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Abstract—Given texture and depth maps of a single reference
viewpoint, one can synthesize a novel viewpoint image via depth-
image-based rendering (DIBR) by mapping texture pixels from
reference to virtual view. When the virtual viewpoint is much
closer to the 3D scene than the reference view (camera movement
in the z-dimension), objects close to the camera will enlarge
in size in the virtual viewpoint image. An object’s enlargement
during DIBR means that its pixel samples in the reference view
will be scattered to a larger spatial area, resulting in expansion
holes. Following our previous work, we investigate the problem of
expansion hole completion. We first assume a previously proposed
method based on depth histogram is used to identify missing or
erroneously translated pixels as expansion holes. We then propose
a new graph-based interpolation technique to fill in expansion
holes. Unlike our previous work, nonlocal but similar pixel patch
information are incorporated into a new graph construction
before a graph-based interpolation procedure with sparsity prior
is executed, resulting in enhanced performance. Experimental
results show that our new procedure of expansion hole filling
can outperform inpainting procedure employed in VSRS 3.5 by
up to 4.02dB.

I. I NTRODUCTION

Recent advances in depth sensing technologies such as
Microsoft Kinect means that depth maps (per-pixel distance
between captured objects in the 3D scene and capturing
camera) can now be affordably captured along with color
images (texture maps). Given texture and depth maps from
the same camera view, a user can synthesize a new virtual
viewpoint image viadepth-image-based rendering (DIBR) [1]:
each texture pixel in the reference view is mapped to a pixel
location in the virtual view, where the mapped location is
derived from the corresponding depth pixel in the reference
view. Missing pixels in the virtual view (disoccluded spatial
locations that were not visible in the reference view) are com-
pleted using depth-based inpainting algorithms [2]. For small
camera motion along thex- or y-dimension, this approach of
DIBR synthesis plus inpainting works reasonably well.

If the camera motion implied by the chosen virtual view-
point is along thez-dimension, however, the view rendering
process becomes more complex.z-dimensional camera motion
is possible, for example, in immersive applications such as
video conferencing, where a viewer observes real-time syn-
thesized images on a 2D display, whose rendering perspective
changes according to the tracked head position of the viewer.
An observer’s head moving back and forth then corresponds to
z-dimensional camera movements. When the virtual viewpoint
is located much closer to the 3D scene than the reference view,

object near the camera will enlarge in size in the virtual view.
An enlargement in object size means that pixel samples of
the object surface in the reference view will be scattered toa
larger spatial area during DIBR, resulting inexpansion holes.
We focus on the problem of expansion hole completion in the
DIBR-synthesized image in this paper.

Specifically, we propose the following two-step procedure
for expansion hole filling in DIBR-synthesized images. We
first assume our previously proposed method based on depth
histograms [3] is executed to identify missing or erroneously
synthesized pixels as expansion holes. We then propose a new
graph-based interpolation technique to fill in expansion holes.
Unlike our previous work [3] that leverages only on local
patch information for interpolation, we incorporate in addition
nonlocal but similar patch information (similar tononlocal
means algorithm (NLM) in [4] for image denoising) into a
new graph construction, before a graph-based interpolation
procedure with sparsity prior is executed, resulting in en-
hanced performance. Experimental results show that our new
procedure of expansion hole filling can outperform inpainting
procedure employed in VSRS 3.5 by up to4.02dB.

The structure of the paper is as follows. We first discuss
related work in Section II. We then overview our DIBR view
synthesis system in Section III. We overview our previously
proposed methodology to identify expansion holes in the
virtual view in Section IV, and discuss our graph-based inter-
polation technique in Section V. Finally, experimentationand
conclusions are presented in Section VI and VII, respectively.

II. RELATED WORK

Texture-plus-depth format [5]—representation of a 3D scene
in texture and depth maps from one or more viewpoints—can
enable low-complexity rendering of freely chosen viewpoint
images at decoder via DIBR [1]. We assume a virtual view-
point image is synthesized from just one texture / depth map
pair from one single camera view, which has been shown
in previous work [6] to lead to good rate-distortion (RD)
performance, assuming that the larger disocclusion holes in
the synthesized image can be inpainted appropriately. Instead
of disocclusion holes, the focus of this paper is on expansion
hole filling due to largez-dimensional camera motion.

Expansion hole filling can be posed as a super-resolution
(SR) problem, solved using conventional image SR algo-
rithms [7] on rectangular pixel grid. For example, texture and



depth maps in the reference view can be super-resolved into a
finer rectangular grid of sufficiently high resolution (one where
all possible expansion holes of original resolution in the virtual
view will be covered), then performing DIBR to see which
of the super-resolved pixels land on the virtual view pixel
grid. Unlike this SR approach which requires computation of
a possibly very large number of pixels in the reference view
(and only a smaller subset get mapped to the grid points in
the virtual view), our approach is aparsimonious one: only
grid samples identified as expansion hole pixels in the virtual
view are interpolated, leading to lower complexity relative to
the aforementioned SR approach.

We advocate an image interpolation method based on
graph-based transform (GBT), which uses the eigenvectors
of a defined graph Laplacian matrix to provide a Fourier-
like frequency interpretation. Unlike previous fixed transform
based interpolation like DCT [8] defined on rectangular pixel
grid, GBT is adaptive to a more general setting where any
n unknown pixels can be interpolated using anym known
pixels, all connected via a weighted graph. Further, unlikeour
previous work [3] where only local information are used for
interpolation, we leverage on the self-similarity characteristic
of natural images (as done in NLM [4]) and search for
nonlocal similar patches when constructing a graph for better
performance. We will show in Section VI that leveraging
nonlocal information does improve performance over [3].

III. I NTERACTIVE FREE-VIEWPOINT SYSTEM

We first describe a system model for our interactive free
viewpoint streaming system. The server transmits a texture/
depth map pair from onereference camera viewpoint to the
client, so that the client can freely select a virtual viewpoint
near the camera viewpoint for DIBR-based image rendering of
the 3D scene. Selecting a virtual viewpoint far away from the
reference viewpoint will trigger server’s transmission ofa new
texture / depth map pair of a different reference view. In this
paper, we focus only on synthesis of virtual view images in the
neighborhood with largez-dimensional camera movements.

A. Hole Filling in DIBR Synthesized Image

After 3D warping, we likely observeholes in the virtual
view, i.e., a pixel in the virtual view that has no corresponding
pixel in the reference view. There are two main kinds of holes.
The first kind isdisocclusion holes: the corresponding spatial
region in the reference view is occluded by an object closer
to the camera, but become exposed after projecting to the
virtual view. Disocclusion holes can be filled via depth-based
image inpainting techniques [2], and are outside the scope of
this paper. The second kind isexpansion holes. We define an
expansion hole as follows: a spatial area of an object’s surface
in the virtual view, whose corresponding area in the reference
view is visible but smaller in size. Unlike disocclusion holes,
expansion holes can leverage on information of neighboring
pixels with similar depth (indicating they are of the same
object) for interpolation.

We first identify pixels in the virtual view as expansion
holes using a method based on depth histogram, as done in

[3]. We then propose a graph-based interpolation procedure
with a sparsity prior for expansion hole filling.

IV. EXPANSION HOLE IDENTIFICATION

We briefly review the procedure in [3] to identify expansion
holes in the DIBR-synthesized virtual view image. Denote
(x, y) the coordinate of a pixel in the reference view. When
rendering from reference view to virtual view, a projection
function F(x, y) = (x′, y′) maps a pixel(x, y) in reference
view to location(x′, y′) in virtual view. The inverse projection
functionF ′(x′, y′) = (x, y) maps from(x′, y′) in virtual view
to (x, y) in reference view. BothF and F ′ can be easily
derived from standard 3D warping equations [1].
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Fig. 1. Example of texture / disparity block and constructeddepth histogram.

We first divide the virtual view into blocks ofb× b pixels.
For a given block, we decompose it intodepth layers as
follows: i) construct a histogram of depth values of the synthe-
sized pixels in the block, ii) separate depth pixels into layers
by identifying local minima in the histogram and using them
as layer-dividing boundaries. Fig. 1 shows an example texture
and disparity1 block, and corresponding depth histogram. We
next process each layer in order of increasing depth values
(closest layer to the camera first). When processing a layerl,
all synthesized pixels of high layersl + 1, . . . are treated as
empty pixels; this allows us to erase a synthesized background
pixel during expansion hole filling of a foreground object.

We examine each empty pixel in the block as follows. As
shown in Fig. 2, we divide the neighborhood of an empty pixel
(markedX in Fig. 2) into four quadrants. In each quadrant, we
find an available pixel that is closest to our target empty pixel

1There is a one-to-one correspondence between depth and disparity, where
disparity is inversely proportional to depth. Thus, disparity map can be
equivalently processed instead of depth map.

Fig. 2. Expansion Holes on a Depth Layer
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Fig. 3. Connecting pixels of similar patches to target patch

(if one exists). We then map these closest pixels back to the
reference view usingF ′, to see if any pairs areneighboring
pixels, i.e., their Euclidean distance is less than a threshold
n. If two or more pairs of neighboring pixels are found, we
declare the target empty pixel is an expansion hole pixel.

The intuition behind this method is that if the set of
closest pixels in the virtual view are neighboring pixels inthe
reference view, then the empty pixel in the virtual view is very
likely to be inside the convex set spanned by the closest pixels
in the reference view. After identifying empty expansion hole
pixels, we interpolate them using a graph-based interpolation
method described next.

V. EXPANSION HOLE PIXEL INTERPOLATION

We now discuss how we fill expansion hole pixels using a
graph-based interpolation procedure with sparsity prior.We
first discuss how GBT basis functions are derived from a
carefully constructed graph. We then discuss how the opti-
mization is formulated and performed given the derived GBT
basis functions.

A. Constructing a Graph-based Transform

We first discuss how to construct a graphG connecting
correlated pixels locally and globally. First, among expansion
hole pixels of the first unprocessed depth layer in an image, we
identify ab×b target patch Pt with a missing pixel at its center
(centroid) ct, where Pt has the fewest number of missing
pixels among patches of same size. We then globally search
for similar patches Ps’s of the same size asPt, where by
similar we mean thel2-norm of the pixel-wise patch difference
‖Pt − Ps‖2 is no larger than a thresholdτ . As shown in
Fig. 3, a similar patch can be nonlocal from the same virtual
view image (as done in NLM [4]), or from the reference view
image. To control the complexity required, the search is done
via random sampling [9] with a Gaussian kernel centered at
the target patchPt.

Given a small set of similar patchesPs’s, we draw an edge
between corresponding pixelsi in Pt and j in Ps, where the
edge weightei,j is a multiplication of three terms:

ei,j = wi,j ui,j vi,j (1)

wi,j is the difference inrelative spatial distance betweeni in
Pt andj in Ps, i.e., difference in distance from each pixel to
its respective patch centroid. For example, if pixeli in target
Pt is di from centroidct and its corresponding pixelj in Ps

is dj from centroidcs, thenwi,j is:

wi,j = e
−

‖di−dj‖2

σ2

d (2)

whereσ2
d is a parameter to control the sensitivity ofwi,j to

the distance difference.
ui,j is thephotometric difference between pixeli in Pt and

pixel j in Ps, i.e., the pixel intensity difference in exponential
form as written in (2) with parameterσ2

r . An empty expansion
hole pixel needs an intensity value forui,j to be properly
defined; we simply copy the corresponding pixel value from
the most similar patch over for the sake of definingui,j , as
done in [10].wi,j andui,j constitute the two considerations
(spatial and photometric distances) typically used in local
image filtering such as bilateral filter [11].vi,j measures the
patch-level similarity betweenPt and Ps, similarly done in
other nonlocal methods [4]. Fig. 3 shows an example where a
target patch of5 pixels is connected to two similar patches.

We also draw local edges between centroid and pixels in the
same patch, where the edge weight is composed only of two
terms:wi,j and ui,j. wi,j is then the difference inabsolute
spatial difference, as done in [11].

Having constructed a graphG for target and similar patches,
we next overview the procedure to construct a GBT [12],
which is a signal-adaptive block transform. We first define the
degree matrixD and adjacency matrixA from the graphG.
Adjacency matrixA has entryAi,j containing edge weight
ei,j if edge connectingi and j exists, and0 otherwise.
Degree matrixD is a diagonal matrix with non-zero entries
Di,i =

∑
j ei,j . A graph Laplacian L = D−A can then be

defined. Finally, we perform eigen-decomposition onL, i.e.,
find eigenvectorsφi’s such thatLφi = ρiφi, whereρi is the
i-th graph frequency. The basis vectors of the GBT areφi’s.

B. Linear Program Formulation

Without loss of generality, let theN synthesized (known)
pixels in G be s1, . . . , sN , and the interpolated length-M

signal,M > N , beŝ = [ŝ1, . . . , ŝM ] = Φw, where columns of
M×M matrixΦ, φj ’s, are theM GBT basis vectors as derived
earlier, andw is the code vector for signal interpolation. Let
ui’s be a set ofN length-M unit vectors,[0, . . . , 0, 1, 0, . . . , 0],
where the single non-zero entry is at positioni. Our objective
is to minimize a weighted sum of: i) thel1-norm2 of the
difference between interpolated signalŝ and original signals
at theN synthesized pixel locations, and ii) weightedl0-norm
of the code vectorw:

min
w

N∑

i=1

‖uT
i Φw − si‖1 + λ‖w‖0 (3)

As typically done in the literature for sparse signal recovery,
we replace thel0-norm above with al1-norm for ease of
computation:

min
w

N∑

i=1

‖uT
i Φw − si‖1 + λ‖w‖1 (4)

2l1-norm is chosen here for complexity reason; the derived minimization
can then be computed efficiently using linear programming.



TABLE I
PSNR COMPARISON FOR EXPANSION HOLE FILLING.

method VSRS+ GBT NLGBT
art PSNR(dB) 19.56 23.36 23.58

moebius PSNR(dB) 19.47 23.15 23.33

(4) can now be easily rewritten as a linear programming
(LP) formulation, and can thus be solved using any known
LP algorithms. Then the interpolated signal will be used to
update the graph weights. This procedure will be carried out
iteratively until convergence.

VI. EXPERIMENTATION

A. Experimental Setup

We usedart andmoebius in Middlebury’s 2005 datasets3

as our multiview image test sequences. We use the same
methodology in [3] to first generate a reference viewvr with
texture and depth maps of lower resolution than captured
images. Using texture and depth maps ofvr, we used DIBR to
generate virtual viewv0. We used one of the following three
methods for filling of expansion holes. In the first method we
call VSRS+, we modified VSRS software version 3.5 to use a
single reference view. We note that the VSRS software is not
designed for synthesis of virtual view images with significant
z-dimensional camera movements.NLGBT is our proposed
scheme in this paper, andGBT is the algorithm in [3].

B. Experimental Results

We calculated the PSNR of the virtual view images inter-
polated using the aforementioned three interpolation methods
against the ground truthv0. We only calculated the PSNR
of the identified expansion hole areas. The PSNR comparison
is shown in Table I. For theart sequence, we see that both
GBT andNLGBT outperformedVSRS+ significantly: by3.8dB
and 4.02dB, respectively. This demonstrates that the correct
identification of expansion holes and subsequent interpolation
are important for DIBR image synthesis of virtual view with
significantz-dimensional camera movement. Further, we see
thatNLGBT outperformedGBT by 0.18dB, showing that using
nonlocal information, we can achieve better image quality.For
the moebius sequence, we observe a similar trend.

(a) holes (b) VSRS+ (c) NLGBT

Fig. 4. Visual comparison betweenVSRS+ andNLGBT for sequenceart.

Next, we examine the generated image quality visually. In
Fig. 4, we show an example patch of the DIBR-synthesized
image before filling of expansion holes, and after filling of
expansion holes usingVSRS+ and NLGBT, respectively, for
the art sequence. The resolution of the patch is200× 200.

3http://vision.middlebury.edu/stereo/data/scenes2006/

First, we see visually in Fig. 4(a) that the presence of ex-
pansion holes is everywhere and is a significant problem.
Note also that the nature of expansion holes is very different
from disocclusion holes (e.g., right of the brush), which are
larger contiguous regions. Second, we see in Fig. 4(b) that
applying inpainting algorithm naı̈vely to fill in all missing
pixels indiscriminately does not lead to acceptable quality for
expansion hole areas. Finally in Fig. 4(c) the image shows that
NLGBT can achieve better performance in texture interpolation
with the help of nonlocal information.

VII. C ONCLUSION

When the observer’s chosen virtual viewpoint for image
rendering via DIBR involves large camera motion in thez-
dimension relative to the reference viewpoint (camera moving
closer to the 3D scene), objects closer to the camera will
increase in size significantly. Because insufficient numberof
pixel samples are available in the reference image, expansion
holes in the DIBR-rendered image will appear. In this paper,
we propose a graph-based interpolation procedure to fill in
expansion holes. Unlike our previous work, we search for
nonlocal but similar pixel patches and incorporate them into
a new graph construction, before performing a graph-based
interpolation procedure with sparsity prior. Experimental re-
sults show that our new procedure of expansion hole filling
can outperform inpainting procedure employed in VSRS 3.5
by up to4.02dB.
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