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ABSTRACT
Transmitting compactly represented geometry of a dynamic
scene from a sender can enable a multitude of 3D imaging
functionalities at a receiver, such as synthesis of virtualim-
ages from freely chosen viewpoints via depth-image-based
rendering (DIBR). While depth maps can now be readily cap-
tured using inexpensive depth sensors, they are often cor-
rupted by non-negligible acquisition noise. In this paper,we
derive 3D surfaces of a dynamic scene from noise-corrupted
depth maps in a rate-distortion (RD) optimal manner. Specif-
ically, unlike previous work that finds the most likely (e.g.,
maximum likelihood) 3D surface from noisy observations
regardless of representation size, we judiciously search for
the best fitting (i.e., minimum distortion) 3D surface sub-
ject to a bitrate constraint. Our RD-optimal solution reduces
to the maximum likelihood solution as the rate constraint is
loosened. Using the MVC codec for compression of multi-
view depth video and MPEG free viewpoint test sequences
as input, experimental results show that RD-optimized 3D re-
constructions computed by our algorithm outperform unpro-
cessed depth maps by up to2.42dB in PSNR of synthesized
virtual views at the decoder for the same bitrate.

Index Terms— 3D reconstruction, depth image, rate-
distortion optimization

1. INTRODUCTION

With the advent of depth capturing sensors [1] like Microsoft
Kinect, depth images (per-pixel distances between objectsin
the 3D scene and capturing camera) can now be acquired
cheaply from multiple viewpoints. Each depth map consti-
tutes a projection of the 3D geometry in the scene to a 2D
image of fixed resolution. Thus, having acquired depth maps
from multiple viewpoint cameras, one can back-project them
to the 3D space to (partially) recover the original 3D geome-
try. If the multiview depth maps—a representation of the 3D
geometry—are compressed and transmitted, then the receiver
can perform a range of 3D imaging tasks, such as synthesis
of virtual images from freely chosen viewpoints using tex-
ture and depth maps of neighboring camera views via depth-
image-based rendering (DIBR) [2].

This work was supported by Microsoft Research CORE program.

To enable quality communication of 3D geometry from
sender to receiver, however, we are faced with two practical
problems. The first is that acquired depth maps from typi-
cal depth sensors are corrupted by non-negligible acquisition
noise. The second is that if the chosen representation of the
3D geometry requires too many encoding bits (not compact),
then the communication cost will be prohibitively high.

In this paper, we address both aforementioned problems
simultaneously by deriving a rate-distortion (RD) optimal3D
surface of the dynamic scene given noise-corrupted depth
observations, one that is accurateand requires few bits for
representation in multiview depth maps. Specifically, we
search for the “best fitting” 3D surface—one that maximizes
the posterior probability of the chosen 3D surface given
noise-corrupted observations—subject to a bitrate constraint.
Our RD-optimal solution reduces to the maximum likelihood
(ML) solution (as commonly done in the computer vision lit-
erature [3, 4, 5] with no consideration for representation size)
as the rate constraint is loosened. To solve this problem,
we propose an optimization scheme that finds a locally op-
timal solution by iterating between two steps: i) align edges
in depth maps of consecutive views to matchscene structure
across views; and ii) smooth texture within depth edges to
matchscene texture across views. Using the MVC codec [6]
for compression of multi-view depth video and MPEG free
viewpoint (FTV) test sequences as input, experimental results
show that RD-optimized 3D surfaces computed by our algo-
rithm outperform unprocessed depth maps by up to2.42dB
in Peak Signal-to-Noise Ratio (PSNR) of synthesized virtual
views at the decoder for the same bitrate.

The outline of the paper is as follows. We first discuss
related work in Section 2 and overview our system model in
Section 3. We present our problem formulation and corre-
sponding optimization algorithm in Section 4 and 5, respec-
tively. Finally, experimental results and conclusion are pre-
sented in Section 6 and 7, respectively.

2. RELATED WORK

The problem of finding the optimal 3D surface—one
that is the most probable given noise-corrupted depth
observations—has been studied extensively in the computer
vision literature [3, 4, 5]. The optimally constructed 3D sur-



face, however, may require a large encoding overhead. One
naı̈ve approach to find a good rate-constrained 3D surface
is to separate the problem into two steps: i) first find the
most likely 3D surface (establishing ground truth) from noise-
corrupted observation regardless of representation size;and
then ii) perform conventional RD optimization as done in
standard video codec like H.264 [7] given ground truth sur-
face as input. We argue this is a sub-optimal approach; the
problem of finding an RD-optimal 3D surface from noise-
corrupted observations is inherently aprobabilistic one—
identifying the most likely 3D surfacewithin the search space
of surfaces with representation size no larger than a bit bud-
get. By first establishing a ground truth signal and convert-
ing the problem to adeterministic one during RD optimiza-
tion, the problem becomes finding the least distorted signal
compared to the ground truth signal in the rate-constrained
search space, which isnot equivalent to the originally posed
probabilistic problem. We will demonstrate empirically that
our computed RD-optimized 3D surfaces outperform surfaces
generated from this separation approach in Section 6.

In previous multiview depth map compression work, it
has been observed that inconsistency among input depth maps
of different views due to acquisition noise incurs expensive
coding overhead, but does not lead to better synthesized view
quality. Thus, denoising methods to improve inter-view con-
sistency have been proposed [8, 9]. Our work is fundamen-
tally different in that we seek anoptimal 3D surface in a
search space of rate-constrained surfaces, where the chosen
surface is then projected to a number of camera viewpoints for
compact representation as compressed multiview depth video.
Hence, not only that by construction our input depth maps to
a multiview codec are always inter-view consistent, the setof
generated consistent depth maps represents not just any 3D
surface, but one that is RD-optimal.

3. SYSTEM OVERVIEW

We first overview our system model. We assume an array ofV

time-synchronized depth sensors capture depth images of the
same dynamic 3D scene periodically fromV different view-
points. The captured depth observations are corrupted by ac-
quisition noise, modeled as multivariate Gaussian. Given ob-
served depth data, the encoder first identifies an RD-optimal
3D surface of the scene, for a given bit budget. The cho-
sen 3D surface is then re-projected back to the camera views,
which are subsequently encoded as multiview depth videos
as a representation of the chosen 3D surface, using a known
multiview video coding scheme like MVC [6]. The challenge
is to find the RD-optimal 3D surface for given observed depth
data. We discuss the formulation of this problem next.

4. PROBLEM FORMULATION

We now present our formulation of the RD-optimized 3D re-
construction problem. As a convention, a matrix and a vector
will be denoted respectively by boldface uppercase letter (e.g,

D) and lowercase letter (e.g.,d), and a scalar will be denoted
by an italic upper or lowercase letter (e.g.,n orN ).

Suppose one or more objects move in 3D space and are
captured at each time instantt by a set ofV depth cameras
from different viewpoints, producing at each instant a vector
of observed depth mapsyt = [yt

1, ...,y
t
V ]. Let st denote the

underlying (i.e., not directly observed) surface of the object at
instantt. One can think ofst as a 2D manifold in 3D, which
evolves over time. Our objective is to estimate the sequenceof
surfacess = {s1, . . . , st} from the corresponding sequence
of observed depth mapsy = {y1, . . . ,yt}. Let ŝ denote the
estimation, orreconstruction, of s.

Unlike previous work on 3D reconstruction from multi-
view depth data [3, 4, 5], we take arate-distortion approach to
determine the reconstruction̂s. That is, we formulate our ob-
jective as finding the reconstructionŝ that minimizes a distor-
tion D(y, ŝ) between the observationsy and the reconstruc-
tion ŝ subject to a constraint on the number of bitsR(ŝ) used
to encode a representation ofŝ. It can be shown [10] that this
is equivalent to finding thês that minimizesD(y, ŝ)+λR(ŝ)
for some Lagrange multiplierλ > 0.

Note that we have chosen to define our distortion measure
betweeny andŝ rather than betweens andŝ (since we have
no direct observation ofs) or betweeny andŷ (since we wish
to reconstruct the underlying surfaces rather than the noisy
observationsy). We can only hope to find a reconstructionŝ
that is somehow close to (i.e., explains) the observationsy.
We call this anobservation-surface distortion measure. In the
next sections, we define the distortion term probabilistically,
using the maximum likelihood (ML) formulation and an as-
sumed noise model. We then specify the rate term using a
proxy that approximates the coding rates of a typical multi-
view codec like MVC [6].

4.1. Distortion Term

We model the physics of the depth sensors and acquisition
process using a conditional probability distributionP (y|s),
as follows. At each instantt, first the underlying surfacest

is projected (with hidden surface removal) onto each of the
V views producing ideal depth mapsdt

1, . . . ,d
t
V . From these

ideal depth maps, the observed depth mapsyt
1, . . . ,y

t
V are

generated probabilistically according to a zero-mean Gaus-
sian noise with conditional probability density:
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t
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(1)
whereQ is a covariance matrix for theM × N depth map
from camerai at instantt, and may depend oni, t, and even on
the signaldt

i. It is assumed that the sensors are independent
from each other and that the measurements are independent
across time. This model can reasonably accommodate depth
sensors based on stereo, structured light, or time-of-flight by
accurately modeling the covariance matrix [11, 1]. However,
for the results in this paper, for simplicity we assume that the



noise is uncorrelated and identically distributed from pixel to
pixel, i.e.,Q = σ2I for some varianceσ2.

We define as our observation-surface distortion measure

D(y, ŝ) =

V∑

i=1

(yt
i − dt

i)
TQ−1(yt

i − dt
i), (2)

wheredt
1, . . . ,d

t
V are the ideal (i.e., noiseless) depth maps

obtained by projecting the surfaceŝ onto each of theV views.
Note that the surfaces∗ that minimizes (2) also maximizes
the likelihoodP (y|s) =

∏
f(yt

i |d
t
i); hences∗ is termed the

maximum likelihood (ML) surface.

4.2. Rate Term

The rate termR(ŝ) is the number of bits needed to signal to
the decoder which surfacês it should reproduce. In practice,
we will use a decoder based on an existing multiview codec
such as MVC, combined with a post-processing step to turn
its decoded depth maps into a consistent surface. This combi-
nation determines the set of all possible valid bit strings and
the set of corresponding reproductions surfaces, and therefore
also determinesR(ŝ). However, for the purpose of efficiently
optimizing the encoder, we approximateR(ŝ) based on a sim-
ple model of the codec. In this model, a set of depth maps
dt
1, . . . ,d

t
V is encoded in blocks using either motion com-

pensated or disparity compensated prediction for each block.
As proxies for the bit rate needed to code each block, we use
the following cost functionals for each coding mode.

4.2.1. Motion Compensation Proxy

If a block is predicted from a previous frame of the same view
via motion compensation (MC), we write the costEt as:

Et(d
t
i(p),v

t
i(p)) =‖dt

i(p)− d
t−1
i (p+ v

t
i(p))‖

2

+ αt

∑

q∈Np

‖vt
i(p)− v

t
i(q)‖

2 (3)

wherevt
i(p) is the motion vector (MV) for blockp of view

i and instantt, andNp is a set of spatial neighboring blocks’
positions causal top (e.g., left, top, and top-right). In words,
(3) computes two terms: i) motion prediction residual, and ii)
the difference between MVs for current blockp and causal
neighboring blocks—itself a proxy for the cost of encoding
MV vt

i(p). αt determines the relative importance between
energy of prediction residual and cost of encoding MVvt

i(p).

4.2.2. Disparity Compensation Proxy

If a block is predicted from a frame of a neighboring view of
the same instant via disparity compensation (DC), we write
the costEv, similar toEt in (3), as:

Ev(d
t
i(p),u

t
i(p)) =‖dt

i(p)− d
t
i−1(p+ u

t
i(p))‖

2

+ αv

∑

q∈Np

‖ut
i(p)− u

t
i(q)‖

2 (4)

whereut
i(p) is the disparity vector (DV) for blockp.

4.2.3. Spatial Smoothness Proxy

In either mode, a block requires more coding bits if it is not
spatially smooth, as its high-frequency components are gen-
erally unpredictable and hence carry over to the block’s pre-
diction residual. The last proxyEs accounts for this:

Es(d
t
i(p)) = ‖L dt

i(p)‖
2 (5)

whereL is a Laplacian matrix with respect to the connectivity
between pixels in the block.

4.2.4. Combining Proxies to Rate Term

We now combine the three defined proxies into a single rate
term. For a given block, MVC selects the prediction mode
(between MC and DC) with the smaller cost. In either mode,
spatial high frequencies can contribute to a higher rate. Thus,
we define the rate termR(ŝ) as follows:

R(ŝ) =
V
∑

i=1

∑

p∈B

(

Es(d
t
i(p)) + αp min{Et(d

t
i(p),v

t
i(p)),

Ev(d
t
i(p),u

t
i(p))}

)

(6)

whereαp denotes the relative importance between spatial
smoothness and prediction cost, andB is the set of coordi-
nates for blocks in eachM ×N depth map.

4.3. Optimization Problem

To find the rate-distortion optimal surfaceŝ for a givenλ, it
suffices to find for each instantt a set of depth mapsdt

i and
associated MVs and DVsvt

i(p) andut
i(p) that minimize the

RD cost subject to a consistency constraint:

minimize
dt

i
,vt

i
(p),ut

i
(p)

D(yt, ŝt) + λR(ŝt) (7)

s.t. Ec < η. (8)

The consistency constraintEc < η ensures that the depth
maps are projections of a single 3D surface, and is given as a
constraint on the costEc of the differences between the depth
maps when they are re-projected into other views:

Ec =

V∑

i=1

∑

j∈N (i)

||dt
i − φj,i(d

t
j)||

2, (9)

whereφj,i(d) is a mapping function that maps pixels ind of
view j to pixels in viewi if they are not occluded by other
pixels, andN (i) is the set of neighboring view indices of
view i. For simplicity, in this paper we assume the cameras
are sequential (left to right) and the neighboring view set is
restricted to be neighboring left and right viewsi − 1 and
i + 1, if they exist. The consistency constraint is most easily
incorporated by adding the cost (9) to the objective function
with a large multiplierαc, which leads to the following un-
constrained problem:

minimize
dt

i
,vt

i
(p),ut

i
(p)

D(yt, ŝt) + λR(ŝt) + αcEc. (10)



5. OPTIMIZATION ALGORITHM

We now describe our proposed algorithm to solve our formu-
lated optimization problem (10). Since the rate term in (10)is
expressed in terms of individual blocks, we can rewrite (10)
so that both the distortion and consistency terms are also ex-
pressed in terms of blocks. Then, assuming the covariance
matrixQ is diagonal, it suffices to find for each block at lo-
cationp the optimal depth mapdt

i(p), associated MVvt
i(p),

and DVut
i(p) that minimize objective (10).

Because of the non-convex mapping functionφi,k(·) in
the consistency term (9), finding a globally optimal solution
to (10) is difficult. Instead, we propose an alternating two-
step optimization scheme that finds a locally optimal solu-
tion. The two steps are: i) align edges in depth maps of
consecutive views to matchscene structure across views; and
ii) smooth texture within depth edges to matchscene texture
across views. An overview of this algorithm is shown below.

Algorithm 1 Alternating Two-step Algorithm

1: Initializeαc = 1.
2: repeat
3: Step A: Matchscene structure by edge realignment.
4: Step B: Matchscene texture by texture smoothing.
5: Increaseαc.
6: until αc sufficiently large.

We describe the two steps in order.

5.1. Step A: Match scene structure by edge realignment

We observe that typical depth maps are piecewise smooth.
Hence large inconsistencies across views usually means a
pixel in a closer depth region (foreground) in one view is
mapped to a pixel in a further away depth region (background)
in a neighboring view (or vice versa), resulting in a large in-
crease in the consistency term (9). Fig. 1 illustrates example
blocks with foreground and background regions and distinct
edges between them.

To correct for these large consistency errors, we attempt
to align the boundaries of regions across views; i.e., we match
the scene structure across views. Specifically, we first detect
depth edges in a block using a simple thresholding method:
we declare an edge between two neighboring pixels if the
depth values between them is larger than a thresholdǫ.

Pixels on either side of a declared edge are labeledcandi-
date pixels. At each iteration, we test the reassignment of op-
posite depth values at each candidate pixel (from foreground
to background or vice versa), and note the potential decrease
in objective (10). The candidate pixel with the largest de-
crease in objective is chosen for depth value reassignment.
The depth value reassignment induces a change in the set of
detected edges and candidates pixels, so both are updated cor-
respondingly. To make the reassignment operation robust to
noise, the depth value of a candidate pixel will be reassigned
only if the resulting consistencyEc decreases by a significant

Fig. 1: Left: block in current view. Right: corresponding
blocks in reference view.

amount. We repeat this process until there are no more depth
value reassignment of candidate pixels that can induce a fur-
ther decrease in objective value.

Note that the above edge realignment procedure is per-
formed on atarget depth map in a single view given arefer-
ence depth map of a neighboring view is fixed and used for
computation of (9). To ensure the role of target and reference
can be reversed for each pair of neighboring views, we per-
form both a forward and a backward pass through the views.
The complete algorithm is shown below.

Algorithm 2 Step A: edge realignment

1: for i = 2 to V or i = V − 1 to 1 do
2: Detect edges and identify candidate pixels.
3: repeat
4: repeat
5: Test opposite depth assignment on candidates.
6: Pick winner, update edge and candidate pixels.
7: until No objective-decreasing candidates.
8: until All blocks are processed.
9: end for

5.2. Step B: Match scene texture by texture smoothing

Given depth edges (structure) of neighboring views are now
aligned, we now match the interior regions (texture) of neigh-
boring views. For a single block at positionp, assuming
Et < Ev for the rate term (6), we can take the partial deriva-
tive of objective (10) to get:

∂

∂dt
i(p)

= 2(Qb
−1)(dt

i(p)− y
t
i(p))

+ 2αc

∑

j∈N (i)

(

d
t
i(p)− φj,i(d

t
j)(p)

)

+ 2λ(LLT)dt
i(p)

+ 2λαp

{

(dt
i(p)− dt−1

i (p+ vt
i(p)) motion mode

(dt
i(p)− dt

i−1(p+ ut
i(p)) disparity mode

(11)

whereQb is the covariance matrix for a given block. Assum-
ing the mode decision and MVvt

i(p) and DVut
i(p) are fixed,

we can set (11) to zero and solve fordt
i(p) in closed form.

Because the optimal MVvt
i(p) and DV ut

i(p) depend
on dt

i(p), they are interdependent. To resolve the inter-
dependency, we alternately optimize either depth blockdt

i(p)



or vectorsvt
i(p) andut

i(p) at a time, until convergence. The
algorithm is summarized below.

Algorithm 3 Step B: surface smoothing

1: for i = 1 to V − 1 or i = V to 2 do
2: repeat
3: repeat
4: Givendt

i(p), find optimalvt
i(p) andut

i(p) .
5: Givenvt

i(p) andut
i(p), find optimaldt

i(p).
6: until MV and DV converge.
7: until All blocksp are processed.
8: end for

6. EXPERIMENTATION

To test the performance of our proposed algorithm, we use
texture and depth maps from two1024 × 768 MPEG FTV
multiview test sequences,Lovebird1 andBalloons, at
camera captured views4, 6, 8 and1, 3, 5, respectively.

The test sequences are pre-processed with one of three
methods before being compressed with the MVC codec [6].
In the first method,Unprocessed, the raw acquired depth
mapsy are fed into the MVC codec. This is the conven-
tional method. In the second method,RD-optimized, our
algorithm is used to produce a surfaceŝλ that minimizes
D(y, ŝ) + λR(ŝ) for a selected value ofλ. The surface
ŝλ is projected onto theV views, and the resulting depth
maps are fed into the MVC codec. In the third method,
ML-solution, our algorithm is used withλ = 0 to pro-
duce the ML surfaces0. The surfacês0 is projected onto the
V views and the resulting depth maps are fed into the codec.

After encoding and decoding the set of depth maps using
the MVC codec, the decoded depth maps may no longer be
consistent. To ensure inter-view consistency at the decoder,
we apply an averaging procedure, similar to one in [9], which
projects all views to the center view, averages the projected
depth values for each pixel, and then re-projects the center
view back to the other views. These re-projected depth maps
represent the decoded surface.

We evaluate the quality of the decoded surface using two
metrics. The first metric is our observation-surface distortion
measure (2) relative to the minimum possible value of the dis-
tortion for the given observationsy,

D′(y, ŝ) = D(y, ŝ)−D(y, ŝ0), (12)

whereŝ0 is the ML surface, which minimizesD(y, ŝ). The
second metric is the PSNR of a virtual view (between neigh-
boring camera views) synthesized from decoded texture and
depth maps, via depth-image-based-rendering (DIBR) [2].
For this metric, the ground truth is taken to be the virtual view
synthesized from the uncompressed texture maps and uncom-
pressed depth maps obtained from the ML surface.Figure 2 show distortion-rate curves forUnprocessed
andRD-optimized for the two sequencesLovebird1
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Fig. 2: Distortion-rate curve of the RD-optimized surface
and the unprocessed surface comparing against ML surface for
Lovebird1 (left) andBalloons (right).

and Balloons, for the relative observation-surface dis-
tortion measure (12). The RD curve forUnprocessed
was generated by varying the MVC quantization parameters
(QPs), while the RD curve forRD-optimized is the lower
convex hull of all RD pairs generated by varying both the
QPs andλ ∈ {0, 0.01, 0.1, 1, 10, 100}. One can see that
RD-optimized outperformsUnprocessed by a signif-
icant amount, demonstrating that pre-processing of the ac-
quired noise-corrupted depth mapsy is essential in improving
RD performance.

Fig. 3: Comparing unprocessed with ML depth maps for
Lovebird1 (for clarity in visual presentation, all pixel values are
increased by 80). From top to bottom: unprocessed depth mapsat
views 4,6,8; ML solution at views 4, 6, 8.

Fig. 4: RD-optimized depth map withλ = 1, 100, respectively.
Left two: Lovebird1 at view 8. Right two:Balloons at view 5.

Figures 3 shows unprocessed and ML depth maps from
different views forLovebird1. Compared to the unpro-
cessed depth maps, the ML depth maps show a visually sig-
nificant improvement in inter-view consistency.

Figure 4 shows RD-optimized depth maps in the center



view for λ = 0.01, 1, 100. As λ increases, the rate term be-
comes a heavier penalty, resulting in a larger distortion. We
observe that the depth map forλ = 100 has smeared edges
between foreground and background; without sharp edges, a
3D surface becomes easier to code.

We now compare the performance of the different meth-
ods using the second quality metric—PSNR of synthe-
sized virtual views. We use widely adopted DIBR soft-
ware, VSRS version 3.5, to generate the virtual views.
Fig. 5 shows the PSNR-rate curve. Using the Bjonte-
gaard metric to compute PSNR gain, forLovebird1,
RD-optimized has average gains of1.74dB and2.42dB
overML-solution andUnprocessed, respectively. For
Balloons, RD-optimized has average gains of0.87dB
and1.28dB overML-solution andUnprocessed, re-
spectively. As expected, as rate increases, 3D surfaces
computed byRD-optimized approach those computed by
ML-solution, thus achieving the same RD performance.

Cropped images at virtual views of the two sequences are
shown in Fig. 6. Improvements indicated by arrows can be
clearly observed.
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Fig. 5: PSNR of synthesized virtual views at decoder versus coding
rate forLovebird1 (left) andBalloons (right).

Fig. 6: Top Row (Lovebird1): synthesized view 5 using tex-
ture & depth maps at view 4, 6. Depth maps are of 48kbps:
Unprocessed (left), ML-solution (center),RD-optimized
(right). Bottom Row (Balloons): synthesized view 2 using texture
& depth maps at view 1, 3. Depth maps are of 100kbps.

7. CONCLUSION

Given noise-corrupted depth observations from multiple
viewpoints, in this paper we propose to derive an RD-optimal
3D surface of a dynamic scene subject to a representation size
constraint. Unlike previous work that finds the most likely
3D surface given noisy observations regardless of represen-
tation size, our identified 3D surface optimally trades off the
posterior probability with representation size. We propose an
iterative algorithm that alternately optimizes the scene struc-
ture (depth edges) and the scene texture (depth texture) un-
til convergence. Experimental results show that using pro-
jections of our RD-optimized 3D reconstruction to multiple
depth maps for multiview depth video coding can outperform
unprocessed depth maps by up to2.42dB in PSNR of synthe-
sized virtual views at the decoder for the same bitrate.
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