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Abstract—Visual saliency is a probabilistic estimate of how
likely a spatial area in an image or video frame is to attract
human visual attention relative to other areas. When existing
bottom-up saliency models aggregate low-level features to con-
struct a plausible saliency map, only 2D motion cues are used as
motion features, even though videos typically capture dynamic
3D scenes. In this paper, we introduce 3D motion into bottom-up
saliency modeling for texture-plus-depth videos. We first propose
an efficient 3D motion estimation algorithm, which computes
a 3D motion vector (3DMV) for each sub-block in the frame.
Using the computed 3DMVs, we then derive several saliency
channels (called 3DMV channels), which are incorporated into
a bottom-up saliency model to obtain enhanced saliency maps.
Experiments tracking human gaze show that incorporating our
3DMV channels into bottom-up saliency model significantly
improves the accuracy of derived saliency maps.

Index Terms—3D motion estimation, visual saliency modeling.

I. INTRODUCTION

Visual saliency estimates how likely a given local spatial
area in an image or video frame is to attract human’s attention
relative to other areas. In the literature, many works [1–4]
compute saliency maps in a bottom-up manner by aggregating
low-level image (or video) features, such as luminance and
color contrast, flicker, 2D motion, etc. Practical applications
of derived saliency maps include Region-of-Interest (ROI)
based image and video compression [5], subjective multimedia
quality assessment [6], saliency-cognizant error concealment
in loss-corrupted videos [7], etc.

While 2D motion—planar object movements along hori-
zontal and vertical (x- and y-) dimensions—has been used
as a feature for saliency map computation (moving objects
tend to attract human’s attention [8]), 3D motion—including
movement along the z-dimension towards or away from the
observer—has never been considered in saliency computation.
From a biological viewpoint, an object moving towards the
observer presents a potential physical threat, and hence should
trigger immediate attention due to innate animal survival
instinct. One reason why 3D motion has not been considered
is simply technological: it is difficult to estimate 3D motion
information in conventional 2D texture videos composed of
color frames only.

With the advent of depth-sensing cameras such as Microsoft
Kinect R©, depth video—per-pixel distance between captured
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3D scene and the capturing camera—can now be readily
acquired along with texture video from the same viewpoint.
Thanks to the availability of depth frames, estimation of 3D
motion vectors (3DMVs) becomes possible. In our previous
work [9], 3D motion is introduced into saliency modeling for
texture-plus-depth videos. We first computed 3DMV for each
sub-block composed of neighboring pixels of similar depth
values. Using the computed 3DMVs, we next derived two
saliency channels—3D motion magnitude (3DMM) and 3D
direction self-information (3DDS)—which were then incorpo-
rated into a widely-accepted bottom-up saliency model [1, 3].
Although results were encouraging, derivations of 3DMM and
3DDS were ad-hoc with few theoretical justifications.

In this paper, we pursue a more rigorous study and introduce
three alternative 3DMV channels—semi-spherical coordinate
motion magnitude (SCMM), negative log-likelihood of direc-
tion mean (NLDM) and 3D motion acceleration (3DMA)—as
better saliency indicators based on psychological and statistical
theories. Specifically, this work contains three major improve-
ments over [9]: 1) unlike 3DMM which measures motion
magnitude in conventional Cartesian coordinate, SCMM mea-
sures the 3D motion magnitude in semi-spherical coordinate as
suggested by psychological studies [10]; 2) unlike 3DDS with
heuristic quantization of motion directions, NLDM statistically
models the element of “surprise” for each detected 3D motion
direction; 3) besides motion magnitude and direction, we
introduce a new channel 3DMA that models motion accelera-
tion, which has been previously shown to be a strong feature
drawing human’s attention [11]. In our experiments, we show
that enhanced saliency maps using our new 3DMV channels
correspond more closely to our collected human gaze data than
conventional saliency maps [3] and those proposed in [9].

The outline of the paper is as follows. We first discuss
related work in Section II. Then we introduce our 3D motion
estimation algorithm and how 3D motion is used in saliency
modeling in Section III and IV. Finally, experiments and
conclusion are presented in Sections V and VI, respectively.

II. RELATED WORK

In the literature, only a few works studied motion estima-
tion for texture-plus-depth videos [12, 13]. However, they are
straight-forward extensions of 2D motion estimation for video
compression [14] and are incapable to recover true 3D motion
information. Please see Section III for detailed comparisons.

Generally speaking, there are two classes of saliency mod-
eling approaches for images and videos: bottom-up and top-
down. Bottom-up methods1 [1–4, 15] are stimuli-driven. They
aggregate low-level features into a plausible overall visual

1 [15] studied saliency detection using disparity, but for static stereo images.
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saliency map. Top-down approaches [16, 17] are semantic-
driven; e.g., humans naturally recognize and are attracted to
faces. A recent overview of saliency models can be found
in [18]. While it is still an open debate which one is more
accurate in predicting human’s attention, for the sake of low
complexity and generality, in this paper we choose the widely-
accepted bottom-up model [1, 3] as the baseline model to
which 3D motion is incorporated as an additional feature.

III. 3D MOTION ESTIMATION

In this section, we present our 3D motion estimation al-
gorithm (first introduced in [9]), where block matching is
restricted to a 3D window consisting of a conventional 2D
spatial search window and a 1D depth search window.

In texture-plus-depth videos, every texture block Bt has
a corresponding depth block Bd. Because different physical
objects in a 3D scene typically have different motion, we first
partition any block covering two objects (e.g. foreground and
background) into two arbitrarily shaped sub-blocks indicated
by a binary sub-block mask M. Calculation of M(Bd) is
efficient: if depth block Bd is smooth (small variance), we
assume all pixels in the block belong to the same object and
set M = 1 (i.e. one single sub-block); otherwise, pixels in Bd

are divided into two groups (0s and 1s in M) by the mean
value. Finally, morphological closing is performed on M, so
that pixels in each group (sub-block) form a contiguous region.

After partitioning, we perform 3D motion estimation on
each sub-block to find its corresponding sub-block in reference
frame. Let current sub-block be a partition (e.g. 1s in M(Bd

c))
of N ×N block {Bt

c,B
d
c} with average depth Dc. According

to the pinhole camera model, we know a block of dimension
L × L and of average depth Dr scales to dimension N ×N
of average depth Dc, where LDr = N Dc. By defining δ as
the maximum depth change from reference to current frame,
reference blocks are restricted to L × L blocks satisfying: 1)
within 2D spatial search window, 2) block size L is integer in[
NDc

Dc+δ
, NDc

Dc−δ

]
, and 3) average depth Dr is close to N Dc/L.

Each reference block offers a candidate 3DMV for current
sub-block, which is calculated by:

v = (
Dc

F
∆x,

Dc

F
∆y,Dc −Dr) (1)

where F is the camera focal length; ∆=(∆x,∆y) is 2D spatial
offsets. Since F and ∆ are both in number of pixels, v has
the same unit as Dc (in physical distance).

Denoting S as the set of all candidate 3DMVs, the output
3DMV mv for current sub-block is the one with the smallest
matching error:

mv = arg min
v∈S

f(v) (2)
where

f(v) = MAD(Bt
c,B

t
r,M) + λ||v − vp||2 (3)

There are two terms (balanced by λ) in (3). The first
term is the mean absolute difference between Bt

c and Bt
r at

positions indicated by sub-block mask M = M(Bd
c), where

Bt
r = Bt

r(v) is the texture reference block (resized from L×L
to N ×N ) associated with v. The second term ||v− vp||2 is

a regularization term to enforce a piecewise smooth motion
field, where predictor vp is calculated from the 3DMVs of
causal neighboring sub-blocks.

Our algorithm is different from [12, 13] in three respects.
First, instead of square blocks, the basic process unit of
our algorithm is arbitrarily shaped sub-blocks (corresponding
to objects with different motion). Second, z-motion means
object resizing from reference to current frame, so we check
reference blocks whose size L spans several values around N .
Finally, unlike traditional motion vectors measured in number
of pixels, our 3DMV mv = (mvx,mvy,mvz) is the true
object motion measured in physical distance.

We note that our 3D motion estimation algorithm is generic:
the obtained 3DMVs can be used in other applications other
than visual saliency modeling (to be discussed).

IV. SALIENCY FROM 3D MOTION

We now discuss different saliency channels derived from
3DMVs, including two old channels (3DMM and 3DDS)
proposed in [9] and three new channels (SCMM, NLDM and
3DMA). They serve as additional channels to be combined
with conventional channels to obtain enhanced saliency maps.

A. 3DMV Channels
1) 3D Motion Magnitude (3DMM): It is commonly ac-

cepted that objects with larger velocity draw more attention,
so 3DMM is defined as the (weighted) Euclidean norm of mv:

3DMM =√
mv2x +mv2y + α(mvz)2,

α(x) =

{
x if x ≥ 0

3x if x < 0
(4)

where function α assigns higher weight for sub-blocks moving
towards the observer (mvz < 0).

2) 3D Direction Self-information (3DDS): Assuming un-
usual motion directions are more salient, 3DDS is defined as
the self-information of quantized 3D motion direction:

3DDS = − log(Pr(Q(mv))) (5)

where unit 3DMV mv = mv/||mv||2 represents the 3D
motion direction, Pr is the normalized histogram of uniformly-
quantized 3D motion directions Q(mv) in current frame.

3) Semi-spherical Coordinate Motion Magnitude (SCMM):
SCMM is an improved version of 3DMM. Rooted in animal
survival instinct, it is shown in [10] that objects on a “collision
path” with the observer are more attention-drawing. Thus
we decompose the 3DMV using semi-spherical coordinate
centering at camera location c (instead of Cartesian coordinate
in 3DMM). In particular, we first back-project the central pixel
of each sub-block into a 3D voxel locating at n. Denoting
d̄ = (c − n)/||c − n||2 as the unit projection direction, the
motion magnitude along d̄ is simply a dot-product below:

mvd = mv · d̄ (6)

And the motion magnitude orthogonal to d̄ is mvo =√
mv2x +mv2y +mv2z −mv2d. Since positive mvd is the mo-

tion on “collision path”, SCMM is defined as:

SCMM =
√
mv2o + β(mvd)2, β(x) =

{
3x if x ≥ 0

x if x < 0
(7)



3

4) Negative Log-likelihood of Direction Mean (NLDM):
NLDM is an improved version of 3DDS. Unlike 3DDS, it is
a statistical saliency channel where no quantization of motion
directions is involved. In particular, we denote x as current
3D motion direction and zi as other unit 3DMVs in the frame.
Assuming 3D motion direction is i.i.d. that follows Gaussian
distribution G(µ, σ2I), the likelihood of µ = x is:∏

i

f(zi|µ = x) =
1

C
exp(−

∑
i(zi − x)ᵀ(zi − x)

2σ2
) (8)

Because smaller likelihood means higher irregularity of current
direction x, NLDM is defined as the negative log-likelihood:

NLDM =
1

2σ2

∑
i

(zi − x)ᵀ(zi − x) + log(C) (9)

which is the sum of squared differences between unit 3DMVs
(C and σ are constant). Because the majority of sub-blocks
have zero motion, calculation is restricted to non-zero 3DMVs.

5) 3D Motion Acceleration (3DMA): In addition to motion
magnitude (included in 3DMM and SCMM) and motion direc-
tion (included in 3DDS and NLDM), the change in motion—
acceleration—is also a strong attention-drawing feature [11].
Thanks to the per-sub-block 3DMVs obtained in Section III,
calculation of acceleration is simply extracting the 3DMV of
best-matched reference sub-block mvref from the current one:

mv′ = sign(mv) ◦ (mv −mvref) (10)

where symbol ◦ stands for Hadamard product. By emphasizing
positive acceleration, we define:

3DMA = ||β(mv′)||2 (11)

B. Feature Integration

Itti’s model [1, 3] is a well-known framework for bottom-up
saliency modeling, where a conspicuity map CM is calculated
for each of the following channels: intensity (I), color (C),
orientation (O), 2D motion (M) and temporal flicker (F).

Our 3DMV channels serve as additional channels to Itti’s
model. For simplicity we denote A,B for 3DMM, 3DDS [9];
and X ,Y,Z for SCMM, NLDM, 3DMA respectively. Com-
puting CM for a 3DMV channel is easy: for each sub-block
in the frame, assign its conspicuity value (calculated by either
(4)(5)(7)(9)(11)) to all pixels within it.

In Itti’s model, conspicuity maps of different channels are
first normalized by maxnorm:

N (CM) = (1−m)2CM (12)

where m is the mean value of local maxima within normal-
ized conspicuity map CM. Itti’s maxnorm weighs different
channels in a content-adaptive manner without any prior of
relative importance. Like [1], the final saliency map SM is
obtained by combining conspicuity maps of several channels:

SM =
∑
i=C

wi · N (CMi) (13)

where C is the set of channels used in the saliency map, please
refer to Table. I for details. Weight wi enables us to tune the
relative importance of difference channels, whose value is 1 for

TABLE I
CHANNELS USED IN SALIENCY MAP

Saliency Map C
SMItti [3] I, C,O,M,F
SMold [9] I, C,O,M,F ,A,B
SMnew I, C,O,M,F ,X ,Y,Z

conventional channels and κ for 3DMV channels. The value
of κ depends on how much z-motion there is in the video. As
in [9], we fix κ = 2 in our experiments.

V. EXPERIMENTATION

In this section, we evaluate and compare the accuracy of
derived saliency maps using collected human gaze data. Four
test sequences (see Fig. 1) are used for our experiments, where
lovebird is from the standard MPEG test sequence [19];
jumprope is available online2 with associated human gaze
data; toy_fs and toy_fb are captured using a combination
of a RGB camera and a PMD R© Time-of-Flight depth camera
with proper view mapping.

A. Human Gaze Data Collection

We conducted subjective tests to collect human gaze loca-
tions during viewing of test sequences. As recommended by
ITU-R BT.500 [20], 24 participants (15 male and 9 female,
of age 22-30) took part in the tests. All participants had
normal or corrected-to-normal vision, and were naı̈ve about
the task of the experiment. A 24-inch Dell LCD monitor with
resolution 1920 × 1200 and default brightness 180 cd/m2

was used for display. The ambient light in the room was
250-300 lux. Tobii R© X-60 gaze-tracker was used to detect
and collect participants’ gaze locations, with sampling rate at
60 gaze points per second (pps). The angle of gaze-tracker
was approximately 22 degrees to the ground and the distance
between participants and gaze-tracker was around 50 cm.

Participants were asked to watch the test sequences (texture
videos at 30 fps) sequentially in random order with gaze-
tracker on. A 5-second black screen was inserted between
sequences for rest. By repeating this process 10 times, we got
approximately 24 × 10 × 60 pps/30 fps = 480 gaze points
per frame. Acquired points form a gaze density map3 for each
frame, which serves as ground-truth saliency map SMgt.

B. Performance Evaluation

In order to compare the accuracy of different saliency maps,
we interpret saliency maps as 2D probability distributions of
human attention and calculate the Kullback-Leibler divergence
(K-L divergence) with respect to the ground-truth distribution.

D(P||Q) =
∑
i,j

ln

(
P(i, j)

Q(i, j)

)
P(i, j) (14)

where ground-truth distribution P = SMgt/
∑
i,j SMgt(i, j),

and the approximated distribution Q = SM/
∑
i,j SM(i, j)

is calculated from different saliency maps shown in Table. I.

2http://www.irccyn.ec-nantes.fr/spip.php?article555
3http://www.youtube.com/user/leomanUST/videos
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TABLE II
AVERAGE K-L DIVERGENCE VALUE

Sequence lovebird toy_fs toy_fb jumprope
Resolution 1024× 768 640× 480 640× 480 720× 576

Frames 100 75 75 100
DItti 3.0227 2.3745 2.3011 4.0494
Dold 2.4973 1.9904 2.0351 3.5413
Dnew 2.4124 1.8480 1.8734 3.5209

Dold−Dnew
DItti−Dnew

13.91% 27.05% 37.81% 3.86%

(a) lovebird (b) toy_fs (c) toy_fb (d) jumprope

Fig. 1. Sample texture frames for 4 test sequences.

K-L divergence results are plotted frame-by-frame in Fig. 2;
corresponding average values are shown in Table. II. It is clear
that Dnew < Dold < DItti, which implies: 1) incorporation
of 3DMV channels (A,B,X ,Y,Z) improves the accuracy of
derived saliency maps; and 2) the enhanced saliency maps
using our new 3DMV channels (SMnew) are more accurate
than those using old 3DMV channels (SMold).

Note that above observations hold true not only in sequences
where z-motion dominates conventional video features, but
also in jumprope4 where there is little z-motion. Therefore
incorporating 3DMV channels into bottom-up saliency model
always improves the accuracy of derived saliency maps, no
matter how much z-motion there is in the scene.

Improvement of SMnew over SMold is also shown in the
last row of Table. II. In jumprope, the improvement (3.86%)
is trivial because 3D motion reduces to 2D motion when z-
motion is small. In lovebird, the improvement (13.91%)
is non-negligible, but smaller than those in toy_fs and
toy_fb because of the presence of human faces.

VI. CONCLUSION

In this paper, we first present our 3D motion estimation
algorithm for texture-plus-depth videos. Using the computed
3DMVs, we then propose several saliency channels to improve
an existing bottom-up saliency model. Experiments tracking
human gaze show that the incorporation of 3DMV channels
significantly improves the accuracy of derived saliency maps.
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in visual saliency modeling,” in Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, 2013.

[10] J. Y. Lin, S. Franconeri, and J. T. Enns, “Objects on a collision path with
the observer demand attention,” Psychological Science, vol. 19, no. 7,
pp. 686–692, 2008.

[11] C. Howard and A. Holcombe, “Unexpected changes in direction of mo-
tion attract attention,” Attention, Perception and Psychophysics, vol. 72,
no. 8, pp. 2087–2095, 2010.

[12] B. Kamolrat, W. Fernando, M. Mrak, and A. Kondoz, “3D motion
estimation for depth image coding in 3D video coding,” IEEE Trans.
Consumer Electronics, vol. 55, no. 2, pp. 824 –830, May. 2009.

[13] Y.-C. Fan, S.-F. Wu, and B.-L. Lin, “Three-dimensional depth map
motion estimation and compensation for 3d video compression,” IEEE
Trans. Magnetics, vol. 47, no. 3, pp. 691 –695, Mar. 2011.

[14] S. Grewatsch and E. Miller, “Sharing of motion vectors in 3D video
coding,” in Proc. IEEE ICIP’04, vol. 5, Oct. 2004, pp. 3271 – 3274.

[15] Y. Niu, Y. Geng, X. Li, and F. Liu, “Leveraging stereopsis for saliency
analysis,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012, pp. 454–461.

[16] V. Navalpakkam and L. Itti, “Modeling the influence of task on atten-
tion,” Vision Research, vol. 45, no. 2, pp. 205 – 231, 2005.

[17] A. Borji, M. Ahmadabadi, and B. Araabi, “Cost-sensitive learning
of top-down modulation for attentional control,” Machine Vision and
Applications, vol. 22, no. 1, pp. 61–76, 2011.

[18] A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 185–207, 2013.

[19] I. JTC1/SC29/WG11, “Call for proposals on 3D video coding technol-
ogy, n12036,” Mar. 2011.

[20] ITU-R Recommendation BT.500-11, “Methodology for the subjective
assessment of the quality of television pictures, international telecom-
munication union,” 2002.


