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Abstract—Depth maps, characterizing per-pixel physical dis-
tance between objects in a 3D scene and a capturing camera,
can now be readily acquired using inexpensive active sensors
such as Microsoft Kinect. However, the acquired depth maps
are often corrupted due to surface reflection or sensor noise.
In this paper, we build on two previously developed works in
the image denoising literature to restore single depth maps—i.e.,
to jointly exploit local smoothness and nonlocal self-similarity
of a depth map. Specifically, we propose to first cluster similar
patches in a depth image and compute an average patch, from
which we deduce a graph describing correlations among adjacent
pixels. Then we transform similar patches to the same graph-
based transform (GBT) domain, where the GBT basis vectors are
learned from the derived correlation graph. Finally, we perform
an iterative thresholding procedure in the GBT domain to enforce
group sparsity. Experimental results show that for single depth
maps corrupted with additive white Gaussian noise (AWGN), our
proposed NLGBT denoising algorithm can outperform state-of-
the-art image denoising methods such as BM3D by up to 2.37dB
in terms of PSNR.

I. I NTRODUCTION

Recent advances in active depth sensors such as time-
of-flight cameras1 and Microsoft KinectR© have made the
acquisition of depth maps (per pixel physical distance be-
tween objects in the 3D scene and the capturing camera)
widely affordable. Acquired depth maps—3D geometrical
information of the scene projected as 2D images to the
chosen camera viewpoints—can enable a variety of novel
imaging applications, such asDepth-Image-Based Rendering
(DIBR) [1], human gesture recognition2, etc. However, due to
the limitations of current depth sensing technologies, acquired
depth maps are often corrupted by non-negligible acquisition

1http://en.wikipedia.org/wiki/Time-of-flightcamera
2http://code.google.com/p/kineticspace/
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noise and/or suffer from partially missing data. Thus a major
challenge in depth map processing is the restoration of depth
maps from their corrupted versions.

More generally, image denoising—or removal ofadditive
white Gaussian noise (AWGN) from photographic images—is
one of the classical problems in image restoration and has been
extensively studied in the literature. Recent notable advances
in this field include the class of nonlocal image denoising
techniques [2], [3], [4], as well as dictionary learning-based
approaches [5], [6]. Nonlocal image denoising [2] builds
on a simple assumption that similar patterns are likely to
recur throughout an image. Thus, one can first cluster similar
patches in an image, in order to jointly restore them by
exploiting their dependency (i.e., nonlocal self-similarity of
an image). Dictionary learning [5] assumes that a signal can
be represented by the linear combination of a few atoms out
of a possibly over-complete dictionary. The primary challenge
with dictionary learning is to simultaneously construct/learn an
appropriate dictionary and identify the sparsest representation
for the given signal.

(a) Depth map (b) Texture map

Fig. 1. The depth map ofTeddy and its color counterpart.

Despite the close connection between depth maps and
color images (e.g., Kinect acquires both), they have strikingly
different characteristics. An important observation is that un-
like typical RGB color images, depth maps do not contain



rich texture information reflecting the physical attributes of a
surface. In other words, a depth map is oftenpiecewise smooth:
it contains sharp edges (e.g., boundaries between foreground
objects and background), and within the edges, the surfacesare
varying spatially only gradually due to the absence of textures.
See Fig. 1 for an illustration where the depth map exhibits this
piecewise smooth characteristic, and how it is different from
its color counterpart.

In this paper, we propose to build on the existing image
denoising techniques to jointly exploit the local smoothness
and nonlocal self-similarity of depth maps. More specifically,
we first cluster similar patches in a depth image and com-
pute anaverage patch, from which we can deduce a graph
describing discontinuities (e.g., edges) as well as correlations
among adjacent pixels. Second, we transform similar patches
to a commongraph-based transform (GBT) domain [7], where
the GBT basis vectors can be derived from the deduced
correlation graph. Finally, we perform an iterative thresholding
procedure similar to [4] to enforce group sparsity in the GBT
domain. From this perspective, the newly-developedNonlocal
GBT (NLGBT) denoising algorithm can be viewed as a
nonlocal extension of our previous work on super-resolution
reconstruction of depth images [8].

It should be noted that patch clustering and GBT have
to work hand-in-hand because local transience and nonlocal
invariance are the two sides of the same coin. Unlike pre-
vious works, NLGBT is both locally adaptive (through the
construction of a correlation graph reflecting the edge structure
embedded into the average patch) and globally consistent (via
a common derived GBT transform using which all similar
patches are sparsified). Experimental results have shown that
for single depth maps corrupted with AWGN, our proposed
denoising algorithm can outperform state-of-the-art image
denoising methods such as BM3D by up to 2.37dB in terms
of PSNR.

The outline of the paper is as follows. We first overview
related work in Section II. We then describe the standard
procedure to construct a GBT in Section III. We present our
depth map denoising formulation in Section IV, and we de-
velop our algorithm in Section V. Finally, experimentationand
conclusion are presented in Section VI and VII, respectively.

II. RELATED WORK

Denoising of photographic images have advanced rapidly
in recent years especially after the publication of patch-based
image denoising (including nonlocal-mean [2] and BM3D [9]).
The new insight along the line of patch-based image denoising
lies in that important image structures such as edges and
textures can be more effectively characterized by their nonlocal
self-similarity than local transience (the conventional wisdom
at the heart of transform-based image models). Under the
context of denoising, clustering similar patches distant from
each other makes it possible to more accurately estimate the
signal variance from a bilateral perspective [4]. Therefore, it
is reasonable to expect that patch-based models could lend
themselves to depth maps where nonlocal self-similarity is

present by the abundance of depth discontinuities (counterpart
of edges in photos).

Given the piecewise smooth characteristic of depth maps,
GBT has been proposed in [7] for efficient transform coding;
given the derived GBT basis functions do not filter across
a detected edge, the GBT representation for a given depth
block likely has zero high-frequency components, resulting in
few non-zero coefficients that required coding. In our previous
work [8], we have also used GBT for depth map super-
resolution. This paper can be viewed as an extension of [8] to
depth map denoising.

There are some recent work on denoising of depth maps
[10], [11], where the availability of both color and texture
maps are assumed, and their correlations are exploited for
denoising. We do not assume the availability of color maps
in our work; this is a practical consideration for depth sensors
like Mesa’s SwissRanger3 that do not capture texture images
from the same viewpoint, and for challenging environments
like a dark room, where the lighting conditions are not reliable
to capture good quality color images.

III. G RAPH-BASED TRANSFORM

We first overview the conventional three-step procedure to
construct a GBT [7] from anunweighted graph; the method
to construct a GBT from aweighted graph to define a set of
basis functions for similar patches in Section V would be a
straightforward extension.

First, prominent edges in a
√
n × √

n target pixel patch
are detected. Edge detection can be done using a number of
methods; in [7], edges are detected in a target patch based
on the difference between neighboring pixel values using a
simple thresholding technique.

In the second step, we treat each pixel in the
√
n × √

n
block as a node in a graphG, and connect it to its four
or eight immediate neighbors in the patch, resulting in a 4-
or 8-connectivity graph. If there is a detected edge between
two neighboring pixels (nodes), we eliminate their connection.
Given the connectivity graph, we can define an adjacency
matrix A, whereA(i, j) = A(j, i) = 1 if pixel positions
i and j are connected, and0 otherwise. We can similarly
compute the degree matrixD, whereD(i, i) is the number
of connections for nodei, andD(i, j) = 0 for all i 6= j.

In the third step, using computedA and D, we can
compute thegraph Laplacian matrix L = D−A. If we now
project a graph signalx in the graphG onto the eigenvectors
of the LaplacianL, it becomes the spectral decomposition
of the graph signal;i.e., it provides a “frequency domain”
interpretation of signalx given graph supportG. Hence, we
can construct GBT transform using eigenvectors ofL. In
particular, we can stack pixels in the

√
n × √

n patch into
a length-n vectorx and computey = U · x, whereU is a
matrix with eigenvectors ofL as rows. Fig. 2 gives an example
of constructing GBT from a2× 2 pixel block.

3http://www.mesa-imaging.ch/prodview4k.php



Fig. 2. An example of constructing GBT from a2×2 pixel block. The vertical
edges separate pixel 1 and 2 from pixel 3 and 4 and a graph is constructed
by connecting pixels on each side of the edges. The corresponding adjacency
matrix A, degree matrixD, Laplacian matrixL as well as the computed
GBT U are shown on the right.

The above discussion of GBT is based on an unweighted
graph, which can be easily extended toweighted GBT as-
sociated with a weighted graph. In a weighted graph the
edge weightw(i, j) can be any nonnegative value other than
0 and 1, offering more flexibility to describe the pairwise
relationship between nodesi and j, such as the similarity
in pixel intensities. The corresponding adjacency matrixW

is defined asW (i, j) = w(i, j) and the degree of a nodei is
defined to bedi =

∑

j w(i, j). We can then compute the graph
Laplacian matrix asL = D−W and construct weighted GBT
using eigenvectors ofL.

IV. PROBLEM FORMULATION

Having discussed the construction of a basic GBT, we
formulate the depth map denoising problem in this section,
arriving at a formal problem definition we callNonlocal GBT
(NLGBT). We start by introducing the popular sparse coding
in patch space, which is the foundation of our formulation.
Then we elaborate on our formulation tailored for depth maps,
which combines depth maps’ local piecewise smooth char-
acteristic and the nonlocal self-similarity prior by exploiting
group sparsity of similar patches.

A. Sparse Coding

Sparse coding means that a patchyi can be represented by
a weighted combination of only a few atoms out of a learned
dictionaryUi. In other words, it means finding a dictionary
Ui and weight vectorαi for patchyi such that: i) each patch
yi is well approximated byUiαi, and ii) the sparsity of‖αi‖0
is minimized. Mathematically, we can write:

min
Ui,αi

‖yi −Uiαi‖2 + τ‖αi‖0 (1)

where τ is a Lagrange multiplier trading off approximation
error and sparsity. Thel0-norm regularizer enforces sparsity
of the weight vectorαi.

Image denoising can be formulated as sparse coding of a
given noise-corrupted observationyi. The noise, which gen-
erally produces high-frequency components, can be removed
by finding a sparse representation of the signal.

B. Group Sparsity

Instead of sparsifying each patchyi separately using a
dictionaryUi, one can group a set of similar patches together
and optimize the joint sparsity of the group using the same
learned dictionaryU:

min
U,α

N
∑

i=1

‖yi −Uαi‖2 + τ

N
∑

i=1

‖αi‖0 (2)

The motivation is that the collection of similar patches canbe
treated as different noisy observations of aprinciple manifold.
This is based on the observation that similar edge structures
naturally appear nonlocally throughout a depth image. We thus
cast the denoising problem as manifold reconstruction with
noisy data.

The key to manifold reconstruction is to discover the geom-
etry of the manifold. One can learn a dictionary capturing the
common structure of a group of similar patches, and enforce
sparse representation in this dictionary domain for the group—
so-calledgroup sparsity—to reconstruct the clean manifold
geometry.

C. Nonlocal GBT

Due to the desirable characteristic of piecewise smooth-
ness, we further exploit the group sparsity of depth maps
in GBT domain in a nonlocal fashion. The main idea of
Nonlocal GBT is to enforce sparsity of similar patches in
the same GBT domain which well reflects the structure of
the principle manifold. We find this particular GBT domain
by first representing the common geometry of the group via
an average patch by computing the average of the similar
patches, which computes to the average statistics. We then
derive the GBT from the similarity graph built on the average
patch. The similarity graph describes the pairwise similarity
between adjacent pixels in depth values. Hence the learned
GBT dictionaryU is dependent on the average patchȳ of the
group:

U = U(ȳ). (3)

Having constructed the GBT which is adaptive to the
average statistics of the group of similar patches, we employ
this GBT dictionary as the dictionaryU in Eq. (2). In this
way we can enforce the group sparsity in this common GBT
domain, thus reconstructing each patch in the group well by
referencing the nonlocal similar geometry. Further, by allowing
different sparse representations in the same GBT domain, the
texture of each individual patch is also preserved.

Another advantage of our NLGBT approach is that the GBT
dictionary can be efficiently learned from the similar patches,
which avoids complicated dictionary learning process.

In a nutshell, our NLGBT method is a hybrid of group
sparsity and GBT representation, exploiting the group sparsity
by adapting a nonlocal GBT dictionary into Eq. (2). Both the
local piecewise smoothness prior and nonlocal self-similarity
prior are taken into consideration via the nonlocal GBT
representation.



V. A LGORITHM DEVELOPMENT

In this section, we develop an iterative depth map de-
noising algorithm based on the NLGBT model discussed
in Section IV. We describe our algorithm step-by-step and
summarize it inAlgorithm 1 .

A. Patch clustering

For a given
√
n×√

n patch (called exemplar in the vision
literature), we first search for itsK-nearest-neighbors (kNN).
kNN together with the exemplar patch is called acluster in
the sequel. We then stack them as columns to create a data
matrixY. Similar to BM3D, theK most similar patches to the
exemplar patch are found using block-matching and Euclidean
distance.

B. GBT dictionary learning

We learn the GBT dictionary for similar patches by ex-
ploiting their common structure as elaborated in Section IV.
Specifically, we compute an average patch, from which a sim-
ilarity graph is constructed modeling the local neighborhood
correlations among pixels in the average patch. There are dif-
ferent flavors of similarity graphs, such as theǫ-neighborhood
graph,k-nearest neighbor graph and the fully connected graph
[12]. We choose a four-connected graph where only pairwise
adjacent pixels are connected for simplicity. In particular, we
construct an undirected weighted graph by treating each pixel
in the average patch as a node and connect adjacent pixels
(i, j) with edge weight

wi,j = e
−‖yi−yj‖2

σ2
w , (4)

where‖yi − yj‖2 calculates the squared intensity difference
in pixel i andj as a measure of similarity. The parameterσw

controls the sensitivity of the similarity measure to the noise
and the range of the intensity difference. It is empiricallyset to
20% of the sum of the noise variance and maximum intensity
difference in the patch.

With the weighted similarity graph, we calculate the corre-
sponding Laplacian matrix and derive the GBT basis functions
via eigen-decomposition. Note that unlike previous works on
GBT [7], [8], the GBT we use here is aweighted GBT
constructed from a weighted graph instead of an unweighted
one. The motivation is that weighted GBT bases generally
give sparser representation of the average patch since it better
captures the subtle inter-pixel correlations in the patch.

C. Transform spectrum shrinkage

With the GBT dictionary learned, we denoise the depth
map by finding a sparse solution to Eq. (2) for each cluster.
The regularizer‖αi‖0 is associated with thel0 pseudo norm,
which makes the optimization problem NP-hard. One can
relax it to a convex optimization by replacing thel0-norm
with the l1-norm and acquire the solution via an off-the-
shelf convex optimization solver. However, the computational
complexity of the convex optimization is a hurdle to a real-
time implementation. We thereby adopt a simple yet effective

approach—transform spectrum shrinkage—to yield the best
possible solution.

Transform spectrum shrinkage means that we represent all
the similar patches in the derived GBT domain and sparsify
the transform representations byhard-thresholding the trans-
form coefficients. Since the GBT representation of a clean
depth map is expected to be dominated by the low-frequency
components because of the piecewise-smooth characteristic,
the high-frequency components are most likely to be gen-
erated by noise. Therefore, we attenuate the noise by hard-
thresholding the transform coefficients. The threshold is set as
t = σ

√

(2 log(n2K)), whereσ is the standard deviation of
the noise,n is the patch size andK is the number of similar
patches, as per the rule from [13].

D. Image update

Finally, all the patches are reconstructed from inverse GBT
with the sparsified transform coefficients. As every pixel
admits several estimates in overlapped patches, the depth map
is updated by weighted averaging over overlapped patches.
The weights should be inversely proportional to the rank of
the sparsified coefficient matrix so that highly sparse patches
get higher priority during weighted averaging. We empirically
set the weight ascj = 1 − (rj/n) for the j-th cluster, where
rj denotes the rank of the sparsified coefficient matrix andn
is the patch size.

E. Iterative regularization

Borrowing the iterative regularization technique in [14],we
add filtered noise back to the denoised image at each iteration
to iteratively enhance the quality of the noisy depth map based
on the previous estimate:

ŷ(k+1) = ŷ(k) + δ(y − ŷ(k)), (5)

wherey is the input noisy depth map,̂y(k) is the denoised
version at thek-th iteration andδ is a relaxation parameter.

Algorithm 1 Image Denoising via NLGBT
1: Input : One noisy depth mapy
2: Initialization : ŷ(1) = y;
3: for k = 1 to iter do
4: Step A. Patch clustering
5: Step B. GBT dictionary learning
6: Step C. Transform spectrum shrinkage
7: Step D. Image update
8: Step E. Iterative regularization
9: end for

10: Output : The denoised depth map

VI. EXPERIMENTATION

In this section we present and discuss the denoising per-
formance of the proposed NLGBT for depth maps to support
our depth map model and representation. We compare against
several competing denoising methods and further show the
effectiveness of NLGBT by demonstrating its benefit in Depth-
Image-Based Rendering.



A. Experimental setup

We evaluate our NLGBT denoising approach with three
Middlebury depth mapsCones, Teddy andSawtooth4. Additive
white Gaussian noise (AWGN) is added to these images, with
standard deviationσ ranging from 10 to 30. We compare
our approach with three other competing methods: Bilateral
Filtering (BF) [15], Non-Local Means Denoising (NLM) [2]
and Block-Matching 3D (BM3D) [9], which exploits the local,
nonlocal and a hybrid of local and nonlocal prior respectively.
Note that BM3D exhibits one of the best denoising perfor-
mance in the literature.

B. Convergence of the iterative algorithm

We first demonstrate the convergence of our iterative al-
gorithm. Fig. 3 shows that the depth map quality is greatly
enhanced at the second iteration and converges fast afterwards.
Hence, the computational complexity can be further reduced
by controlling the number of iterations as a trade-off between
complexity and performance for a fast profile.
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Fig. 3. The PSNR curves of denoised depth mapsCones and Teddy
respectively with iterative enhancement at different noise level.

C. Objective quality

We then compare our approach with BF, NLM and BM3D.
Table I shows the objective quality of denoising results (mea-
sured in PSNR) by these methods at different noise level. Our
scheme produces superior results, achieving up to16.40dB
gain over BF,7.74dB gain over NLM and2.37dB gain over
BM3D.

D. Subjective quality

We now present the subjective quality comparison among
different denoising methods. Fig. 4 and Fig. 5 demonstrate
fragments of different denoised versions of depth maps for
Cones andTeddy respectively. It can be observed that the depth
maps denoised by our NLGBT exhibit clean sharp edges and
smooth surface, while the ones produced by BM3D are blurred
along the edges to some extent. Those produced by NLM and
BF still look noisy all over the image.

The subjective quality of the reconstructed depth maps
by NLGBT validates the superiority of exploiting the group
sparsity in GBT domain for piecewise-smooth depth maps.
On one hand, similar structures do recur throughout depth
maps as in Fig. 4 and Fig. 5, which provides desirable inter-
patch references for exploiting group sparsity; One the other

4http://vision.middlebury.edu/stereo/data/

TABLE I
DEPTH MAP DENOISING: PERFORMANCECOMPARISON IN PSNR (DB)

WITH THREE COMPETING METHODS

σ

Image Method 10 15 20 25 30

Cones

NLGBT 42.84 39.18 36.53 34.43 32.97
BM3D 40.56 37.49 35.28 33.81 32.75
NLM 39.42 35.84 34.64 32.95 31.62
BF 33.34 30.53 27.96 26.03 24.21

Teddy

NLGBT 42.29 39.38 36.71 34.62 33.42
BM3D 41.36 38.33 36.12 34.45 33.25
NLM 39.57 36.24 35.17 33.49 32.22
BF 34.49 31.25 28.87 26.50 23.70

Sawtooth

NLGBT 48.41 45.30 43.22 41.71 40.01
BM3D 46.04 43.51 41.84 40.16 39.13
NLM 41.14 37.56 38.28 36.54 35.01
BF 36.36 30.99 27.62 25.38 23.61

hand, GBT representation is perfect to preserve the piecewise
smooth characteristic of depth maps, which is why NLGBT
outperforms the two nonlocal methods NLM and BM3D.

(a) NLGBT (b) BM3D

(c) NLM (d) BF

Fig. 4. Fragment of different denoised versions of the depthmap Cones
corrupted by AWGN (σ=10).

E. Application to Depth-Image-Based Rendering

As depth maps generally facilitate various end applications
instead of being observed directly, we further investigate
the effectiveness of our method by applying the denoised
depth maps to one popular image application—Depth-Image-
Based Rendering (DIBR). A simple implementation of 3D
warping [1] is used to perform DIBR.

We report the objective quality of the DIBR-synthesized
views facilitated with stereo depth maps (corrupted by AWGN
with σ=10) denoised by different methods in Table II. Again
NLGBT outperforms BF, NLM and BM3D by up to 2.03dB,
0.85dB and 0.92dB respectively. We also show the DIBR-
synthesized virtual views ofCones with different denoised
versions of the stereo depth maps in Fig. 6. It can be observed
that the synthesized result with NLGBT is more pleasant
than those produced with other methods, with fewer ringing
artifacts and corrupted boundaries. The credit mainly goesto



(a) NLGBT (b) BM3D

(c) NLM (d) BF

Fig. 5. Fragment of different denoised versions of the depthmap Teddy
corrupted by AWGN (σ=10).

the well-preserved depth discontinuities by NLGBT, which
plays a critical role in DIBR.

TABLE II
DIBR: PERFORMANCECOMPARISON IN PSNR (DB) WITH THREE

COMPETING METHODS(σ=10)

Image
Method Cones Teddy Sawtooth
NLGBT 27.30 29.96 32.06
BM3D 26.71 29.04 31.46
NLM 27.02 29.54 31.21
BF 25.27 28.39 30.48

(a) NLGBT (b) BM3D

(c) NLM (d) BF

Fig. 6. Fragment of the DIBR-synthesized images ofCones by different
denoised versions of the corresponding stereo depth maps (σ=10).

VII. C ONCLUSION

In this paper, we presented a nonlocal extension of graph-
based transform and explored its application into depth map
restoration. The developed nonlocal GBT (NLGBT) denoising

algorithm is capable of jointly exploiting the local smoothness
and nonlocal self-similarity of depth maps. When tested on
standard depth images corrupted by additive white Gaussian
noise, our algorithm has shown to outperform several compet-
ing approaches including BM3D. This work seems to suggest
that the joint local-and-nonlocal image model underlying the
proposed NLGBT algorithm is particularly effective for char-
acterizing piecewise smooth signals such as depth maps. In
the future, we plan to test the effectiveness of NLGBT on
corrupted depth images acquired directly from noisy depth
sensors such as Kinect.
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