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ABSTRACT

Free viewpoint video enables a client to interactively choose a view-
point from which to synthesize an image via depth-image-based ren-
dering (DIBR). However, synthesizing a novel viewpoint image us-
ing texture and depth maps from two nearby views entails a sizable
computation overhead. Further, to reduce transmission rate, recent
proposals synthesize the second reference view itself using texture
and depth maps of the first reference view via a complex inpainting
algorithm to complete large disocclusion holes in the second refer-
ence image—a small amount of auxiliary information (AI) is trans-
mitted by sender to aid the inpainting process—resulting inan even
higher computation cost. In this paper, we study the optimaltradeoff
between transmission rate and client-side complexity, so that in the
event that a client device is computation-constrained, complexity of
DIBR-based view synthesis can be scalably reduced at the expense
of a controlled increase in transmission rate. Specifically, for stan-
dard view synthesis paradigm that requires texture and depth maps
of two neighboring reference views, we design a dynamic program-
ming algorithm to select the optimal subset of intermediatevirtual
views for rendering and encoding at server, so that a client performs
only video decoding of these views, reducing overall view synthesis
complexity. For new view synthesis paradigm that synthesizes the
second reference view itself from the first, we optimize the trans-
mission of AI used to assist inpainting of large disocclusion holes, so
that some computation-expensive exemplar block search operations
are avoided, reducing inpainting complexity. Experimental results
show that the proposed schemes can scalably and gracefully reduce
client-side complexity, and the proposed optimizations achieve bet-
ter rate-complexity tradeoff than competing schemes.

Index Terms— Interactive multiview video, depth-image-based
rendering, computation complexity

1. INTRODUCTION

Free viewpoint video [1] enables a client to interactively choose
a virtual viewpoint from which to synthesize an image viadepth-
image-based rendering (DIBR) [2]. While observation of the 3D
scene from different viewpoints can enhance depth perception in
the viewer [3], the DIBR view synthesis process using texture and
depth maps captured from two nearby views entails a sizable com-
putation overhead. Further, to reduce the transmission rate of free
viewpoint video, instead of explicitly encoding the secondreference
view for synthesis of intermediate views, recent proposals[4] call
for view synthesis of the second reference view itself usingonly
texture and depth maps of the first reference view. Using onlyone
reference view for view synthesis typically results in large disocclu-
sion holes in the target image, which necessitates transmission of a
small amount ofauxiliary information (AI) to assist more complex
inpainting algorithms [5] to complete the image satisfactorily. For
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Fig. 1. Example of rate-complexity tradeoff for low-spec devices. In addi-
tion to reference views1 and2, virtual view 1.5 is rendered and encoded as
a P-frameP1.5 at server, so that only virtual views1.25 and1.75 are synthe-
sized at client (each using two nearby encoded frames as reference, shown as
dashed lines), reducing overall complexity.

1.51.25 1.751 S
2

I SS S’

auxiliary info (AI)

Fig. 2. Example of rate-complexity tradeoff for high-spec devices. Virtual
views 1.25, 1.5, 1.75 are synthesized at client using views1 and2 as ref-
erence (shown as dashed lines). Reference view2 is reconstructed via view
synthesis from reference view1, with the help of transmitted AI to inpaint
disoccluded regions to complete the image.

computation-constrained devices like tablets, this computation load
may be overwhelming.

To address the client complexity problem, in this paper we
study the optimal tradeoff between transmission rate and client-side
complexity, so that in the event that a client device is computation-
constrained, complexity of DIBR-based view synthesis can be grace-
fully and scalably reduced at the expense of a controlled increase
in transmission rate. We first consider the rate-complexity(RC)
tradeoff for standard virtual view synthesis paradigm thatrequires
texture and depth maps from two neighboring reference views, as
commonly done in the free viewpoint literature [2, 1]. The resulting
synthesized image typically has small disoccluded regionsthat can
be filled using simple standard procedures [2]. In this case,we
design a dynamic programming (DP) algorithm to select the optimal
subset of virtual views between two reference views for rendering
and encoding at server, so that a client that desires a free viewpoint
“look-around” from the first reference viewpoint to the second can
perform video decoding of these frames, reducing overall synthesis
complexity. As an example, in Fig. 1 virtual view1.5 is chosen to be
rendered and encoded as a P-frameP1,5, so that only virtual views
1.25 and1.75 are synthesized at client.

For new view synthesis paradigm [4] that synthesizes the second
reference view using texture and depth map of the first reference, we
study the RC tradeoff for the construction of the second reference
view by controlling the selection of AI to assist inpaintingof large
disocclusion holes. More specifically, if a missing block requires



high-complexity search in the filled-in region to identify asuitable
exemplar block for copying, then an intra block can be transmitted
instead to complete the block at a cost of AI transmission rate in-
crease. See Fig. 2 for an illustration. The RC-optimal sequence of
AIs is selected at sender by finding the shortest path in a trellis. Ex-
perimental results show that the proposed schemes can scalably and
gracefully reduce client-side complexity, and the proposed optimiza-
tions achieve better RC tradeoff than competing schemes.

The outline of the paper is as follows. We first discuss related
work in Section 2. We then overview our system model in Section 3.
We formulate our RC optimization for two types of devices in Sec-
tion 4. Finally, experimental results and conclusions are presented
in Section 5 and 6, respectively.

2. RELATED WORK

In interactive multiview video streaming (IMVS) [6], only the single
video view currently selected by a client is transmitted from server,
lowering transmission rate. The technical challenge in [6]is to de-
sign a frame structure that efficiently compresses multiview video
and provides periodic view-switching mechanisms in the encoded
bitstream at the same time. [7] extends the work in [6] by consid-
ering interactive streaming of free viewpoint video, wheretexture
and depth maps of two coded views that sandwich the virtual view
currently selected by a client are transmitted from server,so that the
virtual view can be synthesized at client via DIBR. While we fol-
low the same IMVS setup in [6, 7], we focus exclusively on the RC
tradeoff in client-side view synthesis, which is not considered in [7].

To the best of our knowledge, only [8] studies the complexity
of DIBR-based view synthesis at decoder in a formal manner. The
common assumption in [8] and this work is that overall systemcom-
putation load (or power consumption) can be reduced by trading off
view synthesis complexity with an increase in transmissionbitrate.
The increase in transmission rate will not cause the same propor-
tional increase in power consumption; this is true for 3G network
data transmission, for example, since energy consumption is domi-
nated by thetail energy at the end of a transfer, not the actual amount
of data transmitted [9]. The key idea in [8] is to compute and transmit
from server the disoccluded pixels in an DIBR-synthesized image
from a virtual viewpoint, so that the client can simply integrate these
server-computed pixels without performing any inpainting. Our RC
optimization for standard view synthesis paradigm is similar in that
we also seek to minimize the computation load due to disoccluded
pixels, but optimize at a frame level. Note that [8] requirespre-
encoding and storage of inpainted pixels for every possiblevirtual
view, resulting in a large storage cost.

3. SYSTEM OVERVIEW

Like [7], we consider an IMVS scenario where a server pre-encodes
and stores a multiview video content ofV captured views,v ∈
{1, . . . , V }, wherev corresponds to the physical location of a cam-
era in a 1D array. The IMVS interactivity we provide isstatic view-
switching, which means a user can stop the playback of the video
in time and navigate to neighboring virtual views of the paused 3D
scene1. Specifically, a client observes one virtual view at a time de-
noted byv+k/K, wherek ∈ I and1 ≤ k ≤ K−1. In essence, the
client observes a “look-around” of the static 3D scene by viewing
virtual views fromv to v+1. Upon arriving at viewv+1, the client

1[10] showed that humans prefer the visual effects of static view-
switching overdynamic view-switching [6], where the video is played back
in time uninterrupted as users interactively switch to neighboring views. The
latter produces effects similar to single-camera pan, which is not novel.

then has the option of either continuing the static 3D scene “look-
around” to camera viewv+2, or starting temporal video playback at
view v+1. Dependent on the baseline distance between neighboring
cameras,K should be large enough to support a smooth-switching
user experience.

Unlike [7] that seeks to minimize expected transmission rate
while facilitating application-required periodic view-switching, the
challenge in this paper is to designadditional coded data for trans-
mission, so that complexity of view synthesis at client can be scal-
ably reduced. To understand the computation complexity forthe new
view synthesis paradigm, we first overview a representationscheme
in [4] where texture and depth maps for the second reference view
v + 1 is synthesized using texture and depth maps of a first ref-
erence viewv, with the help of transmitted AI to aid the inpaint-
ing process of large disoccluded regions. It was demonstrated that
such a representation has better rate-distortion (RD) performance
compared to multiview video coding (MVC) [11] and layered depth
video (LDV) [12].

3.1. Auxiliary Information (AI) for Hole-filling

In [4], texture map for the second reference view is constructed as
follows. (Depth map can be constructed similarly.) First, texture pix-
els from the first reference view are mapped to their corresponding
locations in the second reference view according to their disparity
values2. These are theknown pixels in the source region Φ. To
fill in values in thedisoccluded pixels in the target region Ω, the
Criminisi’s algorithm [5] is employed, with the help of additional
transmitted AI described below.

Criminisi’s algorithm designates a filling order for code blocks
with center on the boundaryδΩ between sourceΦ and target region
Ω. We do not change the block order, but merely how each block
with missing pixels are completed. There are four types of AIto
assist in block completion:skip, MV, intra andpred. Accord-
ing to the statistics in [4],pred is seldom used, and thus we will
describe only the other three:

1. skipmeans missing pixels on a block with center on bound-
ary δΩ can be capably inpainted (copied) by the most similar
block inΦ, found using the Criminisi’s search. Thus, no fur-
ther information need to be transmitted.

2. MVmeans that Criminisi’s search cannot identify a good qual-
ity block in source regionΦ as replacement. Thus a trans-
mitted motion vector (MV) can help directly locate a best-
matched block inΦ for copying.

3. intra means no similar block exists in source regionΦ.
Thus an intra coded block is transmitted for pixel completion.

For our AI implementation, we implemented these three types
of AI with three additional modifications beyond [4]. First,skip
can specify a search rangeθ, so that complexity for the Criminisi’s
search can be scalably reduced. Second, if the previous block is
coded asMV, then the current block also coded asMV can have its MV
differentially coded, reducing transmission overhead. Third, there is
a one-bit flag inintra indicating the type of intra-prediction per-
formed. Specifically, if the previous block is also coded asintra,
then the one bit indicates whether the intra prediction should be per-
formed using the previous block, or using the pixels across boundary
δΩ, with the isophote3 as computed in the Criminisi’s algorithm [5]

2Since there is a one-to-one correspondence between textureand depth,
we will use these terms interchangeably.

3Isophote is basically the gradient at a pixel rotated by 90 degrees [5],
which empirically we found to be a good intra-prediction direction.



as prediction direction. If the previous block is not coded asintra,
then the one bit indicates whether intra prediction should not be per-
formed, or performed using the pixels acrossδΩ as described earlier.
The properties of the three types of AI are summarized in Table 1.

3.2. Choosing AI for RC Tradeoff

From Table 1, one can find the tradeoff between bit-rate and client-
side complexity for different AIs. Suppose it is required that
one must achieve a certain reconstruction quality for everyblock.
intra is capable of reconstructing to any desired quality (specified
by the quantization parameter (QP)) at low decoder complexity.
However, the transmission cost of AIintra is the highest. If a
good matching block does exist in the source region (one thatsatis-
fies the quality requirement), its location can be explicitly specified
by AI MV, with a medium transmission cost, or search using the
Criminisi’s algorithm, which will incur a large computation cost
at decoder. The RC-optimal selection of AI will be formulated in
Section 4.2.

4. PROBLEM FORMULATION

We divide the RC optimization of client-side virtual view synthe-
sis into two sections. We first formulate the RC optimizationfor
standard view synthesis paradigm, where each virtual view is syn-
thesized using two nearby reference views. We then formulate RC
optimization for a new view synthesis paradigm, where the second
reference view is first synthesized from the first reference,and then
disoccluded region is constructed using our proposed complexity-
scalable inpainting algorithm.

4.1. Rate-Complexity Tradeoff for Standard View Synthesis

For decoders that adopt the standard view synthesis paradigm [2],
reference viewv andv + 1, will be encoded as video frames, so
that intermediate views between them can be synthesized using two
references via DIBR. The RC tradeoff is how to selectadditional
virtual views between them for rendering and encoding at server, so
that complexity at client can be optimally reduced. More specifi-
cally, given network bandwidth can supportM additional encoded
frames for transmission, how to selectM intermediate virtual views
for encoding so that the complexity of synthesizing the remaining
views is minimized.

For simplicity, we assume complexity of synthesizing a viewin
DIBR is a weighted sum of the number of translated pixels4 plus
the number of inpainted pixels due to disocclusion. More precisely,
let ψ(u,w) be the complexity of synthesizing intermediate virtual
views u + 1/K, . . . , w − 1/K betweenu andw, if each is syn-
thesized via DIBR using encoded viewsu andw as left and right
reference views, respectively. We write:

ψ(u,w) =

w−1/K
∑

y=u+1/K

gy(u,w) + µ hy(u,w) (1)

wheregy(u, w) andhy(u, w) are the numbers of translated and in-
painted pixels in virtual viewy respectively, given left and right ref-
erence viewsu andw are used during synthesis, andµ is a weighting
parameter. If a computation-intensive inpainting method [13] is used
for disocclusion hole-filling, thenµ is assigned a value≫ 1.

4A translated pixel means a texture pixel copied from left and/or right
texture map(s) to target view, where the copied location is indicated by the
depth map(s). See [2] for details of DIBR.

The objective is to findM additional encoded views,u1, . . . , uM ,
between reference viewsv andv + 1, so that the overall complexity
is minimized:

min
u1,...,uM

CL =

M
∑

m=0

ψ(um, um+1) s.t.







u0 = v
uM+1 = v + 1
um < um+1

(2)

(2) can be solved recursively as follows. We first define
CL(u,m) as the minimum complexity from intermediate view
u + 1/K till v + 1 − 1/K, given view u is an encoded view
andm remaining intermediate views can be selected for encoding.
CL(u,m) can be defined recursively as:

CL(u,m) =

{

minw ψ(u,w) +CL(w,m− 1) if m ≥ 1
ψ(u, v + 1) o.w.

(3)
Using (3), a recursive call toCL(v,M) will yield the optimal

solution to (2). Further, the complexity of computing (3) can be
reduced viadynamic programming (DP): each timeCL(u,m) or
ψ(u,w) is computed, the solution is stored in entry[u,m] or [u, w]
of DP tables, so that repeated calls to the same sub-problem can
be looked up instead. This is particularly helpful if (2) needs to be
solved multiple times for differentM ’s.

4.2. Rate-Complexity Tradeoff for New View Synthesis

We now formulate the RC optimization problem for the new view
synthesis paradigm [4], where the virtual views between references
v andv+1 are synthesized via DIBR using the two reference images,
but the second referencev + 1 is first synthesized using texture and
depth maps of the first referencev only. The problem we pose is
how to first construct the second reference imagev + 1 given the
first referencev, using a complexity-scalable inpainting algorithm.

First, we assume that all translated pixels in reference view v+1
are mapped using texture and depth maps at referencev. The remain-
ing disoccluded pixels in the target regionΩ need to be filled with
the help of transmitted AI. Specifically, each blockb with center on
the target / source region boundaryδΩ needs to be completed using
one of three AI:ϕb ∈ {skip(θ),MV,intra}. To select AIϕb for
block b, we write our objective of overall bit-rate as:

min
{ϕb}

∑

b

R(ϕb, ϕb−1) (4)

whereR(ϕb, ϕb−1) is the encoding rate for blockb if AI ϕb and
ϕb−1 are used for blocksb andb− 1, respectively. There is a depen-
dency on the AI chosen for previous blockb − 1, because: i) MV
can be differentially coded if the consecutive blocks useMV as AI,
and ii) available intra-prediction types depend on whetherprevious
block is also coded asintra, as described in Section 3.1.

It is subject to a distortion constraint for each blockb:

D(ϕb) ≤ d̄, ∀b (5)

whereD(ϕb) is the resulting distortion of blockb if modeϕb is used,
and an overall complexity constraint for all blocksb’s:

∑

b

C(ϕb) ≤ C̄ (6)

whereC(ϕb) is the processing time of blockb if modeϕb is used.
Instead of solving (4) directly, we solve the equivalent La-

grangian instead:

min
ϕb|D(ϕb)≤d̄

∑

b

R(ϕb, ϕb−1) + λC(ϕb) (7)



Table 1. Rate-complexity of three types of AI. MV is short for motionvector.

AI Server Side Client Side Bit Rate Decoder
Complexity

skip(θ) signal the search rangeθ perform Criminisi’s search low moderate or high
inside specified range depending onθ

MV motion estimation, encode, send MV decode MV, block copy moderate low
intra (intra-prediction), encode, send block(intra-prediction), decode block high low
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Fig. 3. Tradeoff between the number of encoded virtual views and total
number of holes after DIBR for standard synthesis.

whereλ is a Lagrangian multiplier, selected so that complexity con-
straint (6) is met for the entire frame. (7) can be solved by first
constructing a trellis where each columnb of three states correspond
to the three types of AI that can be chosen for blockb. The edge
cost from stateϕb−1 of column b − 1 to stateϕb of column b is
R(ϕb, ϕb−1) + λC(ϕb), except whenD(ϕb) > d̄, in which case
the edge cost is infinity. Once the trellis is constructed, one can find
find the shortest path in the trellis using the known Viterbi algorithm,
which corresponds to the optimal set of AIs for all blocksb’s.

5. EXPERIMENTATION

We now demonstrate the performance of our proposed RC optimiza-
tions for standard and new synthesis paradigms, respectively. The
test sequences used areKendo andBalloons5.

For standard synthesis paradigm, we select a subset of virtual
views between two reference views for rendering and encoding at
server. A naı̈ve method to selectM intermediate virtual views is
to pick views that are equally spaced,i.e., insertM encoded views
at locationsv + 1/(M + 1), v + 2/(M + 1), etc. This method
is denoted by “equally-spaced” in Fig. 3. Also shown is our “pro-
posed” scheme. Note thatM is a simple proxy for rate. One can
alternatively consider actual rates of theM encoded views in the RC
optimization, at the cost of a more complex optimization algorithm.
This is left for future work.

We see in Fig. 3 that for the same number of encoded views,
“proposed” can achieve much lower complexity (measured in num-
ber of disocclusion holes). The reason can be explained as follows.
In practice, the non-stationary geometrical information of the 3D
scene means that disoccluded pixels are not evenly distributed across
views, but rather skewed towards views with cameras that arecloser
to objects in the scene. Our proposed recursive optimization is ro-
bust to this non-stationarity and can smartly select the views with
more disoccluded pixels, resulting in a dramatic decrease in client-
side complexity.

In the second experiment for new synthesis paradigm, we verify
the performance of our complexity-scalable DIBR-based view syn-

5http://www.tanimoto.nuee.nagoya-u.ac.jp/ fukushima/mpegftv/
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Fig. 4. RC tradeoff of view synthesis with the AI-aided hole-filling for new
synthesis paradigm.

thesis algorithm by smartly selecting AI to assist inpainting of the
second reference view. In Fig. 4, trellis-based optimization (“trel-
lis”) can achieve noticeable gain over separate optimization that se-
lects AI for each block individually (“no trellis”), by exploiting rate
dependency between two consecutive AIs. Note that since theshort-
est path in trellis is searched at encoder, there is no client-side com-
plexity increase when using “trellis” instead of “no trellis”.

Fig. 4 also shows the performance of trellis-based optimization
withoutskip(16)—only skip(32) andskip(64) are used for AI
skip—and optimization withoutMV (“no mv”). Without MV, we
can have comparable performance in low-bitrate region, butthere is
a larger performance gap in high-bitrate region, which implies that
when complexity is more a concern,MV is an important AI to effec-
tively reduce complexity. Withoutskip(16), the AI-aided method
cannot perform well at low bitrate region, where the complexity is
dramatically increased. This observation means that a well-defined
search range is critical to scalably reduce the complexity at low bi-
trate.

6. CONCLUSION

DIBR-based view synthesis at client entails a sizable computation
overhead, which may be too costly for computation-constrained de-
vices. In this paper, we propose two techniques to scalably reduce
the complexity of view rendering at client, at the expense ofa con-
trolled increase of transmission rate from server. For standard view
synthesis paradigm, we propose a dynamic programming algorithm
to identify subset of virtual views for rendering and encoding at
server, so that the client is only required to decode the encoded ren-
dered images with no view synthesis overhead. For a new view syn-
thesis paradigm, we propose to tune the selection of auxiliary in-
formation (AI) used to aid inpainting of large disoccluded regions,
to optimally trade off transmission rate and inpainting complexity.
Experimental results show that the proposed schemes can scalably
and gracefully reduce client-side complexity, and the proposed op-
timizations achieve better rate-complexity tradeoff thancompeting
schemes.
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