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ABSTRACT

Although images as viewed from intermediate virtual view-
points can be synthesized using texture and depth maps
from nearby camera views via depth-image-based rendering
(DIBR), the rendered images contain disocclusion holes—
spatial regions that were not visible in the reference views
due to foreground object occlusion—that requires proper fill-
ing. In this paper, we introduce a new signal prior into the
hole filling problem formulation: given disocclusion holesare
part of the background and background tends to have low vi-
sual saliency, the extrapolated signal into the holes must also
be of low saliency. Mathematically, we add a low-saliency
prior to an exemplar-based inpainting algorithm, so that the
best-matched block has both small matching cost and is of
low visual saliency. Moreover, we compute a suitable La-
grange multiplier value for the saliency cost term via analysis
of the reference images. Experimental results show that using
a low-saliency prior can improve performance by0.5 dB over
a previous hole filling scheme.

Index Terms— Depth-image-based rendering, inpaint-
ing, visual saliency

1. INTRODUCTION

Towards the goal offree viewpoint navigation[1]—the abil-
ity for a receiver to freely choose any view from which to ob-
serve a dynamic 3D scene—it is now common in the literature
to represent visual data of the 3D scene intexture-plus-depth
format [2]. In a nutshell, it means texture maps (color images)
and depth maps (per-pixel distance between objects in the 3D
scene and the capturing camera) from multiple closely spaced
viewpoints are captured and encoded at sender, so that synthe-
sis of images at intermediate virtual views can be executed via
depth-image-based rendering(DIBR) [3] at receiver. While
DIBR is attractive for its low computation cost—it is essen-
tially a pixel-to-pixel color mapping from reference view(s)
to target view dictated by corresponding depth pixels—there
existdisocclusion holesin the rendered images that can cause
visual discomfort. Disocclusion holes are spatial areas that
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were not visible in the reference view(s) due to occlusion by
foreground object(s), but became visible after the view-shift.
We address the problem of how to fill disocclusion holes in a
visually satisfactory manner in this paper.

Previous attempts [4, 5, 6, 7] at disocclusion hole filling
leverage on inpainting techniques developed in the computer
vision community such as Criminisi’s exemplar-based match-
ing algorithm [8] (calledCR in the sequel). Specifically, a
common observation is that disocclusion holes tend to be part
of the background, so direction of signal propagation into a
disocclusion hole should emanate from the background side.
While this observation enables these proposals to often pro-
duce more reasonable fillings than originalCR, the occasional
errors they produce can be visually disturbing.

In this paper, we introduce one more significant insight
into the problem of disocclusion hole filling:background
scenery tends to draw less visual attention than foreground
objects in typical 3D scene. That means that during hole
filling, we knowa priori that the extrapolated signal tends to
have low visual saliency [9]. Mathematically, we express this
knowledge as alow-saliency prior, so that during exemplar-
based block matching, we can include it as an additional term
in addition to the matching criteria. Moreover, we compute a
suitable Lagrange multiplier value for the saliency cost term
via a simple analysis of the reference images. Experimental
results show that using the low-saliency prior we can outper-
form a previous hole filling scheme by up to0.5 dB in PSNR
in disoccluded regions.

The outline of the paper is as follows. We first review re-
lated work in Section 2. We then overview our chosen visual
saliency model and how it was used in our previous works in
Section 3. We discuss how the low-saliency prior is applied
to disocclusion hole filling in Section 4. Finally, we present
experimental results and conclusion in Section 5 and 6, re-
spectively.

2. RELATED WORK

Inpainting of missing pixel patches in an image has been
studied in computer vision for well over a decade, with ap-
proaches including partial differential equations (PDE) [10],
exemplar-based matching [8] and sparse representation [11].



Exemplar-based matching, in particular, has gained popular-
ity due to its conceptual and implementation simplicity; for
example, [12, 13] pursued extensions where linear combi-
nation of multiple similar patches are sought instead of just
the single best-matched patch. We also follow the exemplar-
based matching paradigm in our work.

Previous works on disocclusion hole filling in DIBR-
synthesized images can be broadly divided into two cat-
egories: i) signal extrapolation based on spatial correla-
tion [4, 5, 6, 7], and ii) extrapolation based on temporal
correlation [14, 15]. In principle, our proposed low-saliency
prior can also be used for disocclusion hole filling of DIBR-
synthesized video, where the saliency computation will in-
clude in addition low-level temporal features such as flicker
and motion [16]. However, we focus on applying the low-
saliency prior for inpainting of DIBR-synthesized images in
this paper, and leave the video extension as future work.

In our previous work, we applied the low-saliency prior to
error concealment in loss-corrupted streaming video [17] and
view synthesis of loss-corrupted free viewpoint video [18].
To the best of our knowledge, this is the first work that incor-
porate the low-saliency prior to the disocclusion hole filling
problem in DIBR-synthesized images.

3. LOW-SALIENCY PRIOR

Visual saliency refers to the propensity of visual stimuli to
draw attention to themselves. Contrast in various low-level
features such as intensity, color, orientation and motion,
mediated by the center-surround mechanism, is known to
attract attention [9]. Bayesian surprise, measured as the dif-
ference between prior and posterior distribution of a certain
feature following an observation, has also been linked to
saliency [19]. As computational models for saliency become
more accurate, they become new tools to improve various
visual signal processing tasks.

In particular, the low-saliency prior has been found to be
useful in video error concealment [17], where it was used
to promote blocks with low saliency relative to the neigh-
borhood during the concealment process. The benefit was
twofold. First, if high-saliency Region-Of-Interest (ROI) is
protected more than the remainder of the frame, which is a
reasonable design approach, the low-saliency prior is the cor-
rect side information (SI) and focuses the search to a smaller
feasible region around the correct solution. Second, the low-
saliency requirement leads to concealment blocks that are less
attention grabbing, so that resulting errors are less noticeable.

In the present application of disocclusion hole filling,
while there is no guarantee that the newly-revealed back-
ground will always be of low saliency relative to its immedi-
ate neighborhood, we have observed empirically that this isin
fact the case in most frames of free viewpoint test sequences.
See Fig. 1 for an example of saliency maps where clearly
the foreground objects attract visual attention much more so

Fig. 1. Example of a color image (left) and its corresponding
saliency map using the model in [20].

than the background. Hence in this application too, the low-
saliency prior provides the correct SI during exemplar-based
patch matching in the typical case.

4. DISOCCLUSION HOLE-FILLING ALGORITHM

4.1. System Overview

We first overview a generic free viewpoint video streaming
system in which our disocclusion hole filling algorithm is ap-
plicable. We assume that at sender, multiple cameras syn-
chronously capture a dynamic 3D scene from different view-
points in texture (color) and depth maps of the same spatial
resolution. For bandwidth efficiency, texture and depth map
pairs from at most two camera viewpoints nearest to the re-
quested virtual view are compressed at sender for transmis-
sion to receiver. The received texture and depth maps are used
for virtual view synthesis via DIBR [3]. For better RD perfor-
mance, recent proposals [21, 22] call for transmission of tex-
ture and depth map pair from asingleviewpoint for view syn-
thesis at receiver. This results in larger disocclusion holes in
general, and our proposed hole filling method becomes more
important.

DIBR [3] is a pixel-based image synthesis procedure,
where each color pixel in the texture map of a camera-
captured view (reference view) is copied to a pixel location
in the virtual view image; the copied location is determined
by camera parameters and corresponding depth pixel value.
If two pixels from the same reference view are mapped to
the same location, then the pixel with the smaller depth value
is kept. If two pixels from two different reference views are
mapped to the same location, then a linear combination of the
two pixel values (pixel blending) is computed. Disocclusion
hole is a location in the virtual view image where no color
pixels are mapped from the reference texture map(s), due to
occlusion by foreground objects in the reference view(s). We
focus on the filling of disocclusion holes next.

4.2. Exemplar-based Matching

We now overview the exemplar-based patch matching strat-
egy proposed in [8]. Let thesource region(known pixel re-
gion) beΦ = I−Ω, whereI andΩ are input image andtarget



Fig. 2. Illustration of Criminisi’s algorithm [8].

region (disocclusion holes), respectively. Let the boundary
between the source and hole region beδΩ. See Fig. 2 for an
illustration.

Let aN × N patch with center at pixelp be denoted by
Ψp. [8] proposed to always select atarget patchΨp with
center pixelp on the boundary,i.e. p ∈ δΩ, for exemplar-
based matching. Mathematically, the matching is written as:

min
Ψq∈Φ

d(Ψp,Ψq) (1)

In other words, the most similar patchΨq to targetΨp in
source regionΦ, in terms of the difference between known
pixels inΨp and corresponding pixels inΨq, is sought. The
idea is that images tend to beself-similar, so the target patch
with missing pixels will likely reappear in the source region.

At any given time in the inpainting process, there can be
many potential target patchesΨp, p ∈ δΩ. [8] stressed that
the order in which the patches are selected as target is im-
portant; the order proposed was according to apriority term
P (p):

P (p) = C(p)D(p) (2)

whereC(p) andD(p) are theconfidenceanddata terms, de-
fined as:

C(p) =

∑
q∈Φp∩Φ

C(q)

|Ψp|
, D(p) =

|∇I⊥p · np|

α
(3)

where|Ψp| counts the number of known pixels inΨp, np is
the unit vector orthogonal toδΩ at p, ∇I⊥p is the isophote
(direction and intensity) atp, andα is a normalization factor.
C(p) gives higher priority to patches with more known pixels.
D(p) encourages propagation of linear structures. See [8] for
details.

4.3. Saliency-cognizant Exemplar-based Matching

We are now ready to discuss how we introduce a low-saliency
prior into exemplar-based patch matching. Essentially, were-
strict candidate matching patchesΨq to ones with saliency
valuesS(Ψq) less than a threshold value,i.e.:

min
Ψq∈Φ

d(Ψp,Ψq) s.t. S(Ψq) ≤ S̄ (4)

Saliency is a relative term, andS(Ψq) is computed relative
to the known pixels in a local neighborhood center atq for

computation efficiency.̄S can be computed, for example, via
observed saliency values of background regions in reference
frames.

As traditionally done in the literature [23], instead of solv-
ing the original constrained optimization (4), we solve in-
stead the corresponding unconstrained Lagrangian problem
with multiplier λ:

min
Ψq∈Φ

d(Ψp,Ψq) + λS(Ψq) (5)

We discuss selection of an appropriateλ in the next section.
Besides the actual patch search for given targetΨp in (5),

we also optimize the selection of suitable target patchΨp

given target regionΩ. In particular, DIBR-synthesized image
contains (partial) per-pixel depth information that we canex-
ploit for target path selection. Specifically, we use available
depth values in the target patchΨp to compute an average
depthZ̄p and inverse depth varianceL(p) for inclusion into
the priority computation [24]:

p(p) = (C(p) +D(p) + L(p))× f(Z̄p) (6)

wheref(Z) is a monotonically increasing function of input
Z. The main idea is that patches with largest average depth
will be selected first, and among those with the similar aver-
age depth, ones with smallest depth variance will be selected
first. This ensures background information will be propagated
to the disocclusion holes, as described in the Introduction.

4.4. Selection of Lagrange Multiplier

In a typical Lagrangian minimization, the optimal selection
of the appropriate multiplier valueλ is a difficult task [23]. In
our specific case of low-saliency prior, however, we can com-
pute an appropriateλ as follows. Using a reference texture
map, we first identify portions of boundary background re-
gions horizontally next to foreground objects—regions likely
similar to disoccluded region in the virtual views. We then
perform patch search using (1), where in this case the target
regionΨp has no unknown pixels. Suppose the best-matched
patch isΨq∗ , i.e.,

Ψq∗ = arg min
Ψq∈Φ

d(Ψp,Ψq) (7)

which represents the best solution using the exemplar-based
framework under ideal condition. The first constraint forλ is
to ensure that even with the low-saliency prior,q∗ can still be
selected,i.e., ∀Ψq ∈ Φ | S(Ψq) < S(Ψq∗),

d(Ψp,Ψq∗) + λS(Ψq∗) ≤ d(Ψp,Ψq) + λS(Ψq)

λ ≤
d(Ψp,Ψq)− d(Ψp,Ψq∗)

S(Ψq∗)− S(Ψq)
(8)

The second constraint onλ is that it has to be large enough
to make a difference. In other words, when onlyhalf of the



pixels are used for distortion computation (denoted asd′),
Ψq∗ is still the optimal solution. Mathematically we write:
∀Ψq ∈ Φ | d′(Ψp,Ψq) ≤ d′(Ψp,Ψq∗),

d
′(Ψp,Ψq∗) + λS(Ψq∗) ≤ d

′(Ψp,Ψq) + λS(Ψq)

λ ≥
d′(Ψp,Ψq∗)− d′(Ψp,Ψq)

S(Ψq)− S(Ψq∗)
(9)

Performing the above calculation for a given patchΨp

yields a rangeRp for λ. We repeat the calculation for all
patches in the estimated regionE , and theλ selected is in the
intersection of the largest setS of rangesRp’s without having
the intersection as empty set. In other words:

λ ∈
⋂

p∈S

Rp

S = argmax
S⊆E

|S| s.t.
⋂

p∈S

Rp 6= ∅ (10)

The final chosenλ is the middle value of the intersection
of rangesRp’s in S.

5. EXPERIMENTATION

Experimental results are reported for four test sequences,Bal-
let, Breakdancers[25], Akko & Kayo[26] andPoznan Street
[27] under various camera setups. We assume a virtual view-
point is synthesized via DIBR using texture and depth map
pair from a single camera viewpoint, resulting in disocclu-
sion holes. ForBreakdancers, we synthesized view 2 using
view 1 as reference and synthesized view 2 using view 3, as
specified in Table 1. ForAkko & Kayo, we synthesized view
48 from 47, forBallet, we synthesized view 2 from 3 and for
Poznan Street, we synthesized view 5 from 3. In all cases the
first frame of each sequence is used.

Saliency was computed according to the method in [20].
To improve performance of the regular exemplar-based hole
filling algorithm [8], referred to asEB1 in our discussion,
we restricted the search area for candidate patches to regions
around holes which are opposite the direction of DIBR pro-
jection. For example, the search area is limited to a 36 pixel
band to the left of the holes depicted forBreakdancers 2-1
shown in Fig. 3(a). In this manner, the background regions
are generally applied towards hole filling. In addition, we
test an improved exemplar-based algorithm [28], referred to
asEB2, using a level regularity term based on depth infor-
mation. Note that depth information of the virtual view will
also contain disocclusion holes. InEB2 as well as in our
proposed scheme, these depth holes are filled jointly with the
corresponding texture filling mechanism. In other words, af-
ter the best candidate is selected for texture, its corresponding
depth patch is also used to fill the virtual depth map. ForEB1
andEB2 the patch size was set to11×11, while the proposed
scheme uses variable patch sizes from9×9 to 13×13. In this
case, the best candidate is selected among the best-matched
patch of each size using a size-normalized version of (5).

Table 1. Luma PSNR results in dB within disocclusion areas
for hole filling algorithms.

Image EB1 EB2 Proposed
Breakdancers 2-1 22.14 22.93 23.43
Breakdancers 2-3 22.42 22.61 22.75
Akko & Kayo 48-47 15.01 15.33 15.64
Ballet 2-3 22.10 22.29 22.30
Poznan Street 5-3 27.79 27.51 27.87

Table 1 presents PSNR for the hole filling algorithms
computed for luminance components with respect to the
original views (ground truth) within the disocclusion areas.
For the tested images, our proposed scheme achieved higher
PSNR, outperformingEB2 by up to0.5 dB. As illustrated in
Fig. 3, we note further that our proposed method fills back-
ground holes with lower saliency content, resulting in more
visually pleasant images.

(a) (b) (c)

(d) (e)

Fig. 3. (a) Disocclusion holes (in green) forBreakdancers
view 2 synthesized from view 1 and hole filling results of (b)
EB2 and (c) proposed method. Detail crops from (d)EB2
and (e) proposed.

6. CONCLUSION

We presented a method for filling of disocclusion holes—
spatial regions that were occluded in the reference view(s)
but became visible after a view-switch. Given background
tends to draw less visual attention than foreground in typical
3D scene, the key idea is to include alow-saliency priordur-
ing exemplar-based patch matching, so that the selected patch
in the source region has both small matching cost and low
saliency value. Experimental results show that the addition of
a low-saliency prior together with variable patch size outper-
formed a previous implementation of disocclusion hole filling
method by0.5 dB in PSNR.
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