
On Stable Line Segments in Triangulations 1Andranik Mirzaian 2 Cao An Wang 3 and Yin-Feng Xu 4Keywords: Minimum Weight Triangulation, stable line segments.1 OverviewLet S be a set of n points in the plane and E denote the set of all the line segments withendpoints in S. A line segment pq with p; q 2 S is called a stable line segment of alltriangulations of S, if no line segment in E properly intersects pq. The intersection of allpossible triangulations of S then is the set of all stable line segments in S, denoted by SL(S).As a combinatorial problem, various properties of stable line segments of a set of planarpoints have been investigated in [13]. It is shown that the maximum number of stable linesegments in S is 2(n � 1). There is an interesting relationship between stable line segmentsand so-called extreme line segments EL(S) [6]. A line segment pq with p; q�S is called anextreme line segment if fp; qg = E \H for some open half-plane H [6]. Then, we have thatCH(S)� EL(S) � SL(S):A more important property is the relationship between SL(S) and so-called k-optimaltriangulations. Let T (S) denote a triangulation of S. T (S) is called a k-optimal triangu-1A preliminary version of this paper appeared in the Proc. of the 8th Canadian Conference in ComputationalGeometry, Carleton University, Ottawa, Canada, pp. 62-67, August 1996.2andy@cs.yorku.ca, Department of Computer Science, York University, North York, Ontario, Canada M3J1P3. His work is partially supported by NSERC.3wang@cs.mun.ca, Department of Computer Science, Memorial University of Newfoundland, St.John's,NFLD, Canada A1C 5S7. His work is supported by NSERC and a special fund from the Dean of Science,Memorial University of Newfoundland.4School of Management, Xi'an Jiaotong University, Xi'an, 710049, P.R. China. The work was done whilethis author was visiting Departments of Computer Science, at Memorial University of Newfoundland and YorkUniversity. 1



lation for 4 � k < n, denoted by LOTk(S), if every k-sided simple polygon drawn from T (S)is optimally triangulated by some edges of T (S).Let SLk(S) denote the intersection of all possible LOTk(S)'s (i.e., the set of edges thatare in every LOTk(S)). Let MWT (S) denote a minimum weight triangulation of S. Then,we have that SL(S) � SL4(S) � � � � � SLk(S) � � � � SLn�1(S) �MWT (S):
(a) (b)Figure 1:In some special cases of S, SL(S) forms a connected graph as shown in Figure 1. Thus, anMWT (S) can be constructed in polynomial time using the dynamic programming algorithmproposed in [7, 10].So far the structure properties of SL(S) have been thoroughly studied, but not its algo-rithmic issue.A recent result on �nding a subgraph LOT (S) of SL4(S) [5] implies an O(n4) time andO(n3) space algorithm for �nding SL(S) since it is not di�cult to show thatSL(S) � LOT (S) � SL4(S):In this paper, we shall propose two algorithms for computing SL(S). One is an O(n2 logn)time and O(n) space algorithm and the other is an O(n2) time and O(n2) space algorithm.2



2 IntroductionA triangulation of a planar point set S is de�ned as a maximal set of non-crossing line segmentswhich have both endpoints in S. A minimum weight triangulation of S (denoted MWT (S))is a triangulation among all possible triangulations over S such that the sum of its total edgelengths is minimal. To compute an MWT of a point set is an outstanding open problem,whose complexity status is unknown since 1975 [12, 8]. An O(n3) time dynamic programmingalgorithm for constructing an MWT of a simply polygon was given independently in [7, 10].Based on the above mentioned dynamic programming algorithm, Anagnostou and Corneil [1]designed an O(n3k+1) time algorithm for computing an MWT of a point set with k nestedconvex polygons, and later Meijer and Rappaport [11] improved the time complexity to O(nk)when each of the k nested polygons degenerated into a straight line segment. Xu and others[13, 3] showed that if a subgraph of anMWT with k connected components is given, then anMWT can be found in O(nk+2) time. Up to now, none of the existing algorithms for �ndingan MWT of a general point set achieves polynomial time bound. An alternative directionis to identify a subset of line segments in E belonging to an MWT . The advantage of thisdirection is two-fold. The more such line segments are identi�ed, the more likely the resultingsubgraph will connect all the points in S. Then, the ultimate solution can be found in O(nk+2)time by using dynamic programming. On the other hand, it was shown in [15] that �ndingmore line segments within an MWT can improve the performance of some heuristics.Several investigations have reported on the subgraphs of MWT [2, 4, 5, 9, 13, 14, 16]. Atrivial case is the set of line segments in all triangulations of a given point set S (i.e., a setof stable line segments SL(S)). No detailed work was done on the algorithms for computingSL(S). In the following section, we shall propose two algorithms for computing SL(S).3



3 Algorithmic IssuesLet J denote the set of all triangulations of a point set S, then we have the following obviousfacts:Fact 1. SL(S) = \T (S)2JT (S), andFact 2. pq 2 SL(S) i� no line segment with endpoints in S properly intersects pq.Note that the Delaunay triangulation of S, DT (S), belongs to J . By Fact 1, we �rst con-struct the Delaunay triangulation DT (S) and then test whether the line segments in DT (S)are also in SL(S). Note that the number of line segments in DT (S) is linearly proportionalto n, it is easy to design an O(n3) time algorithm by testing all possible intersections of theline segments with Delaunay edges.With a more detailed geometric analysis, we can improve the time complexity from O(n3)to O(n2 log n) and space complexity from O(n2) to O(n) or time complexity to O(n2) andspace complexity remains as O(n2).3.1 Algorithm 1Lemma 1 Let pq be a line segment, fp; qg[ S be a simple point set, jSj= n. To determinewhether there is a line segment with two endpoints in S that properly intersects pq can beanswered in O(n logn) time and O(n) space.Proof First, by a rigid motion we can transform point p to the origin and point q on thex-axis and denote its coordinates (x�; 0); x� > 0. This can be done in O(n) time. In thenew coordinate system, S becomes S 0, p ! p0 and q ! q0, p0 = (0; 0) and q0 = (x�; 0), andr = (x(r); y(r)) in S 0. If no points in S 0 are below (or above) x-axis, then no line segment with4



two endpoints in S0 intersects the line segment L(p0; q0). If there are points with y(pi) > 0and y(pj) < 0 for pi; pj 2 S 0, we divide S0 into two subsetsS 0+ = fp j y(p) > 0; p 2 S 0gS 0� = fp j y(p) < 0; p 2 S 0gThis step can be done in O(n) time.
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- Figure 2:We sort points in S0+ lexicographically by polar angle at p0 and q0 respectively. In the newsorted polar coordinate system, S 0+ becomes S 0+(p0) and S0+(q0) respectively. Let j S0+ j= m,and �p0(r) denote the polar angle of ray r from origin p0 and �q0(r) denote the polar angle ofr from q0. We haveS 0+(p0) = fp+i j �p0(p+i+1) > �p0(p+i ); i = 1; 2; � � � ; m� 1gS0+(q0) = fq+i j �q0(q+i+1) > �q0(q+i ); i = 1; 2; � � � ; m� 1gThe above sorting step can be done in O(n logn) time [PS85]. Let u 2 S 0�. Now we considerwhether there is a line segment with one endpoint u and another endpoint in S0+ that crossespq as follows.Construct two rays up0 and uq0, let �up0 and �uq0 be the polar angles of up0 and uq0 inpolar coordinate system with anchor points p0 and q0 respectively. Testing the rank of �up0 in5



S0+(p0) and �uq0 in S0+(q0), can be done in O(logn) time by binary search. This way we can�nd out whether there exists a point in S0+ lying in the angle region Rup0q0 between the tworays up0 and uq0. This follows from the following simple observation. There exists a pointv 2 S0+ such that uv crosses pq i� rank(uq0)+ j L+(uq0) j< rank(up0), where rank(up0) is thenumber of points in S0+ with polar angle less than �up0 , rank(uq0) is the number of points inS0+ with polar angle less than �uq0 , and L+(uq0) is the set of points in S0+ that are collinearwith uq0. (See Figure 2.)The above discussion shows that the total computation to determine whether a line seg-ment with two endpoints in S intersects pq take at most O(n logn) time and O(n) space.2In what follows, LI(S; pq) denotes the above algorithm that answers whether or not thereexists a line segment in E that crosses pq. By the above lemma, algorithm LI(S; pq) takesO(n logn) time and O(n) space. Now we can state the theorem.Theorem 1 SL(S) can be found in O(n2 logn) time and O(n) space, where j S j= n.Proof It is clear that SL(S) must be contained in the Delaunay triangulation DT (S). Thus,we start with DT (S), which can be constructed in O(n logn) time and O(n) space. Usingalgorithm LI(S; pq) we test if an edge pq of DT (S) belongs to SL(S) in O(n logn) time andO(n) space. The theorem follows since the number of edges in DT (S) is O(n). 23.2 Algorithm 2The above time complexity bound can be reduced to O(n2) if the space bound increases toO(n2). 6
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ePFigure 3:Algorithm 2� Find the arrangement for n lines, where each line is the dual of a point of S in the dualplane. Denote this arrangement as A(SD).� Find DT (S); For each Delaunay edge e of DT (S) DO.{ Let pe be the intersection point of the dual lines of the endpoints of e. Let W (pe)be the double wedge determined by these two dual lines. Traverse the portion ofA(SD) inside W (pe), starting at pe. (Refer to Figure 3.){ If a vertex of A(SD) is found properly inside W (pe), then report `e is not in SL';{ Otherwise, report `e is in SL'� EndDo.Theorem 2 SL(S) can be found in O(n2) time and O(n2) space, where j S j= n.7
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