

reputation level, which in turn leads to a higher likelihood to receive others’ help.

In this work, similar to [18], [19], we also model user interaction in the IMVS as an indirect reciprocity

game, since it effectively stimulates user cooperation when users change partners frequently and when the

short-term payoff is negative. Note that in IMVS, users switch views and update reputations frequently,
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and thus may change their strategies from time to time. To address this issue, we model their action

selection as a Markov decision process (MDP) [22], and study users’ optimal action selection at each

particular view and reputation to maximize their entire lifetime utilities.

We then summarize the major contributions of this work as follows:

• To the best of our knowledge, this is the first work that provides theoretical analysis on how the

multiview video affects users’ decision making in cooperative video streaming. In this work, we observe

that users may cooperate at some views but not others. This is because peers can predict their future

view navigation paths probabilistically, and thus, can estimate the probability that he will need others’

help. If a peer is at a view leading to a view-navigation path with lower probability of requiring others’

help, he also has less incentive to cooperate.

• We show that a large number of reputation levels provide higher incentive for user cooperation. We

first observe that the 2-level reputation system is memoryless, and each user makes decisions based on

the short-term utility only. Thus, if a user is at a view where cooperation only results in a negative

short-term utility, he will not cooperate. In the R-level reputation system with R ≥ 3, a user needs to

take his future utility into consideration, and may still cooperate even if the short-term payoff is negative.

This is because cooperation helps him maintain a high reputation and get others’ help in the future. If

the future payoffs can compensate his current loss, he will still cooperate.

• We observe that the game may have multiple Nash Equilibria corresponding to different cooperation

levels (e.g., users cooperate at all views in the full cooperation equilibrium, while users only cooperate at

certain views in the partial cooperation equilibrium). The particular equilibrium the game will converge

to depends on the initial state of the game. Thus, we first analyze the sufficient condition for the game

to converge to the full cooperation equilibrium. We then propose a pay-for-cooperation (PfC) scheme at

the beginning of the game to drive the game to the desired full cooperation equilibrium with the optimal

system performance

• We also study the impact of user membership dynamics on user cooperation and system performance.

From our theoretical analysis and simulations, we observe that as long as the percentage of users adopting

full cooperation strategy exceeds a threshold, full cooperation is a dominant strategy for all users, and

they will all cooperate.

The outline of the paper is as follows. We overview the formulation of the IMVS streaming problem,

the indirect reciprocity game and users’ decision making with MDP in Section II. We analyze users

optimal action selection in Section III. We study the Nash Equilibria of the game in Section IV and V.

We present simulation results and conclusions in Section VI and VII, respectively.
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II. SYSTEM MODEL

In this work, we consider an IMVS system, where a scene is captured by a large one-dimensional

array of M evenly spaced cameras. A server compresses video of each view into coding segments of K

frames each, and provides IMVS service to a group of N users who are synchronized in playback time.

Once a user selects a view, he remains in this view for one segment of K consecutive frames. At the

end of this segment, he can switch to another view.

Based on this IMVS system, in this section we first describe an interaction model that captures users’

view switching behavior, and a multiview video coding structure that facilitates cooperative view switching

among peers. We then propose an indirect reciprocity game to stimulate user cooperation. Finally, we

model users’ optimal action selection as an MDP. The frequently used notations are listed in Table I.1

A. View Switching Model

Views are divided into two categories: anchor views and normal views. Suppose that there are na

anchor views, which evenly divide normal views into (na + 1) view sets of nn = (M − na)/(na + 1)

views per set. When seeking interested views, a user first browses views coarsely through anchor views.

Once he reaches an interested anchor view, he can switch to neighboring normal views to refine view

selection. This coarse-to-fine browsing structure is typical in other media navigation applications as well,

such as Google Maps2. In this work, we assume that users switch interested views frequently. After

finding an interested view and remaining for one segment, they will likely seek another interested view

for the next segment. Thus, anchor views are more frequently selected (more popular) than normal views.

At each view, we consider the scenario where a user can only switch to his nearby anchor views

with probability Pa, or nearby normal views with probability (1− Pa). Specifically, we model the view

transition as a discrete time Markov chain, and construct a M ×M transition matrix T, where T(v, v′)

is the probability of a user selecting view v′ in the next segment after viewing v:

T(v, v′) =


Pa/|Za| if v′ ∈ Za,

(1− Pa)/|Zn| if v′ ∈ Zn,

0 otherwise,

(1)

where Za is the set including v’s nearby anchor views, and Zn is the set including v’s nearby normal

views. Specifically, if v is an anchor view, Za includes v’s left/right closest anchor views and v itself, and

1In this table, N+ denotes the set of positive integers as in the convention.
2http://maps.google.com
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TABLE I

FREQUENTLY USED NOTATIONS

A = {1, 2, ..., R+ 1} The action space

R = {1, 2, ..., R} The reputation space

R̄ = {tr−1, tr, ..., R} The reputation set with reputations no less than tr − 1

S = R× V The state space in the MDP

V = {1, 2, ...,M} The view space

V , V̄ ⊂ V The low utility view set, the high utility view set

Q 2× 2 matrix The reputation updating matrix

T M ×M matrix The view transition matrix

v 1×M vector The steady state view distribution

x 1×R vector The reputation distribution

c ∈ [0,+∞) The cost of helping to upload a reconstructed frame

gv ∈ [0,+∞) The expected short-term gain if the view switching starts from view v and helpers always help

tr ∈ R The reputation threshold to differentiate beneficial users from non-beneficial users

y ∈ [0, 1] The percentage of beneficial users in the network

yin ∈ [0, 1] The percentage of selected users in the PfC scheme

Gr,v ∈ [0,+∞) The expected short-term gain from others’ help with reputation r and view v

L ∈ N+ The average interval between two consecutive requests received by a user

M ∈ N+ The number of views

N ∈ N+ The number of users

Pa ∈ [0, 1] The probability of switching to anchor views

P ar→r′ ∈ [0, 1] The reputation transition probability from r to r′ by action a

R ∈ N+ The highest reputation level

Uar,v ∈ (−∞,+∞) The expected short-term utility by taking action a at reputation r and view v

Wπ
r,v ∈ (−∞,+∞) The lifetime utility at reputation r and view v by action policy π

W a′,π
r,v ∈ (−∞,+∞) The lifetime utility of the one-shot deviation to a′ at reputation r and view v

η ∈ [0, 1] The discounting factor

π ={as ∈ A|s ∈ S} The action policy

γ ∈ [0, 1] The discounting factor after (tr − 1)L segments

Zn includes v’s left/right adjacent normal view sets. If v is a normal view, Za only includes v’s left/right

closest anchor views, and Zn is the normal view set where v belongs. Given the one-step transition

matrix T, the l-step transition matrix is Tl (T raised to the lth power), where Tl(v, v′) is the probability

to transition to view v′ in l segments after viewing v. The steady state view probability distribution is v

satisfying vT = v, where v(v) is the probability that a user is at view v at the steady state.

For example, for a M = 3 views with a single anchor view in the middle, the one-step and two-step
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1,1 2,1 3,1 4,1

4,1

5,1 6,1

1,2 2,2 3,2 4,2

4,2

5,2 6,2

1,3 2,3 3,3 4,3

4,3

5,3 6,3

Fig. 1. Example of our multiview video coding structure for M = 3 views, segment size K = 3. Circles, squares and diamonds

denote I-, P- and DSC frames, respectively. Each frame Fτ,v is labeled by its frame index τ and view v.

transition matrices are

T =


1 2 3

1 1− Pa Pa 0

2 (1− Pa)/2 Pa (1− Pa)/2

3 0 Pa (1− Pa)

 and T2 =


1 2 3

1 (1− Pa)(1− Pa

2 ) Pa Pa
1−Pa

2

2 1−Pa

2 Pa
1−Pa

2

3 Pa
1−Pa

2 Pa (1− Pa)(1− Pa

2 )

 (2)

respectively, and the steady state view distribution is v =
[

1−Pa

2 , Pa,
1−Pa

2

]
.

B. Multiview Video Coding Structure and Cooperative View Switching

To address the problem of users having difficulty establishing partnership for cooperation in a high

dimensional IMVS, we use a frame structure similar to that in [9]. It supports cooperative view switching,

where users may cooperate with each other even if they are observing different views. Fig. 1 shows an

example of the frame structure used in this work. Each view is encoded into segments of K frames. We

encode the first segment using an intra-coded I-frame with K−1 trailing P-frames. For the next segment,

for view switching we encode the first frame FK+1,v into two versions. The first version is an intra-coded

I-frame, which can be decoded independently. The second version is a DSC frame [6]. To encode the

DSC frame, we use the I-frame of the same picture as target, and use at most three decoded P-frames
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FK,max(1,v−1), . . . , FK,min(M,v+1) as predictors. As long as one of the predictor frames is available at the

decoder buffer, the DSC frame can be correctly decoded, and the decoded frame is bit-by-bit equivalent

to the frame decoded from the I-frame. Frame FK+1,v is followed by K − 1 trailing P-frames. The

following segments have the same structure. In general, an I-frame is much larger than a DSC frame,

and a DSC frame is slightly larger than a P-frame [6].

This structure can support cooperative view switching. Using Fig. 1 as an example, suppose that a

peer i switches from view 1 to view 3 after the first segment. If another peer watches view 2 in the first

segment and is willing to share the reconstructed frame F3,2, then peer i only needs to ask the server

for the DSC frame of F4,3 and the following (K − 1) trailing P-frames to reconstruct the video in view

3. If no one helps peer i (either no user watches view 2 or view 3 in the first segment, or the users who

can help are not willing to help), then peer i has to request the I-frame of F4,3 from the server.

In this work, we assume that the server’s upload bandwidth is limited and expensive. Thus, it charges

subscription fees from peers that pull video data from it, and α denotes the price for the transmission

of each single bit from the server. As discussed above, when a peer switches to a non-adjacent view, if

he can get help from others, he will download the last reconstructed frame in the previous segment from

the helper for free, and will only download a DSC frame from the server instead of an I-frame. Thus, he

can receive a gain of α(sizeI −sizeDSC) for paying less to the server, where sizeI and sizeDSC denote

the number of bits of one I-frame and one DSC frame, respectively. However, uploading a reconstructed

frame will incur a cost to the helper due to the consumed bandwidth, CPU time, etc. In this work, we

consider the scenario with homogeneous users who have the same cost to upload a frame. In the following

discussion, without loss of generality, we normalize the gain of receiving a reconstructed frame to 1, and

let c denote the normalized cost to upload a reconstructed frame to a peer.

C. Indirect Reciprocity Game

To stimulate user cooperation, we model their interaction as an indirect reciprocity game as follows.

1) Peer Reputation and Interaction: In this system, each peer i is assigned a discrete reputation

ri ∈ R = {1, 2, ..., R}, where a larger ri indicates a higher reputation and peer i is more likely to receive

others’ help. Users’ reputations change as they interact with each other. When a peer needs help, he

first needs view information of other peers to find a helper. To implement this, we can either let peers

exchange their view information and seek help in a distributed way, or have a central controller that

tracks peers’ up-to-date view information and assigns helpers to peers who need help. For simplicity, we

assume that there is a trustworthy local agent close to the N peers, who tracks peers’ view switching,
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helps each peer find helpers, observes their interactions, and updates their reputations. Specifically, when

peer j needs help, the local agent randomly selects peer i from peers that can help, and sends a request

to peer i with peer j’s reputation rj . Upon receiving a request, peer i will decide whether to help. In this

work, we consider that peer i takes a threshold-based action ai ∈ A = {1, 2, ..., R + 1}, with A as the

action space, and peer i will only cooperate with others with reputations higher than ai, i.e., if rj ≥ ai,

peer i will help peer j. Otherwise, peer i will not help and peer j has to request the I-frame from the

streaming server. In the extreme case where ai = R + 1, peer i will not cooperate with anyone, while

ai = 1 means peer i is willing to help all users. With the threshold-based action, users take the same

action for requests with different rj’s, which reduces the decision complexity and simplifies the analysis

for the optimal actions.

2) Social Norm and Reputation Update: Based on the observed interaction between peer i who receives

the request and j who sends the request, the local agent updates i’s reputation following the pre-determined

social norm [23] that defines reputation update rules, while j’s reputation remains the same. In this work,

we use the social norm similar to one in [19], since it is effective in user cooperation stimulation.

Specifically, we first define a pre-determined threshold 1 < tr ≤ R. If user i has reputation ri ≥ tr, he

has high reputation and is likely to get others’ help. Thus, he is called a beneficial user. Otherwise, he is

not likely to get others’ help, and is a non-beneficial user. If ri ≥ tr − 1 (i.e., user i is a beneficial user

or may become a beneficial user after this interaction), i’s reputation is updated following the matrix,

Q =


rj ≥ tr rj < tr

ai ≤ rj , uploading min{ri + 1, R} 1

ai > rj , not uploading 1 min{ri + 1, R}

. (3)

From (3), if user i cooperates with a beneficial user or denies the request from a non-beneficial user, i

complies with the social norm, and he is rewarded by one-step increase of his reputation. Otherwise, he

does not comply with the social norm, and he is punished with his reputation being lowered to 1. Thus,

with (3), peers are encouraged to help beneficial users, but discouraged to help non-beneficial users.

If user i does not comply with the social norm and his reputation was lowered to 1, similar to [24],

the system takes time to forgive his misbehavior. During the forgiveness period, his reputation will be

increased by one-step for every time he receives a request, no matter how he responses to such request,

until his reputation climbs to tr − 1. Since his reputation is lower than tr − 1 during the forgiveness

period, he hardly receives others’ help, which results in loss of utility. Here, tr determines the duration

of the forgiveness period. A larger tr means that it takes a longer time for the system to forgive, and

thus gives a harsher punishment. Note that when users make decisions, in addition to the social norm,
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they also take other factors into consideration, which will be discussed in details in Section III, IV and

V.

In this work, we assume that when users make decisions on the current requests, they also take the

future interactions into consideration. Since they do not know with whom they will interact at a later time,

the information of peers’ reputation distribution x helps in their decision making, where x(r) denotes

the probability that a user has reputation r ∈ R. Given that the local agent has the record of all peers’

reputations at different time instances, it can estimate x using

x(r) =

∑Tc

t=1

∑N
i=1 I[rti = r]

NTc
, ∀ r ∈ R (4)

where Tc is the current segment index, and I[·] is the indicator function. The local agent broadcasts x

to all peers periodically to assist their decision making.

D. Optimal Action Selection with Markov Decision Process (MDP)

In our cooperative IMVS system, users may frequently switch views and their reputations may also

change from time to time. Since they may take different actions at different views and reputations, we

use MDP to track their strategy dynamics. In our IMVS, the game is played in a sequence of stages, and

a stage represents an instance when a user receives a request and needs to make a decision. There are

L ≥ 1 segments of video playback between two neighboring stages. Fig. 2 shows an example where a

user receives a request at segment t1 and will receive another request two segments later at t2 = t1 + 2

with L = 2. Following the work in [19], to simplify the analysis, we let L be the average interval between

two consecutive requests received by a user in our work.

Given the above defined sequence of stages, an MDP is defined as a four-tuple: the state space S, the

action space A, the state transition probability P and the expected short-term utility function U . In our

IMVS, a state s = (r, v) represents a user’s reputation r and view v when he receives a request. In the

following sections, we will interchangeably use s and (r, v) to denote a state. Hence, the state space is

denoted as S = R×V , where V = {1, ...,M} is the view space and R = {1, 2, ..., R} is the reputation

space. At each state (r, v), a user can select action ar,v from the action space A = {1, · · · , R + 1}.

In the example in Fig. 2, there are M = 3 views and R = 3 reputation levels with tr = 3. The state

space includes a total of 9 states {(r, v)}1≤r≤3,1≤v≤3, and the action space includes 4 possible actions

A = {1, 2, 3, 4}.

A user receives a request at time t and he is at state (r, v). He takes action ar,v and transitions to

another state (r′, v′) with state transition probability P
ar,v

(r,v)→(r′,v′) when he receives another request in
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the next stage at time t+L. By taking action ar,v, the user receives an expected short-term utility Uar,v
r,v ,

which contains two parts. First, this action may result in a frame upload to another peer, which incurs

an expected cost Car,v immediately at time t. In addition, this action ar,v results in the update of the

user’s reputation to r′ at time t+ 1, and he keeps reputation r′ from time t+ 1 to t+L until he receives

another request. This updated reputation affects the probability of receiving others’ help in the following

L segments (i.e., from time t + 1 to t + L), and thus his gain. Given the updated reputation r′ and the

view v that he is watching at time t, let θ(t + l) be the expected gain he receives at time t + l for

1 ≤ l ≤ L, and define Gr′,v =
∑L

l=1 η
lθ(t + l) as the expected short-term gain, where η ∈ (0, 1) is

the discounting factor that quantifies how much a user cares about his future payoff. Then, the expected

short-term utility function is Uar,v
r,v = Gr′,v − Car,v . In Fig. 2, when the user receives a request at time

t1, he is at state (r = 3, v = 1). He selects an action a3,1 ∈ {1, 2, 3, 4}, receives an expected short-term

utility Ua3,1

3,1 , and transitions to another state s′ = (r′, v′) with probability P a3,1

(3,1)→(r′,v′) when he receives

another request in the next stage at time t2 = t1 + L. This process is repeated till the end of the game.

The action policy in MDP is defined as π = {ar,v ∈ A|(r, v) ∈ S} that defines the action ar,v at each

state (r, v). The goal of MDP is to find the optimal action policy that maximizes the expected lifetime

utility, which is recursively defined as

W π
r,v = Uar,v

r,v + ηL
∑

(r′,v′)∈S

P
ar,v

(r,v)→(r′,v′)W
π
r′,v′ ∀(r, v) ∈ S, (5)

where the second term denotes the user’s aggregate lifetime utility after the next stage. In this work, we

consider the scenario with homogenous users who have the same cost, and thus take the same optimal

action policies at the Nash Equilibrium. To examine whether a policy π gives a Nash Equilibrium, for

each user, with the assumption that all others take π, if π also maximizes his lifetime utility, he has no

incentive to deviate and π is an equilibrium policy.

III. MDP ANALYSIS AND EQUILIBRIUM ACTION POLICY DISCUSSION

In this section, we first analyze the state transition probability, the expected short-term utility and the

lifetime utility of the MDP. We then discuss the properties of equilibrium action policies.

A. MDP Analysis

1) State Transition Probability: We first analyze the probability that a user i transitions from state

(r, v) to (r′, v′) after L segments of video playback in the next stage. Note that in our IMVS, the view

and reputation transition probabilities are independent. Given the one-step view transition matrix T in
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Fig. 2. An example of MDP with M = 3 views and R = 3 levels in the reputation system. All circles represent

states, while all squares represent actions. The average interval between two consecutive requests is L = 2.

(1), the probability that user i transitions from view v to v′ in L segments is TL(v, v′). In the example

in Fig. 2 with L = 2, user i is at view 1 at time t1. From (2), after L = 2 segments, he will transition to

view 1, 2 and 3 with probabilities T2(1, 1) = (1−Pa)(1− Pa

2 ), T2(1, 2) = Pa and T2(1, 3) = Pa
1−Pa

2 ,

respectively.

To find the reputation transition probability, suppose that user i at state (r, v) takes action ar,v when

responding to user j’s request, and user i’s reputation is updated to r′. From Section II-C2, when user i’s

reputation is r < tr−1, his reputation is always increased by 1, and we have P ar,v

r→r+1 = 1 and P ar,v

r→r′ = 0

for r′ 6= r+ 1. When r ≥ tr−1, user i’s reputation is updated using Q in (3) and the updated reputation

is either min{r + 1, R} or 1. The updated reputation is 1 when i denies the request of a beneficial

user (i.e., ar,v > rj ≥ tr) or i cooperates with a non-beneficial user (i.e., ar,v ≤ rj < tr). In addition,

P
ar,v

r→min{r+1,R} = 1 − P ar,v

r→1 and Pr→r′ = 0 for all other values of r. In this work, we focus on user

i’s optimal actions to maximize his average utility for any requester he may encounter. The requester’s

reputation rj is assumed to follow the distribution x. Thus, the reputation transition probability is:

P
ar,v

r→1 =



∑tr−1
rj=ar,v

x(rj) r ≥ tr − 1, ar,v < tr (helping a non-beneficial user),∑ar,v−1
rj=tr x(rj) r ≥ tr − 1, ar,v > tr (not helping a beneficial user),

0 otherwise,

P
ar,v

r→min{r+1,R} = 1− P ar,v

r→1, and P ar,v

r→r′ = 0 ∀r′ 6= 1, r′6= min{r + 1, R}. (6)

In the example in Fig. 2 (with tr = 3), if the user takes action 1 at state (r = 3, v = 1) (with r > tr− 1)

and cooperates with all users, he will help a non-beneficial user and his reputation will be lowered to 1
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with probability (x(1) + x(2)). The probability to transition to other reputation levels can be calculated

similarly.

In summary, the state transition probability is P ar,v

(r,v)→(r′,v′) = TL(v, v′) · P ar,v

r→r′ . In the example in

Fig. 2, by taking action 1, he will transition to state (r′ = 1, v′ = 3) in the next stage with probability

Pa
1−Pa

2 (x(1) + x(2)), and the probability to transition to other states can be calculated similarly.

2) Expected Short-term Utility and Lifetime Utility: We now analyze the expected short-term and the

lifetime utility functions in (5), and start with the expected short-term utility. From the discussion in

Section II-D, the expected short-term utility Uar,v
r,v contains two parts: the expected immediate cost Car,v

and the expected short-term gain Gr′,v. With the assumption that the requester j’s reputation follows

the distribution x, the probability that he uploads the frame with action ar,v is
∑R

rj=ar,v
x(rj) (with∑R

rj=ar,v
x(rj) = 0 if ar,v = R+ 1). Therefore, his expected cost is Car,v = c

∑R
rj=ar,v

x(rj).

To analyze Gr′,v, note that taking action ar,v makes user i’s reputation updated to r′ at time t+ 1 and

he keeps r′ for the following L segments (i.e., from time t+1 to time t+L). We then derive the gain he

receives at each time t+ l (with 1 ≤ l ≤ L) given that he watches view v at time t. At time t+ l, user

i receives a positive normalized gain 1 if and only if he switches to a non-adjacent view (i.e., he needs

help) and there is a user who can and is willing to help him. Otherwise, his gain is 0. Let Pr′,v(t + l)

denote the probability that user i switches to a non-adjacent view at time t+ l and there is a user who

can and is willing to help him. Thus, we have Gr′,v =
∑L

l=1 η
lPr′,v(t+ l).

We then derive Pr′,v(t+ l) step by step. Let vi(t+ l) denote the view that user i watches at time t+ l.

For a given view v′, let Vv′
4
={max(v′− 1, 1), v′,min(M, v′+ 1)} be the set including all adjacent views

of v′. In the example in Fig. 2, V1 = {1, 2}, V2 = {1, 2, 3} and V3 = {2, 3}. Then, we have

Pr′,v(t+ l) =

M∑
v′=1

P [Hh|H1(v′)]P [H1(v′)]P [(vi(t+ l) = v′, vi(t+ l − 1) 6∈ Vv′ |vi(t) = v] , (7)

where P [vi(t+ l) = v′, vi(t+ l − 1) 6∈ Vv′ |vi(t) = v] is the probability that given that user i is at view

v at time t, he switches to view v′ at time t+ l from a non-adjacent view and needs help, H1(v′) is the

event that there is at least one helper who can help user i switch to view v′ at time t + l (i.e., there is

at least one user who is watching a neighboring view of v′ at time t+ l − 1), and Hh is the event that

the selected helper is willing to help. Note that

P [vi(t+ l) = v′, vi(t+ l − 1) 6∈ Vv′ |vi(t) = v]

=
∑

v′′ 6∈Vv′

P [vi(t+ l) = v′|vi(t+ L− 1) = v′′]P [vi(t+ l − 1) = v′′|vi(t) = v] =
∑

v′′ 6∈Vv′

T(v′′, v′)Tl−1(v, v′′).(8)

To find P [H1(v′)], we actually derive the probability that at least one of the rest N − 1 users watch

views in Vv′ at time t+ l − 1. Given the stationary view distribution v, we have
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P [H1(v′)] = 1−

1−
∑

v′′∈Vv′

v(v′′)

N−1

. (9)

To find the probability that the selected helper k is willing to help, helper k will help user i if user i’s

current reputation r′ is larger than or equal to helper k’s decision ark,vk(t+1), which depends on helper

k’s reputation rk and view vk(t+ l) at time t+ l when k receives the request. Therefore, we have

P [Hh|H1(v′)] =

R∑
rk=1

M∑
vk(t+l)=1

x(rk)pv′(vk(t+ l))I
[
ark,vk(t+l) ≤ r′

]
,

where pv′(vk(t+ l)) = P [vk(t+ l)|vk(t+ l − 1) ∈ Vv′ ]

=
∑

v′′∈Vv′

P [vk(t+ l)|vk(t+ l − 1) = v′′]P [vk(t+ l − 1) = v′′|vk(t+ l − 1) ∈ Vv′ ]

=
∑

v′′∈Vv′

T(v′′, vk(t+ l))
v(v′′)∑
ṽ∈Vv′ v(ṽ)

. (10)

Here, the helper k’s reputation is assumed to follow reputation distribution x, v is the steady state view

distribution, and pv′(vk(t + l)) is the probability that given helper k watches a neighboring view of v′

at time t+ l − 1, he switches to view vk(t+ l) at time t+ l. Therefore, we have

Gr′,v =

L∑
l=1

ηl
M∑
v′=1

P [Hh|H1(v′)]P [H1(v′)]P [vi(t+ l) = v′, vi(t+ l − 1) 6∈ Vv′ |vi(t) = v] . (11)

Based on the above discussion, Gr′,v is affected by user i’s view navigation path in the next L segments

starting from view v. If he has a low probability to switch to non-adjacent views during the next L

segments, he will also tend to have a small Gr′,v. It is also easy to observe that Gr′,v is an increasing

function of r′, since a higher r′ gives a higher probability to get others’ help. Note that in (11), if

P [Hh|H1(v′)] is always 1, that is, helpers are always willing to help user i, then Gr′,v becomes

Gr′,v= gv,
L∑
l=1

ηl
M∑
v′=1

P [H1(v′)]P [vi(t+ l) = v′, vi(t+ l − 1) 6∈ Vv′ |vi(t) = v] . (12)

Thus, gv is a user’s maximum expected short-term gain if he starts view switching from v, and always

receives help when needed. Based on the above analysis, together with the fact that the updated r′ can

only be min{r+ 1, R} or 1, we can derive user i’s expected short-term utility after taking action ar,v as

Uar,vr,v = −c
R∑

rj=ar,v

x(rj) + (1− P ar,vr→1)Gmin(r+1,R),v + P
ar,v
r→1G1,v. (13)

Thus, given the action policy π, following (5), we have the lifetime utility W π
r,v as

Wπ
r,v = Uar,vr,v + ηL

M∑
v′=1

TL(v, v′)
[
(1− P ar,vr→1)Wπ

min(r+1,R),v′ + P
ar,v
r→1W

π
1,v′

]
. (14)

B. Discussion on the Equilibrium Policies

1) Elimination of Non-Equilibrium Policies: We now derive the Nash Equilibrium action policies. In

our MDP, the size of the state space is |R||V| = RM , and we have (R+ 1)RM possible action policies.

To avoid examining all these policies, we need to first eliminate non-equilibrium ones using Theorem 1,

which we will discuss one by one in the following.
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Theorem 1: In an equilibrium action policy π,

a) For all r < tr − 1 and all v ∈ V , ar,v = R+ 1.

b) For all r ≥ tr − 1 and all v ∈ V , ar,v ∈ {tr, R+ 1}.

c) For any view v, a user will take the same action for all reputations r ≥ tr−1, i.e., atr−1,v = ... = aR,v.

• Proof of Theorem 1a): Theorem 1a) says that if a user is not a beneficial user and cannot become a

beneficial user after this decision, then he will not cooperate no matter which view he is watching. This

is because when r < tr − 1, for any action he takes, his reputation will be always increased by one,

while ar,v = R + 1 gives zero cost since he will not help anyone. Thus, ar,v = R + 1 dominates the

other actions when r < tr − 1.

• Proof of Theorem 1b): Theorem 1b) says that if a user is a beneficial user or may become a beneficial

user after this decision, then he will either cooperate with beneficial users (i.e., a = tr) or do not cooperate

with anyone (i.e., a = R+1). It takes two steps to prove this. We will first show that the action ar,v = tr

dominates all actions ar,v < tr. We then show that any action policy with action tr + 1 ≤ ar,v ≤ R

cannot be an equilibrium action policy. From these two results, ar,v can only be tr or R+ 1.

We first compare the action ar,v = tr with ar,v < tr in terms of the incurred cost Car,v and the updated

reputation r′. First, with action ar,v = tr, the expected cost to upload is Ctr = c
∑R

rj=tr
x(rj), and with

ar,v < tr, the cost to upload is Car,v<tr = c
∑R

rj=ar,v
x(rj) ≥ Ctr . Second, with action ar,v = tr,

from (6), the user’s reputation is rewarded with one-step increase with probability 1. However, with

ar,v < tr, his reputation is rewarded with one-step increase with probability 1 − (
∑tr−1

rj=ar,v
x(rj)) ≤ 1.

Thus, ar,v = tr gives a lower cost but a higher probability to be rewarded with one-step increase of his

reputation. Thus, ar,v = tr dominates all ar,v < tr, and we should have ar,v ≥ tr in the equilibrium.

Then, to show that action tr + 1 ≤ ar,v ≤ R cannot be in an equilibrium policy, we use the One-shot

Deviation Principle [25], which says that an action policy is an equilibrium if and only if no one can gain

by one-shot deviation when others keep this policy unchanged. Here, one-shot deviation means taking

a different action rather than the one defined in the action policy only for the current response to a

request, but still following the policy in future responses. We have the following proposition with proof

in Appendix A.

Proposition 1: For a policy π with tr + 1 ≤ ar,v ≤ R for reputation r ≥ tr − 1, one-shot deviation to

either a′r,v= tr or a′r,v=R+ 1 gives a higher lifetime utility. Thus, this π cannot be an equilibrium policy.

From Proposition 1 and the fact that ar,v = tr dominates all ar,v < tr, ar,v can only be tr or R + 1

in an equilibrium policy, i.e., either cooperate with all beneficial users or do not cooperate with anyone.
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Fig. 3. Example of the state partition and aggregation with 3 views and 3-level reputation system (with tr = 3). (a)

The state partition. For each v, the states (3, v) and (2, v) forms a subspace SR̄,v and state (1, v) forms a subspace

{(1, v)} with a single element. (b) The MDP after aggregating the state space SR̄,v as one state (R̄, v), and the

corresponding action can only be selected from {tr, R+ 1} = {3, 4}.

• Proof of Theorem 1c): We first define a reputation subspace R̄ = {r|tr − 1 ≤ r ≤ R} including all

reputations no less than tr − 1. Then, we define a state subspace SR̄,v = {(r, v)|r ∈ R̄, v ∈ V} that

includes all states with view v and reputations no less than tr − 1. Theorem 1c) says that for all states

in SR̄,v, a user should take the same action, i.e., for any view v, we have atr−1,v = atr,v = ... = aR,v in

an equilibrium policy. To prove this, we use the concept of Bisimilarity [26], which is defined below.

Definition 1: (Bisimilarity) In an MDP, suppose that the state space is divided into m non-overlapping

subspaces: S = S1
⋃
S2
⋃
...
⋃
Sm. For any Si (1 ≤ i ≤ m), and any two states s, s′ ∈ Si (s 6= s′), if for

any action a, we have i)
∑

s′′∈Sj P
a
s→s′′ =

∑
s′′∈Sj P

a
s′→s′′ for all 1 ≤ j ≤ m (i.e., with the same action

a, the two states s and s′ have the same probability to transition to another state subspace Sj); and ii)

Uas = Uas′ , (i.e., with the same action a, the two states s and s′ have the same expected short-term utility),

then all states in the same state subspace Si have the bisimilarity relationship, i.e., they are equivalent

and can be aggregated as one state ξi.

To study states with bisimilarity relationship in our MDP, we first divide the state space S into

subspaces. For any view v ∈ V , we have SR̄,v defined earlier, which includes states with view v and

reputations no less than tr − 1. For any view v ∈ V and reputation 1 ≤ r ≤ tr − 2, the state (r, v) forms

a state subspace {(r, v)} with a single element. All these subspaces are non-overlapping and we have⋃
v∈V

(
{(1, v)}

⋃
...
⋃
{(tr − 2, v)}

⋃
SR̄,v

)
= S. For the example in Fig. 2 with 3 views and 3-level

reputation system (where tr = 3), Fig. 3a shows the corresponding states partition with 6 subspaces

{(1, 1)}, SR̄,1 = {(2, 1), (3, 1)}, {(1, 2)}, SR̄,2 = {(2, 2), (3, 2)}, {(1, 3)}, and SR̄,3 = {(2, , 3), (3, 3)}.
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We then have the following proposition, and the proof is in Appendix B.

Proposition 2: Following the above state partition, all states in SR̄,v have bisimilarity relationship, and

can be aggregated as one state.

In the example in Fig. 3a, after state aggregation, there are 6 aggregated states: (1, 1), (R̄, 1), (1, 2),

(R̄, 2), (1, 3) and (R̄, 3), and the MDP in Fig. 2 becomes the one shown in Fig. 3b.

The next step is to find the transition probability and the expected short-term utility function for the

updated MDP. Following Definition 1, given the aggregated states {ξ1, · · · , ξm}, by taking action a, a

user transitions from state ξi to state ξj with probability P aξi→ξj =
∑

s′∈Sj P
a
s→s′ for any s ∈ Si, and

the expected short-term utility at the aggregated state ξi is Uaξi = Uas for any s ∈ Si. In our MDP, the

view and the reputation transitions are independent, and the state aggregation here affects the reputation

transition probability only. Therefore, we need to first find the updated reputation transition probability

P aR̄→R̄, P aR̄→r and P a
r→R̄ for r < tr − 1. We first study P a

r→R̄ for r < tr − 1. When r < tr − 1, the

reputation will always be increased by one step to r + 1 regardless of the action a. Thus, if r = tr − 2,

the reputation will be updated to tr − 1 ∈ R̄, and P a
(tr−2)→R̄ = 1. For r ≤ tr − 3, we have P a

r→R̄ = 0.

We then study P aR̄→R̄ and P aR̄→r. From Section II-C2, with the reputation in R̄, the updated reputation

r can only be 1 or min{r + 1, R} ∈ R̄. Therefore, we have P aR̄→R̄ = 1 − P aR̄→1
and P aR̄→r = 0 for

2 ≤ r ≤ tr − 2. From the proof of Proposition 2, P ar′→1 is the same for any r′ ∈ R̄. Thus, we have

P aR̄→1
= P ar′→1 for all r′ ∈ R̄. Based on the above analysis, we can find the updated state transition

probability P a(r,v)→(r′,v′) = P ar→r′T
L(v, v′) for any r, r′ ∈ {1, · · · , tr − 1, R̄}.

In the MDP in Fig. 3b, when a user is at the aggregated state (R̄, v), from Theorem 1b), he will take

either action a = tr = 3 or action a = R + 1 = 4. With a = 3, he complies with the social norm in

(3) and his reputation will be updated to 3 with probability 1, that is, P a=3
R̄→R̄ = P a=3

2→3 = P a=3
3→3 = 1,

and P a=3
R̄→1

= P a=3
2→1 = P a=3

3→1 = 0. Thus, we can calculate the updated state transition probabilities

P a=3
(R̄,v)→(R̄,v′) = P a=3

R̄→R̄T
L(v, v′) = TL(v, v′) and P a=3

(R̄,v)→(1,v′)
= P a=3

R̄→1
TL(v, v′) = 0. Similarly, we

can find the state transition probabilities with action a = 4 for the MDP in Fig. 3b.

The last step is to update the expected short-term utility function UaR̄,v. Proposition 2 shows that with

the same action a, Uar,v is the same for all r ∈ R̄ and thus, UaR̄,v = Uar,v for any r ∈ R̄.

2) Lifetime Utility Functions: In the following, we will study how the state aggregation affects the

lifetime utility functions. From Theorem 1, when a user has reputation r < tr−1, he will take a = R+1

in the equilibrium. For r ∈ R̄ = {r|r ≥ tr − 1}, from Theorem 1c, for the same v, the actions are the

same for all r ∈ R̄. Thus, to simplify the notation of a action policy π, we first omit its actions with

reputations lower than tr− 1. We then omit the reputation index r in the action for r ∈ R̄. Thus, we has
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the simplified π = {a1, a2, ...aM}, where av ∈ {tr, R+ 1} is the action at view v ∈ V with r ∈ R̄.

With the above simplification of notations, we then study the lifetime utility with the aggregated states.

Since we only need to focus on the action selection with reputation in R̄, (14) can be rewritten as

Wπ
R̄,v = UavR̄,v + ηL

M∑
v′=1

TL(v, v′)
[
(1− P avR̄→1

)Wπ
R̄,v′ + P avR̄→1

Wπ
1,v′

]
. (15)

Note that (15) has a recursive term W π
1,v. First, a user with reputation r < tr − 1, his reputation always

increases by 1 for every time he receives a request, until his reputation climbs to tr−1, i.e., to R̄. Before

he climbs to R̄, following Theorem 1a), he always uses action R + 1 and does not help anyone. Thus,

his cost is always zero. In addition, Theorem 1b) indicates no one helps users with reputation smaller

than tr. Therefore, he does not receive any gain from others’ help with Gr′,v = 0. Thus, his expected

short-term utility is always zero. Based on this analysis, W π
1,v can be expanded following (14) as

Wπ
1,v = 0 + ηL

M∑
v′=1

TL(v, v′)Wπ
2,v′ = ηL

M∑
v′=1

TL(v, v′)

[
0 + ηL

M∑
v′′=1

TL(v′, v′′)Wπ
3,v′′

]

= η2L
M∑

v′′=1

T2L(v, v′′)Wπ
3,v′′ = ... = η(tr−2)L

M∑
v′=1

T(tr−2)L(v, v′)Wπ
tr−1,v′

= η(tr−2)L
M∑
v′=1

T(tr−2)L(v, v′)Wπ
R̄,v′ . (16)

Note that in (15) and (16), R̄ is a common reputation index in the subscripts of W π
R̄,v and Uav

R̄,v, which

can be omitted for notation simplicity. We then substitute (16) into (15), and rewrite (15) as

Wπ
v = Uavv + ηL(1− P avR̄→1

)

M∑
v′=1

TL(v, v′)Wπ
v′ + γP avR̄→1

M∑
v′=1

T(tr−1)L(v, v′)Wπ
v′ . (17)

where γ = ηL(tr−1) is the discounting factor after receiving tr − 1 requests.

To determine a policy π to be a Nash Equilibrium, we need to show that it can resist any one-shot

deviation, where the user takes action a′v other than the action av defined in π only for the current

response to a request, and he will follow π in all later responses. The lifetime utility with the one-shot

deviation to action a′v is

W
a′v,π
v =U

a′v
v + ηL(1− P a

′
v

R̄→1
)

M∑
v′=1

TL(v, v′)Wπ
v′ +γP

a′v
R̄→1

M∑
v′=1

T(tr−1)L(v, v′)Wπ
v′ . (18)

Comparing (17) and (18), one-shot deviation to a′v gives a different expected short-term utility Ua
′
v

v and

a different reputation transition probability P
a′
v

R̄→1
. In later discussion, we use the one-shot deviation

principle to examine whether a policy π is an equilibrium policy, that is, from a user’s perspective, given

that other users all take π unchanged, π is an equilibrium policy if and only if W π
v ≥ W

a′
v,π

v for any v

and a′v.

C. Stationary Reputation Distribution

From the previous analysis, users’ reputation distribution x, where x(r) being the probability that

a user has reputation r, affects the state transition probability and users’ expected short-term utilities.
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Thus, it affects users’ decision making. If an equilibrium exists in the game, in the simple scenario with

homogeneous users, all users should use the same strategy in the equilibrium, and it is expected that

the reputation distribution should also converge to a stationary state. In the following, given a policy π

adopted by all users, we determine whether there exists a stationary reputation distribution x.

We first let y =
∑R

r=tr
x(r) be the probability that a user is a beneficial user. Assume that user i

receives a request from user j, and both of their reputation follow distribution x. Then, following the

social norm in Section II-C2, if user i’s current reputation is r ≤ tr − 2 (with probability x(r)), his

reputation will be increased to r+ 1 for any action he takes. Thus, in the updated reputation distribution

x′, we should have x′(r) = x(r − 1) for 2 ≤ r ≤ tr − 1. If the stationary state exists, the reputation

distribution should remain the same and x′(r) = x(r). Therefore, we have x(1) = x(2) = ... = x(tr−1).

In addition, given y +
∑tr−1

r=1 x(r) = 1, we have x(1) = · · · = x(tr − 1) = (1− y)/(tr − 1).

If user i’s reputation is r ∈ R̄ (which happens with probability y+x(tr−1)), his action av = {tr, R+1}
only depends on his view v when receiving a request, and at the stationary state he is at view v with

probability v(v). i’s reputation will then be updated to either 1 or min{r + 1, R}. Given his possible

action av = {tr, R + 1} and from (6), his reputation is updated to 1 if and only if he takes action

R + 1 and user j who sends the request is a beneficial user with reputation rj ≥ tr. Therefore, user i’s

reputation is reduced to 1 with probability P aR̄→1
= I[av = R + 1]y, and he is a beneficial user with

probability 1− P aR̄→1
. Therefore, after the reputation update, user i is a beneficial user with probability

y′ = [y + x(tr − 1)]
∑
v∈V

v(v)(1− P avR̄→1
) = [y + x(tr − 1)]

∑
v∈V

v(v) (1− yI[av = R+ 1]) . (19)

For a given policy π = {av}, if the stationary state exists, we should have y′ = y, and y should satisfy

y′ − y =

(
y +

1− y
tr − 1

)∑
v∈V

v(v) {1− yI[av = R+ 1]} − y = 0. (20)

We first observe that given π, the left hand side (LHS) of (20) is a quadratic function of y. When

y = 1, LHS =
∑

v∈V v(v) {1− I[av = R+ 1]} − 1 ≤
∑

v∈V v(v) − 1 = 0, and when y = 0, LHS =

1
tr−1

∑
v∈V v(v) > 0. Thus, (20) has a single root in the range [0, 1]. Therefore, given π, there exists a

unique stationary reputation distribution x. To find x for a given policy π, we first solve (20) and find

y, and then calculate x(1) = ... = x(tr − 1) = 1−y
tr−1 .

IV. EQUILIBRIUM ACTION POLICY DERIVATION

In this section, we analytically derive the equilibrium action policies of the game. We first consider a

simple scenario with a single anchor view and derive the equilibrium policies in Section IV-A. We then

extend our analysis to the general case with multiple anchor views in Section IV-B.
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Fig. 4. V = {σ − 1, σ, σ + 1}, which denotes the view set including the anchor view σ and its left and right

adjacent views. V̄ = V \ V , which denotes the view set including the rest views.

A. Game Analysis with A Single Anchor View
1) View Switching Model with A Single Anchor View: Following the view switching model described

in Section II-A, with a single anchor view as shown in Fig. 4, this anchor view is in the middle, and

partitions the rest M − 1 normal views into two normal view sets with (M − 1)/2 views per set. (Here,

we assume M is an odd number.) Let σ = (M + 1)/2 denote the anchor view index. Following Section

II-A, the one-step view transition matrix is

T =



1 · · · σ − 1 σ σ + 1 · · · M

1 2(1−Pa)
M−1 · · · 2(1−Pa)

M−1 Pa 0 · · · 0
...

...
. . .

...
...

...
. . .

...

σ − 1 2(1−Pa)
M−1 · · · 2(1−Pa)

M−1 Pa 0 · · · 0

σ (1−Pa)
M−1 · · · (1−Pa)

M−1 Pa
(1−Pa)
M−1 · · · (1−Pa)

M−1

σ + 1 0 · · · 0 Pa
2(1−Pa)
M−1 · · · 2(1−Pa)

M−1
...

...
. . .

...
...

...
. . .

...

1 0 · · · 0 Pa
2(1−Pa)
M−1 · · · 2(1−Pa)

M−1


. (21)

Given (21), it is easy to show that the steady-state view distribution is v(σ) = Pa and v(v) = (1 −

Pa)/(M − 1) for all other views.

2) Expected Short-term Gain with A Single Anchor View: For IMVS with a single anchor view, we

first study the expected short-term gain Gr′,v for different views. In Appendix C, we show that with a

single anchor view, Gr′,v in (11) can be rewritten as

Gr′,v =

(
R∑

rk=tr−1

x(rk)

)(
M∑
vk=1

v(vk)I[avk ≤ r′]

)
gv, (22)

where gv defined in (12) is the maximum expected short-term gain when a user switches views starting

from v and always receives help whenever needed. gv is the only term in (22) that is affected by view

v. In the following, we compare gv with different v’s.

We first divide the view space V into two sets V = {σ − 1, σ, σ + 1} and V̄ = V \ V as shown in

Fig. 4. V includes the anchor view and its left and right adjacent views, and V̄ includes the rest views.

Then, we have the following Proposition 3, and the proof is in Appendix D.

Proposition 3: In a high dimensional IMVS (where the total number of views, M , is large, e.g.,

M ≥ 30) with a single anchor view, all views in V have approximately the same gv’s, and for views in

V̄ , their gv’s are also approximately the same.
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Fig. 5. (a) δV and δV̄ with different M . (b) ∆ with different Pa.

To numerically show this, we first let gV
4
=
∑

v∈V gv/|V| denote the average gv of all v ∈ V , and

similarly, define gV̄
4
=
∑

v∈V̄ gv/|V̄|. We then let δV̄ ,
maxv∈V̄ gv−minv∈V̄ gv

gV̄
denote the maximum difference

of gv in V̄ normalized by the average gV̄ . Similarly, we define δV ,
maxv∈V gv−minv∈V gv

gV
for the set V .

Fig. 5a plots δV and δV̄ with M in the range [11, 101]. In this example, we have N = 10 users, and

the forgetting factor is η = 0.95. We test the probability to switch to the anchor view Pa = 0.5 and 0.8.

We observe the same trend for other values of the system parameters. From Fig. 5a, we observe that δV

and δV̄ are decreasing functions of M and Pa, and the difference between gv in the same set becomes

smaller as M and Pa increases. In the following analysis, we consider the scenario where M and Pa are

large (e.g., M ≥ 30 and Pa ≥ 0.5), and the difference between gv in the same set is very small and can

be ignored. In this scenario, gV̄ (gV ) can be used to denote the gv for all views in the set V (V̄).

We also observe that views in V̄ gives higher short-term gain than V , i.e., gV̄ ≥ gV . To show this,

we define ∆ , gV̄−gV
gV

as the difference between gV̄ and gV normalized by gV . Fig. 5b shows ∆ with

different M and Pa. For different M ’s, we observe the same trend. From Fig. 5b, when M ≥ 71 and

Pa ≥ 0.5, the difference between gV̄ and gV is at least 70%, and is an increasing function of Pa. This is

because when Pa is larger, all users have a higher probability to switch to the anchor view. Since users

in the set V do not need others’ help in this switch while those in V̄ need help from others, a larger Pa

results in a lower gV and a higher gV̄ , and thus increases the difference.

3) State Aggregation: With the above observation, we can aggregate more states in the MDP to further

simplify the analysis. We first classify the state space. For any r ≤ tr−2, we define Sr,V = {(r, v)|v ∈ V}

and Sr,V̄ = {(r, v)|v ∈ V̄}. We then define SR̄,V = {(R̄, v)|v ∈ V} and SR̄,V̄ = {(R̄, v)|v ∈ V̄}. Those

state subspaces are non-overlapping, and SR̄,V
⋃
SR̄,V̄

⋃
r≤tr−2

(
Sr,V

⋃
Sr,V̄

)
= S. Fig. 6a shows an

example of the state classification with M views and 3-level reputation system, where tr = 3 and

R̄ = {2, 3}. In Fig. 6a, there are four non-overlapping state subspaces S1,V , S1,V̄ , SR̄,V and SR̄,V̄ .

We then have the following proposition with the proof in Appendix E.
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Fig. 6. Example of the state classification and aggregation with M views and 3-level reputation system (tr = 3).

(a) The state classification, where we have 4 state subspace S1,V , S1,V̄ , SR̄,V and SR̄,V̄ . (b) The MDP after state

aggregation, where we have only 4 states in the state space, (1,V), (R̄,V), (1, V̄) and (R̄, V̄).

Proposition 4: With the above state classification, states in each subspace have bisimilarity relationship

and can be aggregated as one state.

From Proposition 4, all states in the same subspace can be aggregated into one state. Thus, for the

example in Fig. 6a, there are four aggregated states denoted as (1,V), (1, V̄), (R̄,V) and (R̄, V̄), and

Fig. 6b shows the updated MDP after state aggregation. From Theorem 1 and the discussion in Section

III-B, for the aggregated state with reputation r < tr − 1, users will always take action a = R + 1 and

do not cooperate with anyone. Therefore, we only need to consider the aggregated states, (R̄,V) and

(R̄, V̄), and let aV and aV̄ denote actions taken at these two aggregated states, respectively.

The next step is to study the state transition probability for the aggregated states. Note that the reputation

and view transition probabilities are independent, and the reputation transition probabilities are the same

as in Section III-B1. Therefore, we only need to analyze the updated view transition probabilities. Note

that given the one-step view transition matrix in (21), starting from any view v ∈ V , after one segment, it

will transition to views in V with the same probability
∑

v′∈V T(v, v′) = Pa+ 2(1−Pa)
M−1 , and to views in V̄

with the same probability
∑

v′∈V̄ T(v, v′) = 1−Pa− 2(1−Pa)
M−1 . Therefore, with the aggregated states, the

one-step view transition probability is denoted as T (V,V) = Pa + 2(1−Pa)
M−1 , which is the probability that

a user transitions from V (i.e., from any view in V) to views in V . Similarly, we also have T
(
V̄,V

)
=

Pa+ 2(1−Pa)
M−1 and T

(
V, V̄

)
= T

(
V̄, V̄

)
= 1−Pa− 2(1−Pa)

M−1 . Thus, at the steady-state view distribution, a

user will be at views in V with probability v (V) = Pa + 2(1−Pa)
M−1 and v

(
V̄
)

= 1− Pa − 2(1−Pa)
M−1 , where

we still use v to denote the steady state view distribution over those two view sets for notation simplicity.

Therefore, with the aggregated states, the state transition probability is P a(r,v)→(r′,v′) = P ar→r′v(v′) for

all r, r′ ∈ {1, · · · , tr − 2, R̄} and v, v′ ∈ {V, V̄}.

In the example in Fig. 6b, given the current state (R̄, V̄) at stage 1, from Theorem 1, the possible

equilibrium actions are a = tr = 3 and a = tr + 1 = 4. When taking action a = 3, the user follows the
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social norm, and his reputation stays at R̄ with probability P a=3
R̄→R̄ = 1, and the state transition probabilities

are P a=3
(R̄,V̄)→(R̄,V)

= v(V), P a=3
(R̄,V̄)→(R̄,V̄)

= v(V̄), and P a=3
(R̄,V̄)→(1,v′)

= 0 for any v′ ∈ {V, V̄}. Similarly,

we can derive the state transition probabilities when the action a = 4 is taken.

We then derive the expected short-term utility of the updated MDP after state aggregation. From the

proof of Proposition 4, all views in the same view set V (or V̄) give the same expected short-term utility.

Thus, for the aggregated state, we have UaV

V =U
aV
v for any v ∈ V , and UaV̄

V̄ = UaV̄
v for any v ∈ V̄ .

After this state aggregation, the lifetime utility in (17) can be written asW
π
V = U

aV
V +

[
ηL(1− P aVR̄→1

) + γP
aV
R̄→1

] [
v(V)Wπ

V + v(V̄)Wπ
V̄

]
,

Wπ
V̄ = U

aV̄
V̄ +

[
ηL(1− P aV̄R̄→1

) + γP
aV̄
R̄→1

] [
v(V)Wπ

V + v(V̄)Wπ
V̄

]
,

(23)

and the action policy can be simplified as π = {aV , aV̄} for r ∈ R̄.

4) Equilibrium Analysis with 2-Level Reputation System: In this section, we consider a simple scenario

with a 2-level reputation system (i.e., R = 2), and derive the equilibrium action policies of the game.

Since the threshold 1 < tr ≤ R = 2, tr can only be 2. Note that the 2-level reputation system is

memoryless. This is because if a user’s behavior complies with the social norm, his reputation is updated

to 2. Otherwise, his reputation is updated to 1 regardless of his past reputation.

Note that with tr = R = 2, R̄ = {r ≥ tr − 1} = {1, 2} = R. Therefore, after state aggregation

in Section IV-A3, there are only two aggregated state (R̄,V) and (R̄, V̄). As discussed in IV-A3, we

study the action policy {aV , aV̄} for r ∈ R̄. Since aV , aV̄ ∈ {tr, R + 1} = {2, 3}, where a = 2 means

cooperation with beneficial users, and a = 3 means no cooperation with anyone. Thus, we have 4 possible

action policies {aV = 2, aV̄ = 2}, {aV = 2, aV̄ = 3}, {aV = 3, aV̄ = 2} and {aV = 3, aV̄ = 3}. By

examining each of them, we have the following Proposition 5, and the proof is in Appendix F.

Proposition 5: For an IMVS with a single anchor view and 2-level reputation system,

a) If gV ≥ c, {aV , aV̄} = {2, 2} is an equilibrium policy, where users cooperate at all views (full

cooperation).

b) If gV̄v(V̄) ≥ c ≥ gVv(V̄), {aV , aV̄} = {3, 2} is an equilibrium policy, where users only cooperate at

views in V̄ with high expected short-term gains, but not at views in V with low expected short-term

gains (partial cooperation).

c) {aV , aV̄} = {3, 3} is always an equilibrium policy, where users do not cooperate at all (no coopera-

tion).

d) {aV , aV̄} = {2, 3} is not an equilibrium policy.

From Proposition 5, there are multiple Nash Equilibriums coexisting. In addition, from Proposition

5.a, users cooperate at views in V only when gV ≥ c. This is because the 2-level reputation system is
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memoryless, and users decide their actions only based on the expected short-term utility. If cooperation

at views in V gives a negative expected short-term utility (gV < c), users will not cooperate.

5) Equilibrium Analysis with R-level (R ≥ 3) Reputation System: The R-level (R ≥ 3) reputation

system is non-memoryless, and users need to take their future utilities into consideration. We also study

the policy {aV , aV̄} for reputation r ≥ tr−1, where aV , aV̄ ∈ {tr, R+ 1}. Thus, we also have 4 possible

policies {aV = tr, aV̄ = tr}, {aV = tr, aV̄ = R + 1}, {aV = R + 1, aV̄ = tr} and {aV = R + 1, aV̄ =

R+ 1}. By examining each of them, we have the following proposition.

Proposition 6: For an IMVS with a single anchor view and R-level reputation system where R ≥ 3,

a) If c̄1
4
=

(ηL − γ)(gV̄ − gV)v(V̄)

1− γ
+ gV ≥ c, {aV , aV̄} = {tr, tr} is an equilibrium policy, where users

cooperate at all views (full cooperation).

b) If
[y + x(tr − 1)]v(V̄)

[
(1− γ)gV̄ − (ηL − γ)v(V)(1− y)(gV̄ − gV)

]
1− ηL + ηLy − yγ

≥ c

≥
[y + x(tr − 1)]v(V̄)

[
v(V̄)(ηL − γ)(gV̄ − gV) + (1− γ)gV

]
1− ηL + ηLy − yγ

, (24)

{aV , aV̄} = {R + 1, tr} is an equilibrium policy, where users cooperate at views in V̄ with high

expected short-term gains but not at views in V with low expected short-term gains (partial cooper-

ation).

c) {aV , aV̄} = {R+ 1, R+ 1} is always an equilibrium policy, where users do not cooperate at all (no

cooperation).

d) {aV , aV̄} = {tr, R+ 1} is not an equilibrium policy.

Proof: In the following, we will prove Proposition 6.a, and the rest of the proof is in Appendix G.

For the policy {aV , aV̄} = {tr, tr}, we determine when it is an equilibrium. To do this, we first assume

that all users use this policy and study the corresponding stationary reputation distribution x following

the discussion in Section III-C. Then, using the one-shot deviation principle, we examine whether a user

has incentives to unilaterally deviate to any one-shot deviation at any view.

As discussed in Section III-C, by solving (20), we have y = 1 and x(1) = · · · = x(tr − 1) = 0. This

is because all users’ actions comply with the social norm in (3) and thus have the highest reputation R.

We then exam the one-shot deviation principle. First, the given policy is aV = aV̄ = tr. When a user

with reputation r ∈ R̄ receives a request at v ∈ {V, V̄}, by taking action av = tr, he will upload the

requested frame with probability 1, since all other users have reputation R. Thus, the expected immediate

cost is Ca=tr = c. In addition, av = tr complies with the social norm in (3), and the his reputation will

be lowered to 1 with probability P trR̄→1
= 0, and he is a beneficial user with probability 1. Since others

also take policy aV = aV̄ = tr, he will always receive others’ help and have the maximum expected
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short-term gain gv for v ∈ {V, V̄}. Therefore, following the policy av = tr, his expected short-term

utility is Ua=tr
v = −c+ gv for v ∈ {V, V̄}, and the lifetime utility in (23) becomesW

π
V = −c+ gV + ηL

[
v(V)Wπ

V + v(V̄)Wπ
V̄

]
,

Wπ
V̄ = −c+ gV̄ + ηL

[
v(V)Wπ

V + v(V̄)Wπ
V̄

]
.

(25)

Note that (25) is a linear system with two unknowns W π
V and W π

V̄ , and we have

Wπ
V =

gV − c+ ηLv(V̄)(gV̄ − gV)

1− ηL
, and Wπ

V̄ =
gV̄ − c− ηLv(V)(gV̄ − gV)

1− ηL
. (26)

Now we study the user’s lifetime utility if he takes one-shot deviation. As discussed in Section III-B,

action tr and R+ 1 dominate other strategies, and thus, we only need to exam the one-shot deviation to

R + 1. First, with a′v = R + 1 for v ∈ {V, V̄}, this user does not help anyone and the immediate cost

is 0. Since all other users have reputation R, the action a′v = R + 1 makes his reputation lowered to 1

with probability P
a′
v=R+1

r̄→1 = 1. Thus, he cannot receive others’ help in the following L segments, and

the expected short-term gain is G1,v = 0. Therefore, the expected short-term utility by one-shot deviation

to R+ 1 is Ua
′
v=R+1

v = 0. Thus, the lifetime utility of one-shot deviation in (18) can be rewritten asW
a′v=R+1,π
V = γ

[
v(V)Wπ

V + v(V̄)Wπ
V̄

]
,

W
a′v=R+1,π

V̄ = γ
[
v(V)Wπ

V + v(V̄)Wπ
V̄

] (27)

Substitute (26) into (27) and compare W π
v with W a′

v=R+1,π
v for v ∈ {V, V̄}. We have

Wπ
V̄ −W

a′v=R+1,π

V̄ =
(ηL − γ)(gV̄ − gV)v(V̄)− (c− gV)(1− γ)

1− ηL
+ (gV̄ − gV),

Wπ
V −W

a′v=R+1,π
V =

(ηL − γ)(gV̄ − gV)v(V̄)− (c− gV)(1− γ)

1− ηL
. (28)

It is easy to observe that W π
V̄ −W

a′
v=R+1,π

V̄ > W π
V −W

a′
v=R+1,π
V . Thus, as long as W π

V −W
a′
v=R+1,π
V =

(ηL − γ)(gV̄ − gV)v(V̄)− (c− gV)(1− γ)

1− ηL
≥ 0, i.e., c̄1 ,

(ηL − γ)(gV̄ − gV)v(V̄)

1− γ
+ gV ≥ c, we have

W π
V̄ −W

a′
v=R+1,π

V̄ > W π
V −W

a′
v=R+1,π
V ≥ 0, and {aV , aV̄} = {tr, tr} is an equilibrium policy. This

completes the proof of Proposition 6.a. �

From Proposition 6, we also observe multiple Nash Equilibria coexisting. Fig. 7 shows an example for

a single-anchor view IMVS with M = 101 views, N = 10 users and R = 10 levels of reputations with

tr = 10. In the view switching model, users switch to the single anchor view with probability Pa = 0.5.

The discounting factor is η = 0.95, and the expected short-term gains for the view set V̄ and V are

gV̄ = 0.82 and gV = 0.33, respectively. From Fig. 7, when c ∈ [0, 0.56], the full cooperation policy is an

equilibrium. When c ∈ [0.30, 0.36], the partial cooperation policy is an equilibrium. The non-cooperation

policy is always an equilibrium for all c ≥ 0. Thus, we have three equilibrium policies (full, partial and

no cooperation) when c ∈ [0.30, 0.36], and we have two equilibrium policies (partial and no cooperation)

when c ∈ [0, 0.30)
⋃

(0.36, 0.56].
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Fig. 7. An example of the coexistence of multiple equilibrium policies for a single anchor view IMVS.
When comparing Proposition 6a and Proposition 5a for the conditions of full cooperation, we observe

that when gV < c ≤ c̄1 and when cooperation at views in V gives him a negative expected short-term

utility, a user will not cooperate at views in V in the 2-level reputation system; while he may still fully

cooperate at all views in the R-level reputation system with R ≥ 3. This is because different from

the memoryless 2-level reputation system, the R-level reputation system is non-memoryless, and a user

needs to consider his future utilities when making a decision. Although cooperation at views in V gives

a negative expected short-term utility, this also helps him maintain a high reputation and keep receiving

others’ help in future view switching. As long as the expected future gain can compensate his current

loss, he will still cooperate.

B. Game Analysis with Multiple Anchor Views

For the general IMVS with multiple anchor view and R-level (R ≥ 3) reputation system, similar to the

analysis in Section IV-A5, non-cooperation at all views is always an equilibrium, and partial cooperation

and full cooperation may be equilibrium policies in certain scenarios. With a large view space V , we

have many different partial cooperation policies, and the analysis for each partial cooperation policy is

much more complicated than that in the single anchor view system. Note that from the system designer’s

perspective, the full cooperation equilibrium makes all users cooperate whenever possible, minimizes the

consumed upload bandwidth at the server’s side, and thus is the desired equilibrium policy. Therefore, in

this work, for IMVS with multiple anchor views, we focus on the analysis of full cooperation and derive

the conditions for full cooperation to be an equilibrium policy.

Similar to the proof in Proposition 6.a, we first assume that all users take the full cooperation policy

π = {a1, a2, ..., aM} = {tr, tr, ..., tr} and derive the corresponding reputation distribution x. We then

examine whether π can resist the one-shot deviation to a′v = R+ 1 for any v ∈ V .

If all users cooperate with the policy π, they will keep the highest reputation R, and the reputation

distribution is y = 1 and x(1) = · · ·x(tr − 1) = 0. For a user receiving a request at view v ∈ V , he will

help upload with probability 1 by following π. Thus, the expected immediate cost is c. In addition, with

P trR̄→1
= 0, his reputation remains to be R. Therefore, he always receives others’ help, and receives the

maximum expected short-term gain gv. Thus, his expected short-term utility is Uav=tr
v = −c + gv, and

his lifetime utility is

Wπ
v = −c+ gv + ηL

M∑
v′=1

TL(v, v′)Wπ
v′ ,∀v ∈ V. (29)
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To solve (25), we expand the recursive term W π
v′ at the right side of (29) and have

Wπ
v = −c+ gv + ηL

M∑
v′=1

TL(v, v′)(−c+ gv′) + η2L
M∑
v′=1

M∑
v′′=1

TL(v, v′)TL(v′, v′′)Wπ
v′′

= −c+ gv + ηL
M∑
v′=1

TL(v, v′)(−c+ gv′) + η2L
M∑

v′′=1

T2L(v, v′′)Wπ
v′′

= · · · = −c+ gv +

∞∑
n=1

ηnL
M∑
v′=1

TnL(v, v′)(−c+ gv′)

= gv +

∞∑
n=1

ηnL
M∑
v′=1

TnL(v, v′)gv′︸ ︷︷ ︸
,Gv

−c− c
∞∑
n=1

ηnL

(
M∑
v′=1

TnL(v, v′)

)
= Gv −

c

1− ηL
. (30)

In (30), Gv is the maximum lifetime gain a user can receive (when helpers always help) if he starts

view switching from view v, and c
1−ηL is his lifetime cost to help others whenever asked.3 From (30),

a necessary condition for the full cooperation policy π = (tr, · · · , tr) to be an equilibrium is to enable

a non-negative lifetime utility with W π
v = Gv − c

1−ηL ≥ 0 for all views, that is, c ≤ (1− ηL) minv Gv.

Otherwise, users have no incentive to cooperate.

We then derive the lifetime utility with one-shot deviation to a′v = R + 1. Similar to the analysis in

Section IV-A5 for the single anchor view IMVS, we have

W
a′v=R+1,π
v = γ

M∑
v′=1

TL(tr−1)(v, v′)Wπ
v′ = γ

M∑
v′=1

TL(tr−1)(v, v′)

(
Gv′ −

c

1− ηL

)
. (31)

Comparing W π
v in (30) and W a′

v=R+1,π
v in (31), we have

Wπ
v −W

a′v=R+1,π
v = Gv −

c

1− ηL
− γ

M∑
v′=1

TL(tr−1)(v, v′)

(
Gv′ −

c

1− ηL

)
= Gv − γ

M∑
v′=1

TL(tr−1)(v, v′)Gv′ −
c

1− ηL
+ γ

M∑
v′=1

TL(tr−1)(v, v′)
c

1− ηL

= Gv − γ
M∑
v′=1

TL(tr−1)(v, v′)Gv′ −
1− γ

1− ηL
c. (32)

Define c̄2 ,
1−ηL

1−γ minv

{
Gv − γ

∑M
v′=1 T

L(tr−1)(v, v′)Gv′

}
. From (32), c ≤ c̄2 (i.e., W π

v −W
a′
v=R+1,π

v ≥

0 for all v’s) is also a necessary condition for the full cooperation policy π = {tr, tr, ..., tr} to resist any

one-shot deviation.

To summarize, when c ≤ min
{

(1− ηL) minv Gv, c̄2

}
, full cooperation with π = {tr, tr, ..., tr} is an

equilibrium policy.

3In (30), Gv includes an infinite series. Since η < 1, it is easy to show that this series converges, and Gv is finite, which

users can calculate offline.
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Fig. 8. c̄2 with tr under different system setup. (a) Pa = 0.6. (b) M = 31 with 3 anchor views.

V. REPUTATION SYSTEM OPTIMIZATION AND FULL COOPERATION INITIATION

In this section, we study from system designer perspective and analyze how to stimulate full user

cooperation to the highest possible level. We first study the optimal parameter selection for the reputation

system. Then, observing that there are more than one equilibrium policies in the game and the MDP

initial state determines the final equilibrium to which the game converges, we analyze the sufficient

condition on the initial state to drive the game to the desired full cooperation equilibrium, and propose

a Pay-for-Cooperation (PfC) scheme to ensure users’ full cooperation at all views.

A. Optimal tr and R of The Reputation System

For single anchor view IMVS, note that from Proposition 6a, a larger c̄1 gives a larger range of cost

for users to have full cooperation as an equilibrium. Thus, from system designer perspective, a larger c̄1

is preferred to stimulate user cooperation. In c̄1, we have the term γ = η(tr−1)L, where tr is a system

parameter describing the punishment a user receives if his action does not comply with the social norm.

It is easy to show that ∂c̄1/∂tr > 0. Thus, the reputation system should select the highest tr = R that

gives the harshest punishment to stimulate user cooperation to the highest level.

For the multi-anchor view IMVS, from the analysis of c̄2 in Section IV-B, tr affects not only the

term γ but also the summation term
∑M

v′=1 T
L(tr−1)(v, v′)Gv′ , which makes the analysis difficult. In

the following, we consider an example with a R = 45 level reputation system, N = 10 users and a

discounting factor of η = 0.95.For the above example, Fig. 8 shows the numerical results of c̄2 with

different numbers of views M and different numbers of anchor views. Fig. 8 shows that c̄2 is an increasing

function of tr with different M and different view switching probability Pa. We observe the same trend

for other values of the system parameters. Thus, similar to the single anchor view IMVS, in the multi-

anchor view IMVS, a larger tr also gives a larger c̄2 and thus a larger range of c for full cooperation

being an equilibrium policy, and the largest possible tr = R should be chosen.
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B. Full Cooperation Initiation
From the discussion in the previous sections, for both single- and multi- anchor view IMVS, we

observe multiple equilibrium policies. When full cooperation is an potential equilibrium, we observe that

the MDP’s initial state, especially the percentage of cooperative users yin, who are willing to cooperate at

all views with other beneficial users, determines whether the game can converge to full cooperation. For

example, in the extreme case with yin = 0 where no user cooperates, a user who unilaterally cooperates

will receive a negative utility due to the cost of frame uploading, and thus, is unwilling to cooperate.

In the other extreme case with yin = 1 where all users cooperate, if a user who unilaterally deviates

from cooperation will receive penalty with a long term utility loss, and thus, he is willing to cooperate.

In this section, we first derive a sufficient condition on yin at the initial state, under which users are all

willing to cooperate. We then propose a Pay-for-Cooperation (PfC) scheme at the beginning of the game

to achieve the condition of yin, and thus, drive the game to full cooperation equilibrium.

1) Sufficient Condition of yin for Full Cooperation: To derive the sufficient condition on yin for full

cooperation at the initial state, we first assume that the local agent assigns each user the highest reputation

R at the beginning of the game. This is because users may cooperate only when they have reputation

larger than tr − 1, and assigning each user the highest reputation R makes him have cooperation as an

option. We then study how a user makes decisions if he is not one of the yin percentage cooperative

users. First, he considers the yin percentage cooperative users will cooperate with the full cooperation

policy πc = {tr, tr, ..., tr}. Second, for the rest 1 − yin percentage users, since he does not know how

those users will behave, he considers the worst case scenario, where the 1 − yin percentage users do

not cooperate at all with the non-cooperation policy πn = {R + 1, R + 1, ..., R + 1}. Based on the

above assumptions, we then use the one-shot deviation principle to exam whether the cooperation policy

πc is also his optimal policy. Since all users have reputation R at the beginning, by taking action tr

following πc , he will cooperate and help to upload with probability 1 whenever being requested and

his reputation is lowered to 1 with probability P trR̄→1
= 0. Furthermore, since he assumes that only the

yin percentage users will cooperate, his expected short-term gain is gvyin. Thus, his expected short-term

utility is U trv = −c+ gvyin, and his lifetime utility using policy πc is

Wπc
v = −c+ gvyin + ηL

M∑
v′=1

TL(v, v′)Wπc

v′ . (33)

Same as in (30), we also expand the recursive term W πc

v′ at the right side of (33), and have

Wπc
v =−c+ gvyin +

∞∑
n=1

ηnL
M∑
v′=1

TnL(v, v′)(−c+ gv′yin) = yinGv −
c

1− ηL
. (34)

where Gv is defined in (30). Similarly, a necessary condition for full cooperation to be his optimal strategy

is W πc
v ≥ 0, i.e., yin ≥ c

(1−ηL)Gv
.
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Similar to the proof of Proposition 6a, we then study the lifetime utility of the one-shot deviation to

a′v = R + 1. By taking action R + 1, he will upload with probability 0 and his reputation is lowered

to 1 with probability P trR̄→1
= 1. Thus, he cannot receive others’ help in the next L segments and the

expected short-term gain is 0. Therefore, his expected short term utility is also zero. Thus, the lifetime

utility with one-shot deviation to a′v = R+ 1 is

W
a′v=R+1,πc
v = γ

M∑
v′=1

TL(tr−1)(v, v′)Wπc

v′ . (35)

We then substitute (34) into (35), compare (34) and (35), and have

Wπc
v −W

a′v=R+1,πc
v = yinGv −

c

1− ηL
− γ

M∑
v′=1

TL(tr−1)(v, v′)

[
yinGv′ −

c

1− ηL

]
= yinGv − γ

M∑
v′=1

TL(tr−1)(v, v′)yinGv′ −
1− γ

1− ηL
c. (36)

It is easy to show that (36) is an increasing function of yin given that full cooperation is an equilibrium

with (Gv−γ
∑M

v′=1 T
L(tr−1)(v, v′)Gv′) ≥ 0. By solving W πc

v −W
a′
v=R+1,πc

v ≥ 0 for all views, we have

yin ≥ ȳin ,
(1− γ)c

(1− ηL) minv∈V
[
Gv − γ

∑M
v′=1 T

L(tr−1)(v, v′)Gv′
] . (37)

Thus, if yin ≥ yminin , max( c
(1−ηL)Gv

, ȳin) is satisfied, πc is the optimal strategy for him, and he will

cooperate at the beginning of the game. Therefore, users will converge to the full cooperation equilibrium.

From (37), we observe that ȳin is an increasing function of c, i.e., with a higher cost c, we need more

cooperative users for cooperation initiation. This is because with a higher cost c, a user requires more

cooperative users to cooperate with him to compensate his cost for cooperation.

2) Pay-for-Cooperation Scheme: The above analysis provides the condition on yin for full cooperation

initiation. To achieve such condition, we propose one possible solution, PfC scheme, where the local agent

randomly selects yin ≥ yminin percentage of users, and pays them for their cooperation with other beneficial

users. Here, the payment is higher than the cost c, and thus, cooperation with beneficial users becomes the

dominant strategy for the selected users. The local agent also announces yin to the other unselected users,

who are not paid for cooperation, to assist their decision making. Since with yin ≥ yminin , cooperation is

also the optimal strategy for unselected users, they will start to cooperate at the beginning of the game

and full cooperation can be initiated. Once the local agent observes that all unselected users have started

to cooperate, it will gradually stop paying the selected users one by one. Note that once a selected user is

stopped from being paid, he has to estimate other users’ actions and makes his own decision on whether

to continue cooperation. If the local agent stops paying all selected users at the same time, each selected

user may have different estimation of other selected users’ actions. Thus, their behavior is unpredictable,

which may also affect the unselected users’ cooperation. The proposed strategy where the local agent
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stops paying the selected users one by one can avoid this problem. This is because if at a time only

one selected user is stopped from being paid, he considers that the other users either still get paid for

cooperation or have started to cooperate. In such a case, continuing cooperation is a dominant strategy

for him.

VI. EXPERIMENTATION

This section evaluates the system performance by simulations. In the simulation setup, we have a

R = 10 level reputation system and select the optimal tr = R as discussed in Section V-A. The server

provides IMVS with M = 31 views to a group of N = 10 users, and each user is assigned reputation 10

at the beginning of the game. In the view transition model, users switch to anchor views with probability

Pa = 0.5. The discounting factor is η = 0.95. Since an IMVS with a single anchor view is a special

case of that with multiple anchor views, in this section, we only show the results with multiple anchor

views, and let view 8, 16 and 24 be the three anchor views. In this work, we let the local agent keeps

tracking the percentage of users who help upload frames and broadcast this information to assist users’

decision making. When a user at view v receives a help request, he will use this information broadcasted

by the local agent and follows (36) to calculate W πc
v −W

a′
v=R+1,πc

v . If W πc
v −W

a′
v=R+1,πc

v ≥ 0, he will

cooperate with action av = tr. Otherwise, he plays non-cooperatively with av = R+ 1.

A. Cooperation Initiation Verification

Following the discussion in Section IV-B, we first calculate the condition for full cooperation to be

an equilibrium to be c ≤ 0.7. We then select c = 0.65 ≤ 0.7 to have full cooperation as an equilibrium.

Following the discussion in Section V-B, the sufficient condition to initiate user cooperation is yin ≥

yminin = 0.72. In the following, we test different yin selected by the local agent in the PfC scheme to

verify our theoretical analysis. In our experiments, once the local agent observes all unselected users

have started to cooperate, it will stop paying selected users one by one, and the local agent will stop

paying after the 50th segment in all scenarios.

Fig. 9 shows the simulation results when the local agent selects yin = 0.8. Since yin = 0.8 > yminin =

0.72, it can initiate user cooperation. Fig. 9b shows the percentage of users who use the cooperative

action a = R when their reputations are no less than tr−1. We observe that all users cooperate, and thus

they all have reputation R as shown in Fig. 9a. We then test that the local agent selects yin = 0.5 < 0.72,

and the results are in Fig. 10, from which we observe that it cannot initiate user cooperation. We observe

that From Fig. 10b, in the first 50 segments when the selected users are paid to cooperate, the percentage

of cooperative users increases gradually. After the local agent stops paying, even the selected users stop
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Fig. 9. The reputation and action distribution, when yin = 0.8. (a) The reputation distribution x, where x(R) is

the probability that a user has reputation R. (b) P (a = R) and P (a = R+ 1) are the percentages of users that use

action R (cooperation) and R+ 1 (non-cooperation), respectively, when their reputation is no less than tr − 1.
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Fig. 10. The reputation and action distribution, when yin = 0.5. (a) The reputation distribution x, where x(R) is

the probability that a user has reputation R. (b) P (a = R) and P (a = R+ 1) are the percentages of users that use

action R (cooperation) and R+ 1 (non-cooperation), respectively, when their reputation is no less than tr − 1.

cooperation. Users cannot find enough cooperative users to cooperate with, and they all tend to not

cooperate as shown in Fig. 10b. Thus, the probability of a user’s reputation being R also drops as shown

in Fig. 10a.

B. User Membership Dynamics

In the above simulations, we consider a fixed group of users’ interaction. Once cooperation is initiated,

they will cooperate until the end of this game. However, in practical video streaming system, users may

join and leave the system from time to time. The membership dynamics may also affect their cooperation.

Consider a scenario where a group of existing users have been cooperating with each other with policy

πc and they all have reputation R. Then, some existing users leave, while several new users join the

system with assigned reputation R. From the analysis in Section V-B1, if more than yminin percent of

users in the newly formed group fully cooperate at all views and if this information is known to all

users, then the game will converge to the full cooperation equilibrium and the cooperation is initiated in

the next segment. Let ye ∈ [0, 1] denote the percentage of existing users after the membership update.

If ye ≥ yminin , from their previous experience, existing users know that if they cooperate together, they
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can gain positive payoffs and no one has incentive to unilaterally deviate from cooperation, even in the

worst case scenario where newcomers do not cooperate at all. Thus, if existing users can communicate

and confirm with each other that they will continue playing full cooperation, and if such information

is publicly known to the newcomers, the game will converge to the full cooperation equilibrium and

all users will cooperate. However, when ye < yminin , even if all existing users continue cooperation, the

full cooperation policy is no longer guaranteed to be the optimal strategy for them, and they will not

confirm their cooperation with each other, which will also lead to non-cooperation of newcomers. Thus,

cooperation of the network will be interrupted by this membership update.

In the following, we test how user membership dynamics affect user cooperation. We let c = 0.25 ≤

c̄2 = 0.7 so that full cooperation is a optional equilibrium policy. At the beginning of the game, we select

a large enough yin = 0.8 to initiate user cooperation. For the membership dynamics, the initial number

of users is 10. Users arrive the IMVS according to a Poisson process with an average arrival rate of λ

users per segment duration. The sojourning period of each user follows an exponential distribution with

an average of µ segments. Thus, a higher λ and a smaller µ result in more frequent membership update.

In our simulations, we use batch join where new users can only join the streaming service at periodic

moments, called batch moments. All new users coming between two neighboring batch moments will

join and start receiving the streaming service at the same batch moment. In our simulations, the interval

between neighboring batch moments is 30 segments, corresponding to a maximum of 10 seconds waiting

time for a newly arrival user. For existing users, they can leave at any time instance. At each batch

moment, the local agent will update ye, and broadcast ye and existing users’ decisions to everyone in

the network. In the following, we test different λ and µ, and study how ye impacts user cooperation at

each batch moment.

Fig. 11 shows the simulation results with low frequent membership update with λ = 0.1 and µ = 100.

Fig. 11a gives the number of users at each time instance. Fig. 11b shows yminin and ye at each batch

moment. Note that (37) includes the term Gv, which is affected by the number of users. Thus, with

user membership dynamics, yminin also changes. In Fig. 11b, since ye is always higher than yminin , user

cooperation will not be affected. Thus, from Fig. 11d users will always cooperate, and they will also

maintain the reputation R as shown in Fig. 11c.

Fig. 12 shows the simulation results with high frequent membership update with λ = 0.33 and µ = 30.

Comparing Fig. 12a with Fig. 11a, we observe λ = 0.33 and µ = 30 result in much more frequent

membership update. From Fig. 12b, we observe that at the 90th segment, ye is much smaller than yminin .

Thus, user cooperation is interrupted after this batch moment. From Fig. 12d, we observe that users start
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Fig. 11. The simulation results with low frequent membership update. λ = 0.1 and µ = 100. (a) The number

of users in the network. (b) yminin and ye at each batch moment. (c) The reputation distribution. (d) The action

distribution for users with reputation no less than tr − 1.
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Fig. 12. The simulation results with high frequent membership update. λ = 0.33 and µ = 30. (a) The number

of users in the network. (b) yminin and ye at each batch moment. (c) The reputation distribution. (d) The action

distribution for users with reputation no less than tr − 1.



34

to play non-cooperatively after the 90th segment, and the probability of a user’s reputation being R also

drops as shown in Fig. 12c. Since user cooperation has been interrupted, even if we have ye > yminin

at a later batch time, users still do not cooperate. In Fig. 12c, we observe that after segment 90, x(R)

fluctuates, and it increases at each batch moment, and then drops before the next batch moment. This

is because at each batch moment, new users who are assigned with the highest reputation R = 10 joins

the system, which will increase x(R). However, since they do not cooperate, the probability of their

reputations being R decreases rapidly.

To overcome the cooperation interruption due to membership dynamics, one possibility is to let the

local agent resume the PfC scheme: it first resest all users’ reputation to R, randomly selects yin ≥ yminin

percent users, and pays for their cooperation to initiate user cooperation again.

VII. CONCLUSION

In this work, we propose an IMVS system that supports cooperative view switching. To stimulate

user cooperation, we model user interaction as an indirect reciprocity game. From the game analysis,

we observe that users cooperate at some views but not others. Since peers can predict their future view

navigation paths probabilistically, a peer likely to enter a view switching path not requiring others’ help

will receive low utility from cooperation, and thus has less incentive to cooperate. Furthermore, we observe

that more number of reputation levels provide more incentive for user cooperation, and thus should be

used. In addition, we observe that the game may have multiple equilibria with different cooperation

levels. To initiate user cooperation, we propose a PfC scheme. Finally, we study how user membership

dynamics affect user cooperation. We observe that as long as the percentage of existing users is higher

than a predetermined threshold, users will continue cooperation. Otherwise, the PfC scheme should be

used to initiate user cooperation.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof: As discussed in Section III-B, one-shot deviation of a given action policy means that a user

takes a different action rather than the one defined in the action policy only for the current response to

a request, but still follows the given action policy in the future responses. Assume that a user receives a

request at reputation r and view v. Given the action policy π, the lifetime utility is defined in (14). If

the user takes one-shot deviation to action a′r,v 6= ar,v when responding to this request but follows π in

the future, his one-shot deviation lifetime utility is

W
a′
r,v,π

r,v = U
a′
r,v

r,v + ηL
M∑
v′=1

TL(v, v′)
[
(1− P a

′
r,v

r→1)W π
min(r+1,R),v′ + P

a′
r,v

r→1W
π
1,v′

]
. (38)

Comparing (14) and (38), one-shot deviation to a′r,v gives a different expected short-term utility U
a′
r,v

r,v

and a different reputation transition probability P
a′
r,v

r→1. We then use one-shot deviation principle to prove

this proposition by contradiction.

Assume that π is an equilibrium policy where action tr + 1 ≤ ar,v ≤ R is chosen for some reputation

level r ≥ tr − 1 and some view v ∈ V . We first derive his lifetime utility W π
r,v if he follows the

policy π. From Section III, for a user at view v with reputation r ≥ tr−1, by taking action ar,v ∈ π, his

expected immediate cost is Car,v = c
∑R

rj=ar,v
x(rj), and following (6), his reputation transitions to 1 with

probability P ar,v

r→1 =
∑ar,v−1

rj=tr x(rj). Thus, the expected short-term payoff is Uar,v
r,v = −c

∑R
rj=ar,v

x(rj) +

(1−
∑ar,v−1

rj=tr x(rj))Gmin{r+1,R},v +
∑ar,v−1

rj=tr x(rj)G1,v. Substitute Uar,v
r,v and P ar,v

r→1 into (14), we have

W π
r,v =− c

R∑
rj=ar,v

x(rj) +

1−
ar,v−1∑
rj=tr

x(rj)

Gmin{r+1,R},v +

ar,v−1∑
rj=tr

x(rj)G1,v

+ ηL

1−
ar,v−1∑
rj=tr

x(rj)

 M∑
v′=1

TL(v, v′)W π
min{r+1,R},v′ + ηL

ar,v−1∑
rj=tr

x(rj)

 M∑
v′=1

TL(v, v′)W π
1,v′ .

We then analyze the one-shot deviation to a′r,v = tr or a′r,v = R + 1. With one-shot deviation to

a′r,v = tr for the current response, the user’s expected immediate cost is Ctr = c
∑R

rj=tr
x(rj) and

his reputation falls to 1 with probability P trr→1 = 0. Thus, the expected short-term payoff becomes

U trr,v = −c
∑R

rj=tr
x(rj) +Gmin{r+1,R},v, and his life time utility becomes

W
a′
r,v=tr,π

r,v = −c
R∑

rj=tr

x(rj) +Gmin{r+1,R},v + ηL
M∑
v′=1

TL(v, v′)W π
min{r+1,R},v′ .
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Comparing W
a′
r,v=tr,π

r,v with W π
r,v, we have

W π
r,v −W

a′
r,v=tr,π

r,v =

ar,v−1∑
rj=tr

x(rj)
{
c−Gmin{r+1,R},v +G1,v − ηL

M∑
v′=1

TL(v, v′)
[
W π

min{r+1,R},v′ −W
π
1,v′

]}
︸ ︷︷ ︸

,∇

=

ar,v−1∑
rj=tr

x(rj)∇.

Similarly, by one-shot deviation to a′r,v = R+1 and refusing to help in the current response, his cost is

zero, and his reputation falls to 1 with probability PR+1
r→1 =

∑R
rj=tr

x(rj). Thus, the expected short-term

payoff is UR+1
r,v = (1−

∑R
rj=tr

x(rj))Gmin{r+1,R},v +
∑R

rj=tr
x(rj)G(1, v). His life-time utility is

W
a′
r,v=R+1,π

r,v =

1−
R∑

rj=tr

x(rj)

Gmin{r+1,R},v +

R∑
rj=tr

x(rj)G1,v + ηL

 R∑
rj=tr

x(rj)

 M∑
v′=1

TL(v, v′)W π
1,v′

+ ηL

1−
R∑

rj=tr

x(rj)

 M∑
v′=1

TL(v, v′)W π
min{r+1,R},v′ ,

and when comparing W
a′
r,v=R+1,π

r,v with W π
r,v, we have

W π
r,v −W

a′
r,v=R+1,π

r,v = −
R∑

rj=ar,v

x(rj)∇. (39)

Note that
∑ar,v−1

rj=tr x(rj) ≥ 0 and
∑R

rj=ar,v
x(rj) ≥ 0. Therefore, when ∇ < 0, we have W π

r,v −

W
a′
r,v=tr,π

r,v ≤ 0, and one-shot deviation to a′r,v = tr gives a higher lifetime utility. When ∇ > 0,

W π
r,v −W

a′
r,v=R+1,π

r,v ≤ 0, and π cannot resist one-shot deviation to a′r,v = R + 1. This contradicts the

assumption that π is an equilibrium policy, and proves that a policy π with tr + 1 ≤ ar,v ≤ R for

r ≤ tr − 1 cannot be an equilibrium policy. �

APPENDIX B

PROOF OF PROPOSITION 2

Proof: Following the definition in 1, for a given view v, to prove all states in SR̄,v have bisimilarity

relationship, we first show that for any two states (r, v) and (r′, v) with r, r ∈ R̄ and the same action a,

they have the same probability to transition to another state subspace. We then show that they give the

same expected short-term utility.

Given the updated reputation space
{
{1}, {2}, · · · , {tr − 2}, R̄

}
and the updated state space {Sr,v}r∈1,··· ,R̄,v∈V ,

we first show that the two states (r, v) and (r′, v) have the same probability to transition to another state
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subspace. From the discussion in Section III, the reputation and view transition probabilities are indepen-

dent, i.e., P a(r,v)→(r′′,v′) = P ar→r′′T
L(v, v′). Therefore, we only need to consider the reputation transition

probability, that is,
∑

r′′∈Rj
P ar→r′′ =

∑
r′′∈Rj

P ar′→r′′ where Rj ∈
{
{1}, {2}, · · · , {tr − 2}, R̄

}
.

• Note that from (6), the probability that the reputation transitions to 1 depends only on the action.

Thus, given the same action a, we have P ar→1 = P ar′→1 for all r, r′ ∈ R̄.

• Note that given r ≥ tr − 1, from the social norm in (3), the reputation r can only be updated to

either 1 or min{r+1, R} ∈ R̄. So for r, r′ ∈ R̄, we have P ar→r′′ = P ar′→r′′ = 0 for 2 ≤ r′′ ≤ tr−2.

• Given that the reputation r can only be updated to either min{r + 1, R} ∈ R̄ or 1, we have∑
r′′∈R̄ P

a
r→r′′ = Pr→min{r+1,R} = 1− P ar→1 and

∑
r′′∈R̄ P

a
r′→r′′ = Pr′→min{r′+1,R} = 1− P ar′→1.

Thus,
∑

r′′∈R̄ P
a
r→r′′ =

∑
r′′∈R̄ P

a
r′→r′′ .

Therefore, we prove that all states in S(R̄,v) have the same probability to transition to another state

subspace.

To show that given the same action a, the two states (r, v) and (r′, v) have the same expected short-term

utility Uar,v = −c
∑R

r′′=a x(r′′)+(1−P ar→1)Gmin(r+1,R),v+P ar→1G1,v, first note that both the probability

to upload (
∑R

r′′=a x(r′′)) and the probability for the reputation to transition to 1 (P ar→1) depend on the

action a only. Thus, the same action taken at (r, v) and (r′, v) introduces the same cost term and the same

reputation transition probability. Second, from the analysis in Section III-A2, there is only one term in

the expected short-term gain Gmin(r+1,R),v that depends on the reputation min{r+1, R}, that is, the term

I
[
ark,vk(t+l) ≤ min{r + 1, R}

]
in (10). From Theorem 1, the action ark,vk(t+l) can only be tr or R+ 1.

In addition, given tr − 1 ≤ r, r′ ≤ R, we have tr − 1 ≤ min{r+ 1, R},min{r′ + 1, R} ≤ R. Therefore,

I
[
ark,vk(t+l) ≤ min{r + 1, R}

]
= I

[
ark,vk(t+l) ≤ min{r′ + 1, R}

]
and Gmin(r+1,R),v = Gmin(r′+1,R),v.

It proves that Uar,v = Uar′,v.

In summary, given view v and action a, the above proves that any two states in SR̄,v have the same

probability to transition to another state subspace and the same expected short-term utility. Thus, all states

in SR̄,v have bisimilarity relationship and can be aggregated into one space. This completes the proof. �

APPENDIX C

PROOF OF (22)

We will show below that in the single anchor view IMVS, the expected short-term gain in (11) can

be rewritten as

Gr′,v =

(
R∑

rk=tr−1

x(rk)

)(
M∑
vk=1

v(vk)I[avk ≤ r′]

)
gv.
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Proof: From the discussion in Section III, if the helper k has reputation rk < tr−1, he takes action R+1

and does not cooperate. That is, I
[
ark,vk(t+l) ≤ r′

]
= 0 with ark,vk(t+l) = R+1 when rk < tr−1 in (10).

When he has reputation rk ≥ tr − 1, his action depends on his view only. That is, ark,vk(t+l) = avk(t+l)

for all rk ≥ tr − 1. Thus, we can first rewrite P [Hh|H1(v′)] in (10) as

P
[
Hh|H1(v′)

]
=

(
R∑

rk=tr−1

x(rk)

) M∑
vk(t+l)=1

pv′(vk(t+ l))I
[
avk(t+l) ≤ r′

] , (40)

where vk(t) is the helper’s view at time t. We then focus on the second term in (40), and prove that(∑M
vk(t+l)=1 pv′(vk(t+ l))I

[
avk(t+l) ≤ r′

])
are the same for all views v′ in a single anchor view IMVS.

First note that in the single anchor view IMVS, as shown in Section IV-A1, the steady state view

distribution is symmetric with respect to the anchor view σ. Also, as will be shown in Appendix D,

the maximum expected short-term gain {gv} is symmetric with respect to the anchor view too. With

homogeneous users with the same cost to upload a frame, it is expected that the equilibrium policy will

be symmetric with respect to the anchor view, that is, av = aM+1−v for all 1 ≤ v ≤M .

From (10), we have
M∑

vk(t+l)=1

pv′(vk(t+ l))I
[
avk(t+l) ≤ r′

]
=

M∑
vk(t+l)=1

∑
v′′∈Vv′

T(v′′, vk(t+ l))
v(v′′)∑
ṽ∈Vv′ v(ṽ)

I
[
avk(t+l) ≤ r′

]
=

∑
v′′∈Vv′

v(v′′)∑
ṽ∈Vv′ v(ṽ)

 M∑
vk(t+l)=1

T(v′′, vk(t+ l))I
[
avk(t+l) ≤ r′

] . (41)

For the term
(∑M

vk(t+l)=1 T(v′′, vk(t+ l))I
[
avk(t+l) ≤ r′

])
in (41), following the discussion in Section

IV, if v′′ is the anchor view σ, we have T(v′′, vk(t+ l)) = v(vk(t+ l)) where v is the steady state view

distribution with v(σ) = Pa and v(v) = (1−Pa)
M−1 for all other views. Thus, we have

M∑
vk(t+l)=1

T(σ, vk(t+ l))I
[
avk(t+l) ≤ r′

]
=

M∑
vk(t+l)=1

v(vk(t+ 1))I[avk(t+l) ≤ r′]

=

σ−1∑
vk(t+l)=1

2(1− Pa)
M − 1

I[avk(t+l) ≤ r′] + PaI[aσ ≤ r′i]. (42)

Here, the last equality is due to the fact that v(v) and av are symmetric with respect to the anchor view

σ.
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If v′′ is a normal view, for example, a normal view in the left normal view set with v′′ < σ, in one

segment, the helper k transitions to the anchor view with probability Pa and to each normal view in the

left normal view set with probability 2(1−Pa)
M−1 . Thus, we have

M∑
vk(t+l)=1

T(v′′, vk(t+ l))I
[
avk(t+l) ≤ r′

]
=

σ−1∑
vk(t+l)=1

2(1− Pa)
M − 1

I[avk(t+l) ≤ r′] + PaI[aσ ≤ r′i]

=

M∑
vk(t+l)=1

v(vk(t+ 1))I[avk(t+l) ≤ r′]. (43)

The analysis of the scenario where v′′ is a normal view in the right normal view set is similar and thus

omitted.

To summarize, for all views, the term
(∑M

vk(t+l)=1 T(v′′, vk(t+ l))I
[
avk(t+l) ≤ r′

])
are the same and

equals to
∑M

vk(t+l)=1 v(vk(t+ 1))I[avk(t+l) ≤ r′] from (42). Based on the above analysis, we have

M∑
vk(t+l)=1

pv′(vk(t+ l))I
[
avk(t+l) ≤ r′

]
=

∑
v′′∈Vv′

v(v′′)∑
ṽ∈Vv′ v(ṽ)

M∑
vk(t+l)=1

v(vk(t+ l))I
[
avk(t+l) ≤ r′

]
=

M∑
vk=1

v(vk)I
[
avk ≤ r′

]
, (44)

which is not related to v′.

Thus, P [Hh|H1(v′)] in (40) can be rewritten as

P
[
Hh|H1(v′)

]
=

(
R∑

rk=tr−1

x(rk)

)(
M∑
vk=1

v(vk)I
[
avk ≤ r′

])
, (45)

and the expected short-term gain Gr′,v in (11) can be rewritten as

Gr′,v =

(
R∑

rk=tr−1

x(rk)

)(
M∑
vk=1

v(vk)I
[
avk ≤ r′

])

×
L∑
l=1

ηl
M∑
v′=1

P
[
H1(v′)

]
P
[
vi(t+ l) = v′, vi(t+ l − 1) 6∈ Vv′ |vi(t) = v

]
=

(
R∑

rk=tr−1

x(rk)

)(
M∑
vk=1

v(vk)I
[
avk ≤ r′

])
gv. (46)

where gv is defined in (12). This completes the proof. �
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APPENDIX D

PROOF OF PROPOSITION 3

Here, we show that in a single anchor view IMVS with large number of views (e.g., M ≥ 30), all

views in V , their corresponding gv’s are approximately the same. For views in v ∈ V̄ , their corresponding

gv’s are also approximately the same.

Proof: First, following (12), we define

z(v, l) , ηl
M∑
v′=1

P
[
H1(v′)

]
P
[
vi(t+ l) = v′, vi(t+ l − 1) 6∈ Vv′ |vi(t) = v

]
(47)

and gv can be rewritten as gv =
∑L

l=1 z(v, l), where z(v, l) is the expected gain received at the lth

segment after the view switching from view v if helpers always help.

We first prove that {z(v, l)} are symmetric with respect to the anchor view σ, that is, z(v, l) =

z(M + 1− v, l) for all v = 1, · · ·M . Let us consider the view pair (v,M + 1− v). For any v′ ∈ V , from

(8) and (9), it is easy to show that the two probabilities P [vi(t+ l) = v′, vi(t+ l − 1) 6∈ Vv′ |vi(t) = v]

and P [vi(t+ l) = M + 1− v′, vi(t+ l − 1) 6∈ VM+1−v′ |vi(t) = M + 1− v] (the probability that a user

starts at view v/M + 1 − v at time t and switches to v′/M + 1 − v′ at time t + l from a non-adjacent

view) are the same, and the probabilities that there is at least one user who can help are also the same

(P [H1(v′)] = P [H1(M + 1− v′)]). Therefore, from (47), we have z(v, l) = z(M + 1− v, l) and z(v, l)

is symmetric with respect to the anchor view σ. Since gv =
∑T

l=1 z(v, l), gv is also symmetric with

respect to the center anchor view.

In the following, we first show that for all l ≥ 2, z(v, l) is the same for all v ∈ V . Therefore, for gv of

different view v, the difference is caused by z(v, 1) (i.e., l = 1). In the second step, we show that views

in the same subset V (or V̄), the corresponding z(v, 1)’s are approximately the same.

• We first show that for l ≥ 2, z(v, l) is the same for all v ∈ V .

Substitute (8) in Section III into (47), we first rewrite z(v, l) (l ≥ 2) as

z(v, l) = ηl
M∑
v′=1

P
[
H1(v′)

] ∑
v′′ 6∈Vv′

Tl−1(v, v′′)T(v′′, v′)


= ηl

M∑
v′=1

P
[
H1(v′)

] ∑
v′′ 6∈Vv′

M∑
ṽ=1

T(v, ṽ)Tl−2(ṽ, v′′)T(v′′, v′)


= η

M∑
ṽ=1

T(v, ṽ)

η(l−1)
M∑
v′=1

P
[
H1(v′)

] ∑
v′′ 6∈Vv′

Tl−2(ṽ, v′′)T(v′′, v′)


= η

M∑
ṽ=1

T(v, ṽ)z(ṽ, l − 1). (48)
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Therefore, if v is the anchor view, we have T(σ, ṽ) = v(ṽ) and thus,

z(σ, l) = η

M∑
ṽ=1

v(ṽ)z(ṽ, l − 1) =

σ−1∑
ṽ=1

2(1− Pa)
M − 1

z(ṽ, l − 1) + Paz(σ, l − 1). (49)

Here, the last equality is due to the fact that v(ṽ) = (1−Pa)
M−1 for all ṽ 6= σ and {z(ṽ, l−1)} are symmetric.

If v is a normal view, e.g., a normal view in the left side normal view set, after one segment, a user

will only transition to the anchor view with probability Pa and to each normal view in the left side

normal view set with probability 2(1−Pa)
M−1 . Thus, we have

z(v, l) =

σ−1∑
ṽ=1

2(1− Pa)
M − 1

z(ṽ, l − 1) + Paz(σ, l − 1) = z(σ, l). (50)

The analysis is the same if v is a normal view in the right side normal view set. Thus, for l ≥ 2, z(v, l)

is the same for all v ∈ V .

• Second, we show that for views in V = {σ−1, σ, σ+1}, the corresponding z(v, 1) = η
∑

v′ 6∈Vv P [H1(v′)]T(v, v′)’s

are approximately the same with a large M .

Note that given the view transition matrix T as in (21), it is easy to show that P [H1(v′)] are the same

for all v′ ∈ {1, 2, · · · , σ − 2, σ + 2, · · · ,M} and equal to 1−
[
Pa + M−7

M−1(1− Pa)
]N

.

When v is the anchor view σ, we have

z(σ, 1) = η

σ−2∑
v′=1

(1− Pa)
M − 1

P
[
H1(v′)

]
+ η

M∑
v′=σ+2

(1− Pa)
M − 1

P
[
H1(v′)

]
= η(σ − 2)

2(1− Pa)
M − 1

P [H1(1)] . (51)

Similarly, for v = σ − 1, we have

z(σ − 1, 1) = η

σ−3∑
v′=1

2(1− Pa)
M − 1

P
[
H1(v′)

]
= η(σ − 3)

2(1− Pa)
M − 1

P [H1(1)] . (52)

Therefore, we have

z(σ, 1)− z(σ − 1, 1) = η
2(1− Pa)
M − 1

P [H1(1)]

and
z(σ, 1)− z(σ − 1, 1)

z(σ, 1)
=

1

σ − 2
=

5

M − 2
. (53)

In a high dimension IMVS system with a large number of views (e.g., M ≥ 30) and a large probability

to transition to the anchor frame (e.g., Pa ≥ 0.5), the difference between z(σ, 1) and z(σ− 1, 1) is small

and decreases as M increases.

Due to the symmetry of the IVMS system, z(σ+ 1, 1) = z(σ− 1, 1). Thus, all three views in V have

approximately the same z(v, 1) with a large number of views.
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•With the same analysis as above, we can show that all views in V̄ have approximately the same z(v, 1))

when M and Pa are large.

From all the above analysis, in the single anchor view IMVS, when the number of view and the

probability to transition to the anchor view are large, gv’s are approximately the same for all views in V̄;

and similarly, all views in V have approximately the same maximum expected short-term gain gv. This

completes the proof. �

APPENDIX E

PROOF OF PROPOSITION 4

Here, we prove that in the single anchor view IMVS, with the state classification {Sr,v}r=1,··· ,R̄,v∈{V,V̄},

all states in the same subspace have bisimilarity relationship and can be aggregated as one state.

Proof: With the above state classification, we first show that all states in the same subspace have

the same probability to transition to another subspace, and then show that they have the same expected

short-term utility. Then, from Definition 1, they have bisimilarity relationship and can be aggregated as

one state.

• We first show that for any (r, v) and (r, v′) from Sr,V (Sr,V̄ ) with v 6= v′, they have the same

probability to transition to another state subspace Sr′,V (or Sr′,V̄ ) for r′ ∈ {1, 2, ..., tr − 2, R̄}. That

is,
∑

s∈Sr′,V P
a
(r,v)→s =

∑
s∈Sr′,V P

a
(r,v′)→s and

∑
s∈Sr′,V̄ P

a
(r,v)→s =

∑
s∈Sr′,V̄ P

a
(r,v′)→s.

From Section III, the reputation and view transition probabilities are independently. Thus, for (r, v) ∈

Sr,V (or (r, v) ∈ Sr,V̄ ), we have
∑

s∈Sr′,V P
a
(r,v)→s = P ar→r′

∑
v′′∈V T

L(v, v′′) = P ar→r′(Pa + 2(1−Pa)
M−1 ).

Similarly, for another state (r, v′) in the same subspace Sr,V (or Sr,V̄ ), we also have
∑

s∈Sr′,V P
a
(r,v′)→s =

P ar→r′(Pa + 2(1−Pa)
M−1 ). Therefore, both states (r, v) and (r, v′) have the same probability to transition to

another state subspace Sr′,V . Similarly, we can prove that (r, v) and (r, v′) have the same probability to

transition to another subspace Sr′,V̄ .

• We then show that with the same action a, the two states (r, v) and (r, v′) in the same subspace Sr,V
(or Sr,V̄ ) have the same expected short-term utility. That is, Uar,v = Uar,v′ for any a ∈ A.

From the discussion in Section III-B2, when a user has reputation r < tr−1, he does not help anyone

and also no one helps him. Thus, we have Uar,v = Uar,v′ = 0. When r ≥ tr − 1, the short-term utility is

Uav = −c
∑R

rj=a x(rj) + (1−P aR̄→1
)Gmin(r+1,R),v +P aR̄→1

G1,v. Note that the first term −c
∑R

rj=a x(rj)

depends on the action a only, and thus, the same action taken at (r, v) and (r, v′) introduces the same

cost.
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Fig. 13. δc̄ versus max(δV̄ , δV).

In addition, from (22), G1,v =
(∑R

rk=tr−1 x(rk)
)(∑M

vk=1 v(vk)I[avk ≤ 1]
)
gv = 0, since no one will

help a user with reputation 1. Similarly, G1,v′ = 0.

When comparing the two terms Gmin{r+1,R},v and Gmin{r+1,R},v′ , note that from (22), the only

difference between the two terms are gv and gv′ . From Proposition 3, with a large number of views

and a large probability to transition to the anchor view, gv ≈ gv′ when v and v′ belong to the same view

subset (either V or V̄). Therefore, Gmin{r+1,R},v ≈ Gmin{r+1,R},v′ and Uar,v ≈ Uar,v′ .

In summary, with a large M and a small difference between Gmin{r+1,R},v and Gmin{r+1,R},v′ , all states

in the same subspace have the same probability to transition to other subspaces and receive approximately

the same expected short-term utility.

From Definition 1, states with the same transition probability and expected short-term utility have

bisimilarity relationship and can be aggregated as one state. In the following, for states with the same

transition probability and approximately the same expected short-term utility, we study the impact of the

difference in the expected short-term utility on the state aggregation and the equilibrium analysis. As an

example, we consider the R-level (R ≥ 3) reputation system and the full cooperation policy, and the

analysis for other scenarios are similar.

Given the state partition {Sr,v}r=1,··· ,R̄,v=V,V̄ , if we aggregate all states in the same partition as one

state, from the equilibrium analysis in Section IV-A4 and IV-A5, we can derive the condition for full

cooperation policy to be a Nash equilibrium as c ≤ c̄1 following Proposition 6.a,

When we do not aggregate the states in {Sr,v}r=1,··· ,R̄,v=V,V̄ into one state, we can still derive the

condition for full cooperation policy to be a Nash equilibrium as c ≤ c̄2 following the analysis in Section

IV-B for the general IMVS (with any number of anchor views).

To analyze how the difference in the expected short-term utility affects state aggregation and the full

cooperation equilibrium analysis, we compare the above two thresholds c̄1 and c̄2 and define δc̄ = |(c̄1−c̄2)|
c̄2

.

When δc̄ is smaller, the difference between the two results (with and without state aggregation) is smaller.
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Fig. 13 shows an example with R = 10, and the rest of the simulation setup is the same as Fig. 5. From

Fig. 13, δc̄ decreases linearly as max(δV̄ , δV) decreases, and it drops below 1% when max(δV̄ , δV) ≤ 0.04.

Therefore, for single anchor view IMVS with a large number of views and a high probability to transition

to the anchor view (e.g., M ≥ 31 and Pa ≥ 0.5), for all states in the same subspace Sr,V (Sr,V̄ ), the

impact of the difference in Uar,v on the equilibrium analysis is negligible, and we can aggregate all states

in Sr,V (Sr,V̄ ) into one state to simplify the analysis. This completes the proof. �

APPENDIX F

PROOF OF PROPOSITION 5

Proof: In this proof, we will examine each given policy and study when they are equilibriums. For each

policy π, we first assume that all users use this policy and study the corresponding stationary reputation

distribution x. Then, following the one-shot deviation principle, we exam whether a user has incentive to

unilaterally deviate to any one-shot deviation. Note that in the 2-level reputation system, we have tr = 2

(i.e., all users have reputation belonging to R̄ = {1, 2}), and γ = η(tr−1)L = ηL. Substitute them into

(23), the lifetime utility of policy π for v ∈ {V, V̄} is

W π
v = Uav

v +
[
ηL(1− P av

R̄→1
) + ηLP av

R̄→1

] [
v(V)W π

V + v(V̄)W π
V̄
]

= Uav
v + ηL

[
v(V)W π

V + v(V̄)W π
V̄
]
. (54)

Similarly, with the one-shot deviation to a′v, the lifetime utility becomes

W a′
v,π

v = Ua
′
v

v + ηL
[
v(V)W π

V + v(V̄)W π
V̄
]
. (55)

Therefore, W π
v −W

a′
v,π

v = Uav
v − U

a′
v

v , and we only need to compare the expected short-term payoffs

when examine each policy.

• π = {aV , aV̄} = {2, 2}: By solving (20), we have y = x(2) = 1 and x(1) = 0. At view v ∈ {V, V̄}, with

action 2, a user will help upload with probability 1. His reputation will be lowered to 1 with probability

P 2
R̄→1

= 0, and he is a beneficial user with probability 1. Since other users all have reputation no less

than tr − 1 = 1, and use the policy {2, 2}, he can receive others’ help whenever he needs in the next L

segment, and G2,v = gv. Thus, the expected immediate payoff is Uav=2
v = −c+ gv.

As discussed in Section III, action tr = 2 dominates action 1, we only need to exam the one-shot

deviation to R+ 1 = 3. By taking action 3, he will help to upload with probability 0, and his reputation

falls to 1 with probability P 3
R̄→1

= 1. Thus, he cannot receive others’ help, and the expected immediate

gain 0. Therefore, the expected short-term payoff by taking action R+ 1 is Ua
′
v=3

v = 0.
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Comparing Uav=2
v and Ua

′
v=3

v , we have Uav=2
v −Ua

′
v=3

v = gv − c. Given that gV̄ > gV , if gV ≥ c, then

Uav=2
v − Ua

′
v=3

v ≥ 0 for all v ∈ {V, V̄}, and thus, {aV , aV̄} = {2, 2} is an equilibrium policy.

• π = {aV , aV̄} = {3, 2}: Similar to the above analysis, by solving (20), we have y = x(2) = 1
1+v(V)

and x(1) = v(V)
1+v(V) . We then first exam the one-shot deviation principle at view V . By taking action

aV = 3, he will help upload with probability 0. His reputation falls to 1 with probability P 3
R̄→1

= 1
1+v(V)

and he is a beneficial user with probability v(V)
1+v(V) . Since other users all have reputation no less than

tr − 1 = 1 and they only cooperate at V̄ with probability v(V̄), thus, his expected short-term gain is
v(V)

1+v(V)G2,V = v(V)
1+v(V)v(V̄)gV . Then, his expected short-term payoff is UaV=3

V = v(V)
1+v(V)v(V̄)gV .

Since action tr = 2 dominates action 1, we only need to study the one-shot deviation to a′V = 2. By

taking action a′V = 2, he will help upload with probability 1
1+v(V) . His reputation will be lowered to

1 with probability P 2
R̄→1

= 0, and he is a beneficial user with probability 1. Thus, he will receive the

expected short-term gain gVv(V̄), and his expected immediate payoff is U
a′
V=2

V = − c
1+v(V) + gVv(V̄).

Compare UaV=3
V and U

a′
V=2

V , and we have

U
aV=3
V − Ua

′
V=2

V =
v(V)

1 + v(V)
gVv(V̄)−

(
− c

1 + v(V)
+ gVv(V̄)

)
=
c− gVv(V̄)

1 + v(V)
. (56)

Thus, to resist one-shot deviation at V , we should have c− gVv(V̄) ≥ 0.

We then examine the one-shot deviation principle at view V̄ . Following a similar procedure to the

above analysis we have

UaV̄=2
V̄ − Ua

′
V̄=3

V̄ =
gV̄v(V̄)− c
1 + v(V)

. (57)

Thus, to resist one-shot deviation at V̄ , we should have gV̄v(V̄)− c ≥ 0.

To summarize, only when gV̄v(V̄) ≥ c ≥ gVv(V̄), we have both UaV=3
V − Ua

′
V=2

V ≥ 0 and UaV̄=2
V̄ −

U
a′
V̄=3

V̄ ≥ 0, and {aV , aV̄} = {3, 2} is an equilibrium policy.

• π = {aV , aV̄} = {3, 3}: In this case, y = x(2) = 0.5 and x(1) = 0.5. Since no user cooperates, no

user can gain from others’ help and G2,v = G1,v = 0, while taking action tr = 2 and cooperating with

beneficial users only introduces a cost due to helping upload with probability 0.5. Thus, using action

R+ 1 = 3 and playing non-cooperatively is a dominant strategy. Therefore, {aV , aV̄} = {3, 3} is always

an equilibrium policy.

• π = {aV , aV̄} = {2, 3}: This action policy is symmetric with {aV , aV̄} = {3, 2} that we discussed

earlier. Thus, the cost range for {aV , aV̄} = {2, 3} being an equilibrium policy can be symmetrically

written as gVv(V) ≥ c ≥ gV̄v(V). However, since gV̄ > gV , this range is empty, and thus, {aV , aV̄} =

{2, 3} cannot be an equilibrium policy. �
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APPENDIX G

PROOF OF PROPOSITION 6

Proof: In Section IV-A5, we prove Proposition 6.a. In this appendix, we prove Proposition 6.b to 6.d.

First, note that (23) gives the lifetime utility with aggregated views, and it is a linear system that can

be easily solved. The solution to (23) is
W π
V =

U
aV
V −v(V̄)[((1−P aV̄

R̄→1
)η−γP aV̄

R̄→1)U
aV
V −((1−P

aV
R̄→1

)η−γP
aV
R̄→1)U

aV̄
V̄ ]

1−((1−P aV̄
R̄→1

)η−γP aV̄
R̄→1)v(V̄)−((1−P

aV
R̄→1

)η−γP
aV
R̄→1)v(V)

,

W π
V̄ =

U
aV̄
V̄ +v(V)[((1−P aV̄

R̄→1
)η−γP aV̄

R̄→1)U
aV
V −((1−P

aV
R̄→1

)η−γP
aV
R̄→1)U

aV̄
V̄ ]

1−((1−P aV̄
R̄→1

)η−γP aV̄
R̄→1)v(V̄)−((1−P

aV
R̄→1

)η−γP
aV
R̄→1)v(V)

.

(58)

Similar to the analysis in Section IV-A5 and Appendix F, we then derive the lifetime utility with a

one-shot deviation to a′v at view v ∈ {V, V̄}, and we have

W a′
v,π

v = U
a′
v

V +
[
ηL(1− P a

′
v

R̄→1
) + γP

a′
v

R̄→1

] [
v(V)W π

V + v(V̄)W π
V̄
]
. (59)

Comparing W π
v with its one-shot deviation W a′

v,π
v , we have

W π
v −W a′

v,π
v =Uav

V − U
a′
v

V +
[
v(V)W π

V + v(V̄)W π
V̄
]

×
{[
ηL(1− P av

R̄→1
) + γP av

R̄→1

]
−
[
ηL(1− P a

′
v

R̄→1
) + γP

a′
v

R̄→1

]}
. (60)

When W π
v −W

a′
v,π

v ≥ 0, the policy can resist one-shot deviation to a′v and is an equilibrium. Since action

tr and R+ 1 dominate all other actions, we only need to study the one-shot deviation to tr or R+ 1.

• Proof of Proposition 6.b:

Assume that all users follow the policy π = {aV , aV̄} = {R + 1, tr}, we first solve (20) and find the

stationary reputation distribution. We have y =

√
(1+v(V))2+4(tr−2)v(V)−(1+v(V))

2(tr−2)v(V) , and x(r) = 1−y
tr−1 for

1 ≤ r ≤ tr − 1.

We first consider the view set V , and derive a user’s expected short-term utility UaV = −c
∑R

r=a x(r)+

(1− Pr→1)1Gmin{r+1,R},V + P ar→aG1,V when he follows the policy π = {aV , aV̄} = {R + 1, tr}. For a

user at view V with reputation no less than tr−1, by taking action aV = R+1, he will help upload with

probability 0, and therefore the cost term (c
∑R

r=a x(r)) in UaV is 0. Furthermore, after this action, his

reputation falls to 1 with probability PR+1
R̄→1

= y, and from (22), G1,V = 0 since no one is willing to help

a user with reputation 1. We then derive Gmin(r+1,R),V , his expected short-term utility if his reputation

stays at R̄. Since other users only cooperate when they have reputation no less than tr − 1 and are at

view V̄ , from (22), we have Gmin(r+1,R),V = [y+x(tr−1)]v(V̄)gV . Thus, his expected short-term payoff

is UaV=R+1
V = (1− y)gV [y + x(tr − 1)]v(V̄).
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If the user takes the one-shot deviation to a′V = tr at view V , he will help to upload with probability y

and cost term is −cy. Also, with action a′V = tr, the probability that his reputation falls to 1 is P trR̄→1
= 0,

and same as the above analysis, at reputation R̄, his expected short-term gain is Gmin(r+1,R),V = gV [y+

x(tr− 1)]v(V̄). Thus, by taking one-shot deviation to a′V = tr at view V , his expected short-term payoff

U
a′
V=tr
V = −yc+ gV [y + x(tr − 1)]v(V̄).

Substitute the above terms U
a′
V=tr
V , P trR̄→1

, UaV=R+1
V and PR+1

R̄→1
into (58) and (60), and we have

W π
V −W

a′
V=tr,π

V = y

{
c−

[y + x(tr − 1)]v(V̄)DV
1− ηL + ηLy − yγ

}
, (61)

where DV =
{
v(V̄)(ηL − γ)gV̄ + [1− γ − (ηL − γ)v(V̄)]gV

}
. Thus, to resist the one-shot deviation at

view V , we need c−
[b+ x(tr − 1)]v(V̄)DV

1− ηL + ηLb− bγ
≥ 0.

When he is at view V̄ , by taking action aV̄ = tr defined in the policy, he will help upload with

probability y and the cost term is −cy. Also, his reputation falls to 1 with probability P trR̄→1
= 0. Similar to

the above analysis, his expected short-term gains are G1,V = 0 and Gmin(r+1,R),V = gV̄ [y+x(tr−1)]v(V̄),

and his expected short-term payoff is UaV̄=tr
V̄ = −yc+ gV̄ [y + x(tr − 1)]v(V̄).

For the one-shot deviation to a′V̄ = R+ 1 at view V̄ , following the same analysis as above, we have

W π
V̄ −W

a′
V̄=R+1,π

V̄ = y

{
[y + x(tr − 1)]v(V̄)DV̄

1− ηL + ηLy − yγ
− c
}
, (62)

where DV̄ =
{

[1− γ − (ηL − γ)v(V)(1− y)]gV̄ + (ηL − γ)v(V)(1− y)gV
}

. Therefore, to resist the

one-shot deviation at view V̄ , we need
[y + x(tr − 1)]v(V̄)DV̄

1− ηL + ηLy − yγ
− c ≥ 0.

Note that

DV̄ −DV =
{

(1− γ)− (ηL − γ)[(1− y) + yv(V̄)]
}

(gV̄ − gV)

> (ηL − γ)[y − yv(V̄)](gV̄ − gV) > 0. (63)

Thus, if

[y + x(tr − 1)]v(V̄)DV̄
1− ηL + ηLy − yγ

≥ c ≥
[y + x(tr − 1)]v(V̄)DV

1− ηL + ηLy − yγ
, (64)

we have both W π
V −W

a′
V=tr,π

V ≥ 0 and W π
V̄ −W

a′
V̄=R+1,π

V̄ ≥ 0, and therefore, {aV , aV̄} = {R + 1, tr}

is an equilibrium policy.

• Proof of Proposition 6.c:

Given the policy {aV , aV̄} = {R + 1, R + 1}, if tr = 2, we have y = 0.5 and x(1) = 0.5. If tr ≥ 3,

we have y =
√
tr−1−1
tr−2 and x(r) = 1−y

tr−1 for 1 ≤ r ≤ tr − 1. However, no matter which tr is used, since

no user cooperates, no user can gain from others’ help and Gr,v = 0 for all r and v. However, playing
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cooperatively with action tr only introduces a cost due to helping upload with probability y. Thus, using

action R+ 1 and playing non-cooperatively is a dominant strategy, from which no one will deviate.

• Proof of Proposition 6.d:

Given the policy {aV , aV̄} = {tr, R+1}, note that it is symmetric with respect to the policy {aV , aV̄} =

{R+1, tr} that we discussed earlier. Thus, the cost range for {aV , aV̄} = {tr, R+1} being an equilibrium

policy can be symmetrically written as

[y + x(tr − 1)]v(V)EV
1− ηL + ηLy − yγ

≥ c ≥ [y + x(tr − 1)]v(V)EV̄
1− ηL + ηLy − yγ

, (65)

where EV = [1− γ − (ηL − γ)v(V̄)(1− y)]gV + (ηL − γ)v(V̄)(1− y)gV̄

and EV̄ = v(V)(ηL − γ)gV + [1− γ − (ηL − γ)v(V)]gV̄ . Comparing EV and EV̄ , we have

EV̄ − EV =
{

(1− γ)− (ηL − γ)[(1− y) + yv(V)]
}

(gV̄ − gV)

> (ηL − γ)[y − yv(V)](gV̄ − gV) > 0. (66)

Thus, the cost range in (65) is empty, and {aV , aV̄} = {R+ 1, tr} is not an equilibrium policy. �


