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this paper, we study the bit-depth enhancement problenmfagés,
so that a high bit-depth (HBD) image can be reconstructed fna
input low bit-depth (LBD) image. The key idea is to apply appr
priate smoothing given the constraints that reconstrusigathl must Fig. 1: Examples of quantized and smoothed 1D signals.
lie within the per-pixel quantization bins. Specificallyefirst define
smoothness via a signal-dependent graph Laplacian, sodhaal
image gradients can nonetheless be interpreted as loweine@s.  quantized to integer valudsand?2. If a smoothing operator is ap-
Given defined smoothness prior and observed LBD image, we theplied, it can result ink; or x», depending on the amount of smooth-
demonstrate that computing the most probable signal vidrmar ing applied. While the notion of smoothness is intuitivefiiag
a posteriori (MAP) estimation can lead to large expectetbdisn. it mathematically rigorously and applying it optimally fbigh bit-
However, we argue that MAP can still be used to efficiently-est depth (HBD) signal reconstruction is not trivial. In thisges, lever-
mate the AC component of the desired HBD signal, which alongaging on recent advances gnaph signal processingGSP) [7, 8],
with a distortion-minimizing DC component, can result in@d  we first formally define “smoothness” via a signal-dependgaph
approximate solution that minimizes the expected disinrtExper-  Laplacian. Specifically, corresponding graph transform decom-
imental results show that our proposed method outperforissiey  pose a graph-signal (pixel values in this work) into gragérency
bit-depth enhancement methods in terms of reconstruction. e components, and a graph-signal is deemed smooth if it centai

Index Terms— Bit-depth enhancement, graph signal processing. ainly low graph frequencies. _Furtl_wer, unlike _spectralodﬂqoosi-

ion based on fixed transforms like discrete cosine trans{@CT),
1. INTRODUCTION signal structure can be embedded as edge weights in the, graph

that natural image gradients will nonetheless be integgres low
graph frequencies, lowering the chance of over-smoothing.

It is undeniable that there exists an insatiable human elésicre-
ate bigger and more realistic displays. In terms of spa&ablu- ] i ]
tion (number of pixels per image), television has evolverfiVGA ~ Next, armed with our defined smoothness prior for graph-
(640 x 480) to HD (1280 x 720), and soon to 4K and 8K ultra HD Signals, we formulate an optimization problem for recanstd
(3840 x 2160 and7680 x 4320 respectively). In terms of bit-depth  Signal x™ that minimizes the expected distortion given quantized
(number of bits per pixelhigh dynamic ranggéHDR) technologies signaly. Observing t.h.at the optimization is difficult to solve di-
have promised 10 to 12 bits per pixel—as opposed to conveaitio '€ctly, perhaps surprisingly, we next demonstrate that rtfuest
8 bits per pixel—for finer-grained quantization of real pixalues ~ Probable signal vianaximum a posteriofMAP) estimation given
to discrete levels. However, though display technologaslton- observedy .and .the smoothness prior can Ie{id to qrbltrarlly large
tinued to improve, the bulk of legacy image and video costerare ~ €Xpected distortion, and thus applying MAP directly is amaroxy
captured using older capturing devices, often in loweriapagsolu-  for the original optimization objective. However, we argbat with
tion and shallower bit-depth than what modern displays apaile. @ Simple twist—computing the most probable AC componenhef t
Thus there is a need to suitably increase the spatial résoland/or reconstructed signal first via MAP and then a}dlstortlommmmg
bit-depth of legacy contenSuper-resolutiorl] addresses the first DC component subsequently—MAP can still be a useful and ef-
problem of increasing the spatial resolution. In contriaghis paper ~ ficient tool which results in good approximate solutions he t
we address the second problem of bit-depth enhancement. orlglnal_problem. Experlments_demonstrate that our pre_;itMAP
Common in the literature of bit-depth enhancement [2-6hés t  €Stimation for AC component in graph transform domain hasdgo
notion ofsmoothnessThe key observation is that true image signals OPiective bit-precision enhancement performances fon batural
tend to be smooth, and thus given an observed low bit-def@pjL  and synthesized images.
signal, applying a smoothing operator across consecutiaata- The outline of the paper is as follows. We first overview retat
tion levels would likely result in a better quality signalsAnillus-  work in Section 2. We then introduce the construction of glyra
tration, we see in Fig. 1 an 8-sample one-dimensional (1f0)adly  transform in Section 3. Proposed MAP formulation for image b
depth enhancement and the corresponding optimizatioreguve
are elaborated in Section 4 and Section 5. Finally, we shqerex
ment results and draw conclusions in Section 6 and 7, rasphrct
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2. RELATED WORK

Graph signal processing (GSP) is the study of signals theatdn
structured data kernels described by graphs [8]. GSP tenlsiso
be applied to traditional signals such as images that liveegnlar
kernels [9, 10] or point cloud structures [11], where theaide to
embed signal structure into the graph before signal proggsSim-
ilarly, to reconstruct a HBD signal we compute edge weigtita o
graph based on the signal structure (deduced from the aizbémy

put LBD image) and then define signal smoothness via the grap'x = [aq, - - -

Laplacian, so that a signal with enhanced bit-precisionbearecon-
structed without over-smoothing natural image gradients.

Coarse quantization may cause false contours which detitade
visual quality of the image. In sense of objective qualityaise
quantization results in low bit-precision of the acquiredge signal
and thus large quantization error. Previous works on falstotir re-
moval and bit-precision enhancement [2—6] are typicallpasthing
schemes by filtering or spatial interpolation, which do notiroize
an objective metric such as mean-square-error (MSE). Otk is@
significant improvement over existing bit-depth enhanaemerks

introduces the notion of frequencies into a graph-signalapG
frequencies ar&.’s eigenvalues\;’s, with v;’s as associated basis
vectors. In particular\, measures the “smoothness”wf:
1 .. . .
A = Vi Lvi = 5 > w(i, §) (v (i) — ve(5))? 2

0,3

So when the basis vectors are sorted in ascending orderiof the
corresponding eigenvalues, the transform coefficientoveat =
,an]” represents the amount of low-to-high graph
frequency components in graph-sigsal

4. PROBLEM SETUP

We begin with a set of definitions for later derivation. Witthdoss
of generality, a lengthV original signalx® € R” is quantized to
y € TV using quantization stepsizg, i.e, y = round(x°/Q). Q
is known at both encoder and decoder. At the decoder, prky
observed and we are tasked to find the “best” estiméate x°.

In this work, vertices (pixels) andj are connected by an edge
only when they are adjacent. Due to quantizatigti;) — y(j)| >

in thatwe are the first in the literature to define signal smoothness| meansz°(i) andz°(j) cannot be equal, so we set edge weight

formally using GSP tools for the bit-depth enhancement lprab
and propose a computation-efficient MAP algorithm that pices
good approximate solutions minimizing the expected distarOur
algorithm can also be used for broader applications thatiredpit-

w(i,j) = 0in this case. For the other adjacent pixel pairs, we set

w(i,j) = exp{—(y(i) — y(j))*/o*}. Proper assignment of edge

weights embeds the image structure into the graph definition
Graph-signalk, whose entries are pixel values, takes on a prior

depth enhancemene.g, 3D surface refinement by enhancing the probability Pr(x). Here we define the following smoothness prior

bit-precision of depth maps [12]; compression schemesethedde
an image at shallower bit-depth than captured for bitratengaand
then recover the least significant bits (LSB) at decoder.[13]

We stress that the bit-precision enhancement problem fisrdif
ent from the inverse tone mapping (ITM) problem [14, 15] in RID
imaging. Specifically, the source of distortion is diffetedistor-
tion in ITM is typically caused by non-linear tone mappingeop
ator [14] or the over-saturation of camera sensors [15]]embis-
tortion in bit-precision enhancement problem is introdlibg A/D
conversion (quantization). Thus, the desired output epketision
enhancement does not hallucinate lost details for impreudgec-
tive quality, but estimates the original HBD signal by miiiging the
expected distortion, as formulated in Section 4.

3. GRAPH TRANSFORM

that favors low-frequency components in graph transformaia:

Pr(x) = Pr(zp)Pr(xa) = C’KL1 exp {—U?XTLPX}

c al

2 2
= —exp{ —0 g Maj
K p{ ] 2 i }

where); anda; are sorted graph frequericgnd the corresponding
graph transform coefficient respectively, gné a positive integer.
K is the normalization factor faPr(x 4), the prior on the AC com-
ponent ofx. ConstantC' = Pr(zp) is the uniform prior on the DC
componentrp. In words, (3) states that a signais more probable
if it is smooth within ap-hop neighborhood. Different from DCT
where a smooth signal prior tends to blur the natural imageligr
ents, reconstructing a smooth signal in graph transformadiooioes

®)

We begin with a review of GSP concepts such as graph Laplaciafot contradict with the natural image gradients becausgérsaruc-

and graph transform. A gragh = (V, W) is defined by a se¥ of

tures are embedded in graph weights. Hence smoothnessrpitier

N vertices, and a sét’ of non-negative edge weights. Each vertex graph transform domain is more suitable for our problem.

(pixel) : has associated signal intensity (pixel valu€)), so a graph-
signal can be written as a vecter= [z(1), - ,z(N)]* € RV,
An undirected edge with weighi(, j) connects verticesandj iff
w(i, j) > 0.

Given graphg, we can define thadjacency matriA € RYV*V,
whereA(i, j) = w(i,j) > 0. Thedegree matridD ¢ RY*" is a
diagonal matrix satisfyingD(i,i) = >_, A(i, ). Thecombinato-
rial graph Laplacian(graph Laplacian for short) for graghis then:

@)

The graph Laplacian can be normalized to be nlbemalized

graph LaplacianL.” = D :LD 2. A random walk Laplaciarns
similarly defined ad.” = D~ 'L. For the purpose of this paper, we
will only use the combinatorial graph Laplacidn See [16] for a
more detailed discussion on different Laplacian variants.

Graph transform(GT), also known agyraph Fourier trans-
form [8], involves the eigen-decomposition of the graph Laglaci
L into a matrix T composed of eigenvectorg;’'s as rows. GT

L=D-A

4.1. Distortion Minimization

Ideally, we would like to minimize the expected distortiohtbe
reconstructed signal™ with respect to the original signaf’,

x" = arg min/ x —x°||5 Pr(x°|y) dx° (4)
x x°€F(y)

where F(y) is the feasible space of original signaf given ob-

served quantized signgl i.e.:

F(y) = {x? [round(x°/Q) =y} ©)

(4) can be viewed as a “sum” of squared errors each weighted by
Pr(x°y). Itis difficult to solve directly because each signdlin

the sum induces a different squared error with a differenghteand
given the large space of signat§ € F(y) to consider, it is hard to
keep track of them all in one optimization procedure.

1(3) uses the fact that; = 0 in graph transform (zero frequency).



4.2. MAP Formulation for Reconstructed Signal
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Fig. 2. Example showing the same AC signal being quantized to different

sets of quantization bins.

(b) Output by (7) (c) Our output

(a) Input imagey

Fig. 3: Example showing MAP estimation of the signal leads to a Daiu
(b), while MAP of AC component reconstructs a smooth sigopl (

Suppose instead of minimizing the expected distortiongi&),
we simply find the most probabte given observed instead:

(6)

x" = arg nax Pr(x|y)

In relation to original objective (4), it means that we firstdfix° in

By (3), zp is uniformly distributed, sdr(x%, + x%|y) is con-
stant so long as%, leads to quantizegt according to (5)i.e.

Q

v~ 2 <ai(i)tap <y(i) + 2, i ©)

Thus (9) establishes the integration bounds in (8), resylti:

Zmin+yD+% o 12 Y
/ oo — 252 de
zZ

max+¥YD— 5

xp = arg min
zp

(10)

where vectorz = ya — X%, zZmin and zmax are the smallest
and largest scalars in vectar The solution to (10)—distortion-
minimizing DC component—is simply;, = yp+(2min+2max)/2-
We now argue that the MAP solutiox does give a good esti-
mate to true AC signat?,, i.e. the expected distortion is small:

[ i = x4l Pricily) dx a1
)
Seeking the MAP estimate); means solving:
argmax Pr(xaly) = argmax Pr(y|xa) Pr(xa) (12)
XA XA
= argmin — log Pr(y|xa) — log Pr(xa) (13)
XA

By total probability theorem, the likelihood can be writtast

Pr(ylxa) = /Pr(y|xA,:cD)Pr(:cD) dxrp (14)

the space” (y) with the largest weightr(x°[y), and then set the \yhere againPr(y|x4, zp) evaluates to 1 i + x4 € F(y) and
variablex™ to x° so their corresponding squared error is zero in the otherwise, and®r(zp) = C. So we can rewrite (12) as:

sum in (4). (6) can be rewritten as follows via MAP:

x" = arg max Pr(y|x)Pr(x) 7)
x€EF(y)

where likelihoodPr(y|x) evaluates td if x € F(y) and0 other-
wise. (7) is thus equivalent to finding the signalvith the largest
probability Pr(x) = Pr(xa)Pr(zp) in F(y).

We show thaMAP solution (7) can lead to arbitrarily large ex-
pected distortion given quantization step sizeand thus (6) is not a
good proxy for the original objective (4). See Fig. 2(a) farexam-
ple set of quantization bins corresponding to obsegveéccording
to prior probability (3), the most probable signal is onet teassen-
tially DC, e.g.x = [1.5 — 4e, ..., 1.5 + 4¢] for arbitrarily smalle,
regardless of). It is clear that for large), this solution will result

in large expected distortich.The reason for this result is because

the MAP formulation for reconstructed signalonly accounts for
the most probable signal® with probability Pr(x.4)Pr(zp) in the
sum in (4) while ignoring all other signals in spag€gy ).

4.3. MAP Formulation for Reconstructed AC Signal

Instead of solving for the most probahtevia a MAP formulation,
we propose to estimate the most probable AC comporgntia
MAP first After acquiringx’, if we can assume that), is reason-
ably accurate and” =~ x9% (to be argued below), the distortion-
minimizing DC component, can then be solved easily:

argmin/ llzp + x5 — (9 +x3)|3 Pr(zh + x5 |y) dx°
TD x°€F(y)
(8)

2This is not an isolated case in which MAP solution performerfyo A
similar case is that quantizedalternates betweehand2.

X = arg max (15)

XA

/ Cdxp Pr(xa)
zplzp+xa€F(y)

We can interpret (15) as follows. MAP solutioti; and other
AC signalsx in the “sum” in (11) with large weighPr(x%|y)
must have large feasible ranges fos to integrate over, as shown in
Fig. 2(b) (as opposed to Fig. 2(a)). By (18), feasible range given
AC signalx? is Q + zmin — Zmax. That means AC signals with
large feasible range af p have smalkmax — zmin, i.€. they are all
close tay 4 and thus are similar to each other. Hence solvingfpr
via MAP means it reduces distortion for all signals in the $nifi1)
with the largest weights. Thus, MAP solutiary has small expected
distortion and provides a good estimate to the true AC sigfal

We discuss how (13) can be efficiently solved next.

5. MAP SIGNAL ESTIMATION

5.1. Computing Likelihood

Likelihood (14) is still hard to compute wheny becomes the opti-
mization variable. We approximafer(y|x.) as follows. We have
argued earlier that an AC signals close to the AC component of

y (the centers of quantization bins) allows, to vary to a large
extent while still keepingep + x4 € F(y), thus leads to a large
Pr(y|xa). Generalizing the above observation, we approximate the
likelihood Pr(y|x4) as follows for efficient solving:

~ { 7 exp{=02llya —xal3} ifleald) —ya@d) < §, Vi
0 0.W.

(16)
whereK; is the normalization factor. In words, (16) stateg if and
AC signalx 4 are a good match, then the likelihoodxofi is high.
Further, we impose a sufficient condition where eagl{i) cannot
deviate fromy 4 (i) by more thar) /2 to ensure feasibility in (5).



(a) 4-bit input image, 8-bit ground-truth
Image Anchor | De-cont | Interp | Proposed
| anpshade2 | 3.554e-4| 7.250e-4| 3.275e-4| 2.529e-4
plastic 2.233e-4| 5.510e-4| 3.189e-4| 1.499e-4
mi dd2 2.709e-4| 5.993e-4| 1.854e-4| 1.687e-4
monopol y 3.404e-4| 6.129e-4| 3.061e-4| 2.395e-4

(b) 8-hit input image, 12-bit ground-truth (a)Anchor (b) De- cont

Image Anchor | De-cont | Interp | Proposed
dude 1.217e-6| 2.443e-6| 6.020e-7| 3.227e-7
sphere 1.279e-6| 2.577e-6| 4.752e-7| 1.561e-7

Table 1: MSE Performance Comparisons

5.2. Linearly Constrained Quadratic Programming

(c)Interp (d) Proposed

By combining (3), (5) and (16), we formulate the problem (48) ) . . .
Fig. 4: Absolute error maps of four comparing methods in 8-bit exceanent

. experiment fodude (scaled for visibility).
min o7 x4 LPx4 + o |xa — fa)3 (17) P ( )
XA

st |za(i) —ya(d)| < Q/2,Vi, Z za(i) =0

where fidelityf 4 is initialized to bey 4 by (16). After solving the
quadratic problem (17) for the first time, we obtain the otitmage

denoted byxj,“). We then iteratively solve (17), where the solu-
tionx* ™) for (k 4 1)-th iteration is obtained by solving (17) with

: H e
(a) LSBs of ground-truthk® (b) LSBs ofx* by proposed method

updated fidelityf4a = xz(k), a5xf4<k) is the best estimate of} _ _ _ '
to-date. At each iteration we update the edge weights baseéideo Fig. 5: LSB maps corresponding to the same experiment as Fig. 4.

latest computed pixel values. Solving (17) yiekds, which is sub-
sequently used to obtain the distortion-minimizing DC comgnt  €mbeds image patch structures into the graph weights, iegahke
x%, via (10). Our reconstructed image signal is this= x% + 5. reconstruction of complicated signals without over-srhow.
Alternatively, the bit-precision enhancement problem &&n
6. EXPERIMENTATION vieyved as the ITSBs reconstruction problem if the targetibjith of
x? is known. Fig. 5 shows the LSB maps fef and our outpuk™.
We conduct the following bit-depth enhancement experisiasing  We see that proposed method well restores the ground-tSiEsL
both natural color images and synthesized images. A HBD@mag  The numerical MSE results are summarized in Table. 1, which
serves as the ground-truth signél. Our input is the LBD image  show that our method achieves the best objective perforenamc
y with quantization step siz€. Input image is divided into over- poth experiments.Anchor does not take inter-pixel correlations
lapped blocks of sizé4 x 64 for robust and efficient computation jnto consideration, so the reconstruction error is larfe- cont
of our posed quadratic problem (17) with= 5. The quality of the  aiways performs the worst in terms of MSE because of its litgbi
reconstructed image™ is measured in MSE with respect%§. For  to capture the image structures (various shapes and sizpsaof
color images, average MSE of R, G and B channels is used. &malltized regions). | nt er p works quite well for synthesized images
MSE indicates higher bit-precision af . (dude, spher e); but when dealing with natural images, its simple
The competing methods in our experiments are:Adfhor linear interpolation cannot well approximate the origiranal x°
which picks quantization bin centers as the reconstruetedje; 2)  which can be highly irregular. In contrast, our method per®con-
De- cont [6] which is a filtering-based method for removing false sistently well in 4-bit/8-bit enhancement experimentsgssignal-
contours; 3)l nt er p [4] which is a linear interpolation method in  dependent graph transform and proposed MAP formulation.
spatial domain; and 4) our proposed MAP estimation for AC com
ponent in graph transform domain.
Two sets of bit-depth enhancement experiments are cordiucte 7. CONCLUSION
In 4-bit enhancement experiments, 8-bit natural color i@sag We proposed an image bit-depth enhancement algorithm et u
(I anpshade2, pl asti ¢, m dd2, ronopol y) serve as ground- MAP to estimate the AC component of an image patch in graph
truth x° and inputy is coarsely quantized to 4-bit. These 4 color frequency domain; smoothness defined in the graph domainsnea
images are all from the Middlebury 2006 stereo dataset [k¥B-  image structures can be embedded into the signal priorliagpihe
bit enhancement experiments, grayscale imalyete andspher e problem of over-smoothing. Our MAP formulation can be effitly
with 12-bit precision are used ag” and the inputy is coarsely solved via quadratic programming with linear constrairEsperi-
quantized to 8-bit. These 2 images are computer-generaietth d ments show that our proposed method outperforms competitig-m
maps of a human body model and a 3D sphere, respectively. ods in terms of objective reconstruction error. Our ingggion also
Fig. 4 shows the scaled absolute reconstruction exbdr x°| serves as a cautionary tale: though MAP remains an effetole
for the four methods. We see that our method achieves thepbest if improperly used, it can lead to arbitrarily large expetegrors, as
formance with the smallest error energy. That is becauseetiiod  we demonstrated in our problem setting.



(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

8. REFERENCES [16] T. Biyikoglu, J. Leydold, and P. F. Stadler, “Nodal dama
. . . o ) theorems and bipartite subgraphs,” Htfectronic Journal of
P. Milanfar, Super-Resolution Imaging (Digital Imaging and Linear Algebra November 2005, vol. 13, pp. 344-351.

Cf)mputer Vision) CRC Press, September 2010. [17] H. Hirschmuller and D. Scharstein, “Evaluation of cstc-
Min-Ho M.-H. Park, J. W. Lee, Rae-Hong R.-H. Park, and tions for stereo matching,” ifComputer Vision and Pat-

J.-S. Kim, “False contour reduction using neural networks tern Recognition, 2007. CVPR '07. IEEE Conferenceame
and adaptive bi-directional smoothindEEE Transactions on 2007, pp. 1-8.

Consumer Electroni¢cvol. 56, no. 2, pp. 870-878, 2010.

X. Jin, S. Goto, and K. N. Ngan, “Composite model-based
dc dithering for suppressing contour artifacts in decorsged
video,” IEEE Transactions on Image Processingl. 20, no.

8, pp. 2110-2121, 2011.

P. Wan, O. C. Au, K. Tang, Y. Guo, and L. Fang, “From 2D
extrapolation to 1D interpolation: Content adaptive image
depth expansion,” ifroc. IEEE International Conference on
Multimedia & Expo (ICME) Melbourne, Australia, 2012.

P.Wan, O. C. Au, K. Tang, and Y. Guo, “Image de-quantizati
via spatially varying sparsity prior,” IHEEE International
Conference on Image ProcessitBEE, 2012, pp. 953-956.

S. Daly and X. Feng, “Decontouring: Prevention and reaiov
of false contour artifacts,” ifProc. SPIE Human Vision and
Electronic Imaging 1X2004, vol. 5292, pp. 130-149.

P. Milanfar, “A tour of modern image filtering: new insitgh
and methods, both practical and theoreticd#tEE Signal Pro-
cessing Magazinevol. 30, no. 1, pp. 106-128, 2013.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processimg o
graphs: Extending high-dimensional data analysis to nedsvo
and other irregular domains,” IiEEE Signal Processing Mag-
azing May 2013, vol. 30, no.3, pp. 83-98.

[9] W.Hu, G. Cheung, X. Li, and O. Au, “Depth map compression

[10]

[11]

[12]

[13]

[14]

[15]

using multi-resolution graph-based transform for deptiage-
based rendering,” ilEEE International Conference on Image
ProcessingOrlando, FL, September 2012.

Y. Mao, G. Cheung, and Y. Ji, “Graph-based interpolafior
dibr-synthesized images with nonlocal means,'Symposium
on Graph Signal Processing in IEEE Global Conference on
Signal and Information Processing (GlobalS|Rustin, TX,
December 2013.

C. Zhang, , D. Florencio, and C. Loop, “Point cloud ddtrtie
compression with graph transfrom,” IEEE International
Conference on Image ProcessitBEE, October 2014.

P. Wan, G. Cheung, P. A. Chou, D. Florencio, C. Zhang, and
0. C. Au, “Precision enhancement of 3D surfaces from mul-
tiple quantized depth maps,” ihlth IEEE IVMSP Workshop:
3D Image/Video Technologies and Applicatip8soul, Korea,
2013.

V. Nguyen, D. Min, and M. Do, “Efficient techniques foruté
video compression using weighted mode filtering,” IEEE
Transactions on Circuits and Systems for Video Technology
February 2013, vol. 23, no.2.

F. Banterle, P. Ledda, K. Debattista, and A. Chalmerh)- “
verse tone mapping,” iRroceedings of the 4th international
conference on Computer graphics and interactive techrsique
in Australasia and Southeast AsidCM, 2006, pp. 349-356.

A. Rempel et. al, “Ldr2hdr: on-the-fly reverse tone miayyof
legacy video and photographs®CM Transactions on Graph-
ics (TOG) vol. 26, no. 3, pp. 39, 2007.



