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ABSTRACT

While modern displays offer high dynamic range (HDR) with large
bit-depth for each rendered pixel, the bulk of legacy image and video
contents were captured using cameras with shallower bit-depth. In
this paper, we study the bit-depth enhancement problem for images,
so that a high bit-depth (HBD) image can be reconstructed from an
input low bit-depth (LBD) image. The key idea is to apply appro-
priate smoothing given the constraints that reconstructedsignal must
lie within the per-pixel quantization bins. Specifically, we first define
smoothness via a signal-dependent graph Laplacian, so thatnatural
image gradients can nonetheless be interpreted as low frequencies.
Given defined smoothness prior and observed LBD image, we then
demonstrate that computing the most probable signal via maximum
a posteriori (MAP) estimation can lead to large expected distortion.
However, we argue that MAP can still be used to efficiently esti-
mate the AC component of the desired HBD signal, which along
with a distortion-minimizing DC component, can result in a good
approximate solution that minimizes the expected distortion. Exper-
imental results show that our proposed method outperforms existing
bit-depth enhancement methods in terms of reconstruction error.

Index Terms— Bit-depth enhancement, graph signal processing

1. INTRODUCTION

It is undeniable that there exists an insatiable human desire to cre-
ate bigger and more realistic displays. In terms of spatial resolu-
tion (number of pixels per image), television has evolved from VGA
(640× 480) to HD (1280 × 720), and soon to 4K and 8K ultra HD
(3840× 2160 and7680 × 4320 respectively). In terms of bit-depth
(number of bits per pixel),high dynamic range(HDR) technologies
have promised 10 to 12 bits per pixel—as opposed to conventional
8 bits per pixel—for finer-grained quantization of real pixel values
to discrete levels. However, though display technologies have con-
tinued to improve, the bulk of legacy image and video contents were
captured using older capturing devices, often in lower spatial resolu-
tion and shallower bit-depth than what modern displays are capable.
Thus there is a need to suitably increase the spatial resolution and/or
bit-depth of legacy content.Super-resolution[1] addresses the first
problem of increasing the spatial resolution. In contrast,in this paper
we address the second problem of bit-depth enhancement.

Common in the literature of bit-depth enhancement [2–6] is the
notion ofsmoothness. The key observation is that true image signals
tend to be smooth, and thus given an observed low bit-depth (LBD)
signal, applying a smoothing operator across consecutive quantiza-
tion levels would likely result in a better quality signal. As an illus-
tration, we see in Fig. 1 an 8-sample one-dimensional (1D) signaly
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Fig. 1: Examples of quantized and smoothed 1D signals.

quantized to integer values1 and2. If a smoothing operator is ap-
plied, it can result inx1 or x2, depending on the amount of smooth-
ing applied. While the notion of smoothness is intuitive, defining
it mathematically rigorously and applying it optimally forhigh bit-
depth (HBD) signal reconstruction is not trivial. In this paper, lever-
aging on recent advances ingraph signal processing(GSP) [7, 8],
we first formally define “smoothness” via a signal-dependentgraph
Laplacian. Specifically, corresponding graph transform can decom-
pose a graph-signal (pixel values in this work) into graph frequency
components, and a graph-signal is deemed smooth if it contains
mainly low graph frequencies. Further, unlike spectral decomposi-
tion based on fixed transforms like discrete cosine transform (DCT),
signal structure can be embedded as edge weights in the graph, so
that natural image gradients will nonetheless be interpreted as low
graph frequencies, lowering the chance of over-smoothing.

Next, armed with our defined smoothness prior for graph-
signals, we formulate an optimization problem for reconstructed
signal x∗ that minimizes the expected distortion given quantized
signaly. Observing that the optimization is difficult to solve di-
rectly, perhaps surprisingly, we next demonstrate that themost
probable signal viamaximum a posteriori(MAP) estimation given
observedy and the smoothness prior can lead to arbitrarily large
expected distortion, and thus applying MAP directly is a poor proxy
for the original optimization objective. However, we arguethat with
a simple twist—computing the most probable AC component of the
reconstructed signal first via MAP and then a distortion-minimizing
DC component subsequently—MAP can still be a useful and ef-
ficient tool which results in good approximate solutions to the
original problem. Experiments demonstrate that our proposed MAP
estimation for AC component in graph transform domain has good
objective bit-precision enhancement performances for both natural
and synthesized images.

The outline of the paper is as follows. We first overview related
work in Section 2. We then introduce the construction of a graph
transform in Section 3. Proposed MAP formulation for image bit-
depth enhancement and the corresponding optimization procedure
are elaborated in Section 4 and Section 5. Finally, we show experi-
ment results and draw conclusions in Section 6 and 7, respectively.



2. RELATED WORK

Graph signal processing (GSP) is the study of signals that live on
structured data kernels described by graphs [8]. GSP tools can also
be applied to traditional signals such as images that live onregular
kernels [9, 10] or point cloud structures [11], where the idea is to
embed signal structure into the graph before signal processing. Sim-
ilarly, to reconstruct a HBD signal we compute edge weights of a
graph based on the signal structure (deduced from the observed in-
put LBD image) and then define signal smoothness via the graph
Laplacian, so that a signal with enhanced bit-precision canbe recon-
structed without over-smoothing natural image gradients.

Coarse quantization may cause false contours which degradethe
visual quality of the image. In sense of objective quality, coarse
quantization results in low bit-precision of the acquired image signal
and thus large quantization error. Previous works on false contour re-
moval and bit-precision enhancement [2–6] are typically smoothing
schemes by filtering or spatial interpolation, which do not optimize
an objective metric such as mean-square-error (MSE). Our work is a
significant improvement over existing bit-depth enhancement works
in that we are the first in the literature to define signal smoothness
formally using GSP tools for the bit-depth enhancement problem,
and propose a computation-efficient MAP algorithm that produces
good approximate solutions minimizing the expected distortion. Our
algorithm can also be used for broader applications that require bit-
depth enhancement:e.g., 3D surface refinement by enhancing the
bit-precision of depth maps [12]; compression schemes thatencode
an image at shallower bit-depth than captured for bitrate saving, and
then recover the least significant bits (LSB) at decoder [13].

We stress that the bit-precision enhancement problem is differ-
ent from the inverse tone mapping (ITM) problem [14, 15] in HDR
imaging. Specifically, the source of distortion is different: distor-
tion in ITM is typically caused by non-linear tone mapping oper-
ator [14] or the over-saturation of camera sensors [15], while dis-
tortion in bit-precision enhancement problem is introduced by A/D
conversion (quantization). Thus, the desired output of bit-precision
enhancement does not hallucinate lost details for improvedsubjec-
tive quality, but estimates the original HBD signal by minimizing the
expected distortion, as formulated in Section 4.

3. GRAPH TRANSFORM

We begin with a review of GSP concepts such as graph Laplacian
and graph transform. A graphG = (V,W) is defined by a setV of
N vertices, and a setW of non-negative edge weights. Each vertex
(pixel) i has associated signal intensity (pixel value)x(i), so a graph-
signal can be written as a vectorx = [x(1), · · · , x(N)]T ∈ R

N .
An undirected edge with weightw(i, j) connects verticesi andj iff
w(i, j) > 0.

Given graphG, we can define theadjacency matrixA ∈ R
N×N ,

whereA(i, j) = w(i, j) ≥ 0. Thedegree matrixD ∈ R
N×N is a

diagonal matrix satisfyingD(i, i) =
∑

j
A(i, j). Thecombinato-

rial graph Laplacian(graph Laplacian for short) for graphG is then:

L = D−A (1)

The graph Laplacian can be normalized to be thenormalized

graph LaplacianLn = D− 1

2LD− 1

2 . A random walk Laplacianis
similarly defined asLr = D−1L. For the purpose of this paper, we
will only use the combinatorial graph LaplacianL. See [16] for a
more detailed discussion on different Laplacian variants.

Graph transform(GT), also known asgraph Fourier trans-
form [8], involves the eigen-decomposition of the graph Laplacian
L into a matrixT composed of eigenvectorsvk ’s as rows. GT

introduces the notion of frequencies into a graph-signal. Graph
frequencies areL’s eigenvaluesλk ’s, with vk ’s as associated basis
vectors. In particular,λk measures the “smoothness” ofvk:

λk = v
T
k Lvk =

1

2

∑

i,j

w(i, j)(vk(i) − vk(j))
2 (2)

So when the basis vectors are sorted in ascending order of their
corresponding eigenvalues, the transform coefficient vector α =
Tx = [α1, · · · , αN ]T represents the amount of low-to-high graph
frequency components in graph-signalx.

4. PROBLEM SETUP

We begin with a set of definitions for later derivation. Without loss
of generality, a length-N original signalxo ∈ R

N is quantized to
y ∈ I

N using quantization stepsizeQ, i.e., y = round(xo/Q). Q
is known at both encoder and decoder. At the decoder, onlyy is
observed and we are tasked to find the “best” estimatex∗ to xo.

In this work, vertices (pixels)i andj are connected by an edge
only when they are adjacent. Due to quantization,|y(i) − y(j)| >
1 meansxo(i) andxo(j) cannot be equal, so we set edge weight
w(i, j) = 0 in this case. For the other adjacent pixel pairs, we set
w(i, j) = exp{−(y(i) − y(j))2/σ2}. Proper assignment of edge
weights embeds the image structure into the graph definition.

Graph-signalx, whose entries are pixel values, takes on a prior
probabilityPr(x). Here we define the following smoothness prior
that favors low-frequency components in graph transform domain:

Pr(x) = Pr(xD)Pr(xA) = C
1

K1
exp

{

−σ2
l x

T
L

p
x
}

=
C

K1
exp

{

−σ2
l

N
∑

i=2

λp
iα

2
i

} (3)

whereλi andαi are sorted graph frequency1 and the corresponding
graph transform coefficient respectively, andp is a positive integer.
K1 is the normalization factor forPr(xA), the prior on the AC com-
ponent ofx. ConstantC = Pr(xD) is the uniform prior on the DC
componentxD. In words, (3) states that a signalx is more probable
if it is smooth within ap-hop neighborhood. Different from DCT
where a smooth signal prior tends to blur the natural image gradi-
ents, reconstructing a smooth signal in graph transform domain does
not contradict with the natural image gradients because image struc-
tures are embedded in graph weights. Hence smoothness priorin the
graph transform domain is more suitable for our problem.

4.1. Distortion Minimization
Ideally, we would like to minimize the expected distortion of the
reconstructed signalx∗ with respect to the original signalxo,

x
∗ = argmin

x

∫

xo∈F(y)

‖x− x
o‖22 Pr(xo |y) dxo (4)

whereF(y) is the feasible space of original signalxo given ob-
served quantized signaly, i.e.:

F(y) = {xo | round(xo/Q) = y} (5)

(4) can be viewed as a “sum” of squared errors each weighted by
Pr(x0|y). It is difficult to solve directly because each signalxo in
the sum induces a different squared error with a different weight, and
given the large space of signalsxo ∈ F(y) to consider, it is hard to
keep track of them all in one optimization procedure.

1(3) uses the fact thatλ1 ≡ 0 in graph transform (zero frequency).



4.2. MAP Formulation for Reconstructed Signal
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Fig. 2: Example showing the same AC signalxA being quantized to different
sets of quantization bins.

(a) Input imagey (b) Output by (7) (c) Our output

Fig. 3: Example showing MAP estimation of the signal leads to a DC output
(b), while MAP of AC component reconstructs a smooth signal (c).

Suppose instead of minimizing the expected distortion using (4),
we simply find the most probablex given observedy instead:

x
∗ = arg max

x∈F(y)
Pr(x |y) (6)

In relation to original objective (4), it means that we first findxo in
the spaceF(y) with the largest weightPr(xo|y), and then set the
variablex∗ to xo so their corresponding squared error is zero in the
sum in (4). (6) can be rewritten as follows via MAP:

x
∗ = arg max

x∈F(y)
Pr(y|x)Pr(x) (7)

where likelihoodPr(y|x) evaluates to1 if x ∈ F(y) and0 other-
wise. (7) is thus equivalent to finding the signalx with the largest
probabilityPr(x) = Pr(xA)Pr(xD) in F(y).

We show thatMAP solution (7) can lead to arbitrarily large ex-
pected distortion given quantization step sizeQ, and thus (6) is not a
good proxy for the original objective (4). See Fig. 2(a) for an exam-
ple set of quantization bins corresponding to observedy. According
to prior probability (3), the most probable signal is one that is essen-
tially DC, e.g.x = [1.5 − 4ǫ, . . . , 1.5 + 4ǫ] for arbitrarily smallǫ,
regardless ofQ. It is clear that for largeQ, this solution will result
in large expected distortion.2 The reason for this result is because
the MAP formulation for reconstructed signalx only accounts for
the most probable signalxo with probabilityPr(xA)Pr(xD) in the
sum in (4) while ignoring all other signals in spaceF(y).

4.3. MAP Formulation for Reconstructed AC Signal

Instead of solving for the most probablex via a MAP formulation,
we propose to estimate the most probable AC componentxA via
MAP first. After acquiringx∗

A, if we can assume thatx∗
A is reason-

ably accurate andx∗
A ≈ xo

A (to be argued below), the distortion-
minimizing DC componentx∗

D can then be solved easily:

argmin
xD

∫

xo∈F(y)

‖xD +x
∗
A − (xo

D +x
∗
A)‖

2
2 Pr(xo

D +x
∗
A|y) dx

o

(8)

2This is not an isolated case in which MAP solution performs poorly. A
similar case is that quantizedy alternates between1 and2.

By (3),xD is uniformly distributed, soPr(xo
D + x∗

A|y) is con-
stant so long asxo

D leads to quantizedy according to (5),i.e.

y(i)−
Q

2
≤ x∗

A(i) + xo
D ≤ y(i) +

Q

2
, ∀i (9)

Thus (9) establishes the integration bounds in (8), resulting in:

x∗
D = argmin

xD

∫ zmin+yD+Q
2

zmax+yD−
Q
2

‖xD − xo
D‖22 dxo

D (10)

where vectorz = yA − x∗
A, zmin and zmax are the smallest

and largest scalars in vectorz. The solution to (10)—distortion-
minimizing DC component—is simplyx∗

D = yD+(zmin+zmax)/2.
We now argue that the MAP solutionx∗

A does give a good esti-
mate to true AC signalxo

A, i.e. the expected distortion is small:
∫

x
o
A

‖x∗
A − x

o
A‖

2
2 Pr(xo

A|y) dx
o
A (11)

Seeking the MAP estimatex∗
A means solving:

argmax
xA

Pr(xA|y) = argmax
xA

Pr(y|xA)Pr(xA) (12)

= argmin
xA

− logPr(y|xA)− logPr(xA) (13)

By total probability theorem, the likelihood can be writtenas:

Pr(y|xA) =

∫

Pr(y|xA, xD)Pr(xD) dxD (14)

where againPr(y|xA, xD) evaluates to 1 ifxD + xA ∈ F(y) and
0 otherwise, andPr(xD) = C. So we can rewrite (12) as:

x
∗
A = argmax

xA

∫

xD|xD+xA∈F(y)

C dxD Pr(xA) (15)

We can interpret (15) as follows. MAP solutionx∗
A and other

AC signalsxo
A in the “sum” in (11) with large weightPr(xo

A|y)
must have large feasible ranges forxD to integrate over, as shown in
Fig. 2(b) (as opposed to Fig. 2(a)). By (10),xD feasible range given
AC signalx∗

A is Q + zmin − zmax. That means AC signals with
large feasible range ofxD have smallzmax − zmin, i.e. they are all
close toyA and thus are similar to each other. Hence solving forx∗

A

via MAP means it reduces distortion for all signals in the sumin (11)
with the largest weights. Thus, MAP solutionx∗

A has small expected
distortion and provides a good estimate to the true AC signalxo

A.
We discuss how (13) can be efficiently solved next.

5. MAP SIGNAL ESTIMATION

5.1. Computing Likelihood

Likelihood (14) is still hard to compute whenxA becomes the opti-
mization variable. We approximatePr(y|xA) as follows. We have
argued earlier that an AC signalxA close to the AC component of
y (the centers of quantization bins) allowsxD to vary to a large
extent while still keepingxD + xA ∈ F(y), thus leads to a large
Pr(y|xA). Generalizing the above observation, we approximate the
likelihoodPr(y|xA) as follows for efficient solving:

≈

{

1
K2

exp
{

−σ2
q‖yA − xA‖22

}

if |xA(i) − yA(i)| < Q
2
, ∀i

0 o.w.
(16)

whereK2 is the normalization factor. In words, (16) states ifyA and
AC signalxA are a good match, then the likelihood ofxA is high.
Further, we impose a sufficient condition where eachxA(i) cannot
deviate fromyA(i) by more thanQ/2 to ensure feasibility in (5).



(a) 4-bit input image, 8-bit ground-truth

Image Anchor De-cont Interp Proposed
lampshade2 3.554e-4 7.250e-4 3.275e-4 2.529e-4
plastic 2.233e-4 5.510e-4 3.189e-4 1.499e-4
midd2 2.709e-4 5.993e-4 1.854e-4 1.687e-4

monopoly 3.404e-4 6.129e-4 3.061e-4 2.395e-4

(b) 8-bit input image, 12-bit ground-truth

Image Anchor De-cont Interp Proposed
dude 1.217e-6 2.443e-6 6.020e-7 3.227e-7

sphere 1.279e-6 2.577e-6 4.752e-7 1.561e-7

Table 1: MSE Performance Comparisons

5.2. Linearly Constrained Quadratic Programming

By combining (3), (5) and (16), we formulate the problem (13)as:

min
xA

σ2
l x

T
AL

p
xA + σ2

q‖xA − fA‖
2
2 (17)

s.t. |xA(i)− yA(i)| < Q/2, ∀i,
∑

i

xA(i) = 0

where fidelityfA is initialized to beyA by (16). After solving the
quadratic problem (17) for the first time, we obtain the output image
denoted byx∗(1)

A . We then iteratively solve (17), where the solu-

tionx
∗(k+1)
A for (k+1)-th iteration is obtained by solving (17) with

updated fidelityfA = x
∗(k)
A , asx∗(k)

A is the best estimate ofxo
A

to-date. At each iteration we update the edge weights based on the
latest computed pixel values. Solving (17) yieldsx∗

A, which is sub-
sequently used to obtain the distortion-minimizing DC component
x∗
D via (10). Our reconstructed image signal is thusx∗ = x∗

A +x∗
D.

6. EXPERIMENTATION

We conduct the following bit-depth enhancement experiments using
both natural color images and synthesized images. A HBD image
serves as the ground-truth signalxo. Our input is the LBD image
y with quantization step sizeQ. Input image is divided into over-
lapped blocks of size64 × 64 for robust and efficient computation
of our posed quadratic problem (17) withp = 5. The quality of the
reconstructed imagex∗ is measured in MSE with respect toxo. For
color images, average MSE of R, G and B channels is used. Smaller
MSE indicates higher bit-precision ofx∗.

The competing methods in our experiments are: 1)Anchor
which picks quantization bin centers as the reconstructed image; 2)
De-cont [6] which is a filtering-based method for removing false
contours; 3)Interp [4] which is a linear interpolation method in
spatial domain; and 4) our proposed MAP estimation for AC com-
ponent in graph transform domain.

Two sets of bit-depth enhancement experiments are conducted.
In 4-bit enhancement experiments, 8-bit natural color images
(lampshade2, plastic, midd2, monopoly) serve as ground-
truth xo and inputy is coarsely quantized to 4-bit. These 4 color
images are all from the Middlebury 2006 stereo dataset [17].In 8-
bit enhancement experiments, grayscale imagesdude andsphere
with 12-bit precision are used asxo and the inputy is coarsely
quantized to 8-bit. These 2 images are computer-generated depth
maps of a human body model and a 3D sphere, respectively.

Fig. 4 shows the scaled absolute reconstruction error|x∗ − xo|
for the four methods. We see that our method achieves the bestper-
formance with the smallest error energy. That is because ourmethod

(a)Anchor (b) De-cont

(c) Interp (d) Proposed

Fig. 4: Absolute error maps of four comparing methods in 8-bit enhancement
experiment fordude (scaled for visibility).

(a) LSBs of ground-truthxo (b) LSBs ofx∗ by proposed method

Fig. 5: LSB maps corresponding to the same experiment as Fig. 4.

embeds image patch structures into the graph weights, enabling the
reconstruction of complicated signals without over-smoothing.

Alternatively, the bit-precision enhancement problem canbe
viewed as the LSBs reconstruction problem if the target bit-depth of
xo is known. Fig. 5 shows the LSB maps forxo and our outputx∗.
We see that proposed method well restores the ground-truth LSBs.

The numerical MSE results are summarized in Table. 1, which
show that our method achieves the best objective performance in
both experiments.Anchor does not take inter-pixel correlations
into consideration, so the reconstruction error is large.De-cont
always performs the worst in terms of MSE because of its inability
to capture the image structures (various shapes and sizes ofquan-
tized regions).Interp works quite well for synthesized images
(dude,sphere); but when dealing with natural images, its simple
linear interpolation cannot well approximate the originalsignalxo

which can be highly irregular. In contrast, our method performs con-
sistently well in 4-bit/8-bit enhancement experiments using signal-
dependent graph transform and proposed MAP formulation.

7. CONCLUSION

We proposed an image bit-depth enhancement algorithm that uses
MAP to estimate the AC component of an image patch in graph
frequency domain; smoothness defined in the graph domain means
image structures can be embedded into the signal prior, avoiding the
problem of over-smoothing. Our MAP formulation can be efficiently
solved via quadratic programming with linear constraints.Experi-
ments show that our proposed method outperforms competing meth-
ods in terms of objective reconstruction error. Our investigation also
serves as a cautionary tale: though MAP remains an effectivetool,
if improperly used, it can lead to arbitrarily large expected errors, as
we demonstrated in our problem setting.
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