
Minimum Weight Euclidean Matching and WeightedRelative Neighborhood GraphsAndranik MirzaianDepartment of Computer ScienceYork UniversityToronto, Ontario, Canada M3J 1P3andy@cs.yorku.caAbstractThe Minimum Weight Euclidean Matching (MWEM) problem is: given 2n point sitesin the plane with Euclidean metric for interpoint distances, match the sites into n pairsso that the sum of the n distances between matched pairs is minimized. The graphtheoretic version of this problem has been extensively studied since the pioneering workof Edmonds. The best time bound known for MEWM is O(n2:5(logn)4) due to Vaidya.His algorithm requires O(n logn) space.We investigate new geometric properties of the problem and propose an O(n) space,O((n2+F) logn) time algorithm based on the Weighted Voronoi Diagram (WVD) of thesites, where F is the number of edge-ips in the diagram as the weights change duringthe matching algorithm. We conjecture that F is close to O(n2).The new geometric results established in this paper include the following: We introduceWeighted Relative Neighborhood Graphs (WRNG) andWeighted Gabriel Graphs (WGG).These are generalizations of their unweighted versions studied in the literature. We showWRNG and WGG are straight-line planar graphs; WRNG is a subgraph of WGG; andWGG is a subgraph of the dual of WVD. Furthermore, we show that the admissible edges(and hence, the matching edges) in Edmonds' primal-dual algorithm form a subgraph ofWRNG.Key Words: Matching, planarity, Weighted Relative Neighborhood Graphs, WeightedGabriel Graphs, Weighted Delaunay Diagrams.1



1 IntroductionGraph Matching is a classical and well studied combinatorial optimization problem. A match-ing in a graph is a subset of the edges, no two of which are incident to the same vertex. In aweighted graph (with real valued weights on edges) the weight of a matching is the sum of itsedge weights. The maximum cardinality matching problem is to �nd a matching of maximumcardinality in the given (unweighted) graph. The minimum weight matching problem is to�nd a maximum cardinality matching with the least possible weight in a given (weighted)graph. The �rst polynomial time algorithm for these problems was proposed by the pio-neering work of Edmonds [17,18]. Lov�asz and Plummer [38] provide a comprehensive studyof graph matching. Also, [37,45,52] are excellent general sources for the subject. Galil [27]provides a lucid survey of the area up to 1986. Let n and m, respectively, denote the numberof vertices and edges of the given graph. The best known time bound for the maximumcardinality matching problem is O(mpn) (see [33,41]). The best known time bound for theminimum weight matching problem is O(n3) for dense graphs [23,37], and O(n(m+ n logn))for sparse graphs [21,24]. (See also [28] for an O(mn logn) time algorithm.) For the case ofinteger edge weights a scaling method can be applied (see, for example, [19,26]). Some otherrelated problem areas are: the bottleneck matching problem [10,11,25], sensitivity analysis inmatching [55], heuristic matching algorithms [9], and on-line matching [36].This paper is concerned with the Euclidean Minimum Weight Matching (EMWM) prob-lem: given 2n point sites in the plane that form the vertices of an underlying complete graphwith Euclidean interpoint distances as edge weights, �nd a minimum weight perfect matching(that is, with cardinality n) of the point sites. The best time complexity we would get by ap-plying any general graph based minimum weight matching algorithm to solve EMWM wouldbe O(n3) [23,37]. (For some variations of the matching problem more e�cient algorithms ex-ist. The bottleneck matching problem mentioned above is one example. Also, the minimumweight matching of points on a simple polygon can be found in O(n(logn)2) time [39].) TheO(n3) time bound for MWEM stood for many years until Vaidya [54] gave an O(n2:5(logn)4)time, O(n logn) space, algorithm for it. His algorithm is also based on Edmonds' primal-dual2



method, but he uses an e�cient geometric query processing technique to further speed up thealgorithm.To break the time barrier any further, there seems to be a need for a better under-standing of the interplay between the graph theoretic methods on the one hand, and theunderlying (somewhat less understood) geometric properties on the other hand. Perhaps amore challenging proposition would be to ask whether we can solve the problem mainly bycomputational geometric methods. Two such methods are the sparsi�cation and the liftingtechniques. The sparsi�cation technique is to �rst compute a sparse subgraph of the under-lying complete graph which is guaranteed to contain the solution (for instance, the optimumperfect matching). This technique has been successfully applied to a number of problems suchas computing the closest pair, the nearest neighbors, and the Euclidean Minimum SpanningTree via the Delaunay Triangulation of the sites (see [16,46,56]), and recently for computingthe Minimum Weight Euclidean Bottleneck Matching via k-Relative Neighborhood Graphs[10,11]. The lifting technique is to construct a structure in a higher dimension so that itsprojection down to the lower dimensions gives the desired result. Examples of this techniqueare computing variations of the Voronoi diagram and the Delaunay Triangulation (see, forexample, [5,6,8,16,20,31,32]). Also, recent developments in computational geometry showpromise for improved algorithms for MWEM. Some of these techniques are: the geometricpartitioning techniques, such as in [1,2], and semidynamic and dynamic algorithms [12,47].(For results on dynamic Voronoi diagrams of moving points see for example [22,30].)In this paper, the Weighted Voronoi Diagram and its dual (the Weighted Delaunay Dia-gram) play a prominent role. In fact, subgraphs of the Weighted Delaunay Diagram, namely,Weighted Gabriel Graphs (WGG) and Weighted Relative Neighborhood Graphs (WRNG)also come into play. Although the weighted versions of these graphs do not seem to ap-pear in the literature previously, their unweighted versions have been studied extensively[3,34,35,40,44,49,50,51,53].We propose an O((n2 + F) logn) time, O(n) space, algorithm for MWEM based on theWeighted Voronoi Diagram of the 2n sites, where the weights are related to the linear pro-gramming dual variables and dynamically change. The F term is the number of edge-ips in3



the Weighted Voronoi Diagram during the matching algorithm. Furthermore, we conjecturethat F is close to O(n2). Our starting point is Edmonds' linear programming formulation andhis primal-dual method. The main contribution of this paper includes further exploration ofthe geometric properties of the Euclidean version. More speci�cally:� We show that if the edge weights form a distance metric (in an underlying completegraph) then the dual variables corresponding to the vertices remain nonnegative. Thisbrings more symmetry between trivial and nontrivial blossoms, hence the primal con-straints corresponding to vertices (that is, trivial blossoms) and nontrivial blossomsbecome virtually alike. For the MWEM problem, this allows us to associate circulardisks centered at the point sites whose (nonnegative) radii are related to vertex andblossom dual variables. These radii are considered as the site weights.� We generalize the Relative Neighborhood Graphs and Gabriel Graphs to their weightedversions. We show that when the weights are associated with the dual variables in Ed-monds' primal-dual weighted matching algorithm as applied to EMWM, the WeightedRelative Neighborhood Graph is a subgraph of the Weighted Gabriel Graph. We alsoshow that in that case the Weighted Gabriel Graph is a straight-line connected planarsubgraph of the Weighted Delaunay Diagram and spans all the sites.� We show the admissible edges form a subgraph of the Weighted Relative NeighborhoodGraph of the sites. Therefore, the admissible edges, considered as straight line segments,are noncrossing and there are only O(n) of them at any given time, whereas the under-lying graph contains �(n2) edges. (The matching edges are a subset of the admissibleedges.) This enables us to search the sparse weighted Delaunay (or WGG or WRNG)edges, rather than the underlying complete graph, in order to maintain the admissibleedges. However, we now have to pay the overhead for maintaining the Delaunay (orWGG or WRNG) edges, since they change as the weights change. These edge changesare called edge-ips. The latter phenomenon is known for the unweighted case (see, forexample, [6,32]).� An immediate corollary of the above results is that the optimum perfect matching is a4



subgraph of the Weighted Voronoi Diagram (and the Weighted Relative NeighborhoodGraph), where the weights are associated with the optimum dual variables. A tanta-lizing question related to the sparsi�cation technique is: can we directly and e�cientlycompute this optimum Weighted Voronoi Diagram (or Weighted Relative Neighbor-hood Graph)? Once we have the optimum weights, we can construct the WDD inO(n logn) time using Fortune's sweep algorithm [20], and then compute its optimumperfect matching in O(n2 log n) time using any of the algorithms in [24,28].The rest of the paper is organized as follows. Section 2 gives the preliminaries, includingthe linear programming formulation of the minimum weight matching problem, an introduc-tion to Edmonds' primal-dual algorithm, some features of Vaidya's algorithm, and some datastructuring rudimentaries. Section 3 contains the development of the new geometric resultslisted above. Section 4 presents the proposed new algorithm. Section 5 contains furtherdiscussion and concluding remarks.2 PreliminariesIn this section we introduce the reader to some of the necessary background, before we getinto the details of our new results in the subsequent section.2.1 The Linear ProgramHere we will consider Edmonds' linear programming formulation as adapted by Lov�asz andPlummer [38]. Let G = (V;E) be a given weighted graph with edge weights de = dvu = d(v; u)for e = (v; u) 2 E. We assume jV j = 2n and G contains a perfect matching. A blossom isan odd cardinality subset of V . A blossom is called trivial if it is a singleton (a vertex);otherwise it is called nontrivial. Let B denote the set of all blossoms of G. (Note that hereany complement of a blossom is also a blossom.) Let x be a real vector with an entry for eachedge of G (with the interpretation that xe = 1 if e is a matched edge and xe = 0 otherwise).Similarly, let d denote the vector of edge weights. We say an edge e is incident to a blossomB if exactly one endpoint of e is in B. We let rB denote the set of all edges incident to5



blossom B. (Lov�asz and Plummer call rB a cut.) Let x(B) = �fxeje 2 rBg. The linearprogramming formulation of the problem isminimize dT � xsubject to : xe � 0 (for each e 2 E)x(B) = 1 (for each trivial blossom B)x(B) � 1 (for each nontrivial blossom B) :Now consider the dual program. We use a variable �B for each blossom B 2 B. Let�(e) = �(u; v) = �f�Bje 2 rBg for any edge e = (u; v) 2 E. The dual program consist ofthe following objective and constraints:maximize �B2B �Bsubject to : �B � 0 (for each nontrivial blossom B)�(e) � de (for every edge e 2 E) :In Section 3 we will show that these linear programming formulations can be furthersimpli�ed by removing the distinction between trivial and nontrivial blossoms if the underlyinggraph is complete and the edge weights form a distance metric (such as the Euclidean case).2.2 Edmonds' AlgorithmEdmonds' algorithm is a primal-dual algorithm and can be described based on the linearprogramming formulations in the preceding subsection. The algorithm maintains dual feasi-bility (starting with �(B) = 0 for every blossom B 2 B). It also maintains an integral primalsolution (starting with xe = 0 for each edge e 2 E) that satis�es all the primal constraintsexcept that it may violate some of the second and third set of primal constraints. That is,for some blossoms B, we may have x(B) = 0. Any such solution is a matching of G thoughnot necessarily a perfect matching. The algorithm proceeds through n phases. In each phase,it increases the number of matched edges by one (and thus resolves at least one of the vio-lated primal constraints). We let M denote the set of matched edges during the execution ofthe algorithm. To ensure optimality, the algorithm maintains the complementary slacknessconditions: if x(B) = 0 then �(B) = 0; for each blossom B 2 Bif �(e) < de then xe = 0; for each edge e 2 E:6



The slack for an edge e = (u; v) 2 E is the quantity slack(e) = slack(u; v) = de��(e) � 0.An edge e 2 E is called admissible if �(e) = de, that is, with a zero slack. Dual feasibilityand the complementary slackness conditions imply that the edges in the (optimum) matchingare admissible. We call a blossom B active if it is either trivial or �(B) > 0. A biproductof Edmonds' algorithm is that the set of active blossoms are nested. That is any two activeblossoms are either disjoint or one includes the other. This allows us to represent the blossomsby the blossom structure forest. The trivial blossoms form the leaves of the structure. Ablossom B1 is a child of blossom B2 in the structure, if B2 is the smallest active blossomthat properly contains B1. The roots of the blossom structure forest will be called maximalblossoms.A blossom B is called matched if x(B) = 1, otherwise it is called exposed. By implication,a vertex v 2 V is matched if xe = 1 for some edge e 2 E incident to v, otherwise it is exposed.A pair of vertices (or blossoms) incident to a matched edge are called mates. The base of anactive blossom is its unique vertex that is not matched with any other vertex of that blossom(it may be matched with a vertex in another blossom). The blossom is exposed if and only ifits base is exposed.An alternating path in G with respect to a matching M is a simple path in G whose edgesalternate betweenM and not inM . An augmenting path in G with respect to a matchingM isan alternating path between two exposed vertices of G. If there is an augmenting path P , thenwe can augment the matching M by changing it toM 0 =M �P (the symmetric di�erence ofM and P ). That is, we switch the status of edges of P from matched to unmatched and viceversa. It is easy to check that M 0 is indeed a matching and jM 0j = jM j + 1. The conversealso holds:Fact 2.1 A matching M in G has maximum cardinality if and only if there is no augmentingpath in G with respect to M .Let B̂ denote the current set of maximal blossoms in the algorithm. The shrunken graphG=B̂ is obtained from G by contracting its maximal blossoms to single super vertices. Theshrunken matching M=B̂ is de�ned similarly. 7



Fact 2.2 There is an augmenting path in G with respect to a matching M , if and only ifthere is an augmenting path in G=B̂ with respect to M=B̂.At any point in time, �(B) can change only if B is a maximal blossom. The algorithmgives each maximal blossom one of the labels F; S; T . The meaning of these labels are:label(B) = F means �(B) is �xed, label(B) = S means �(B) is increasing, and label(B) = Tmeans �(B) is decreasing. A vertex inherits the label of the maximal blossom that containsit. We shall also refer to a maximal blossom as an S-blossom, a T -blossom, or an F -blossom,according to its label. At the beginning of each phase, the exposed maximal blossoms areS-blossoms, the rest are F -blossoms. To help construct an augmenting path during a phase,the algorithm maintains an alternating forest in the (conceptually) shrunken graph G=B̂ usingonly the admissible edges. The nodes of the forest are the maximal blossoms labeled S orT . The roots of the forest are exactly the exposed maximal blossoms. The path from a rootto any leaf in this forest is an alternating path and the nodes alternate between S-blossomsand T -blossoms. A T -blossom has exactly one child | its S-blossom mate | (their basesare matched). Figure 1 shows an example of an alternating tree and blossoms (some of theadmissible edges are shown, with the matched edges shown thicker). Now imagine for eachmaximal S-blossom B we increase �(B), and for each maximal T -blossom we decrease �(B),all by the same amount �, until either a new edge becomes admissible, or �(B) becomes 0 forsome maximal T -blossom B. The quantity � is obtained from the following equations:�SS = min f slack(u; v)=2 j (u; v) 2 E; u and v are in distinct maximal S � blossomsg�FS = min f slack(u; v) j (u; v) 2 E; u is an F � vertex; v is an S � vertexg�T = min f �(B) j B is a maximal T � blossom g� = min f �SS ; �FS ; �T g :Recall that the algorithm consists of n augmenting phases. Each phase consists of anumber of stages of the following types:1. a dual variable change stage,2. a tree growing stage,3. a blossom deactivation (or expansion) stage,8



Figure 1: An alternating tree and its blossom clusters.4. a blossom activation (or shrinking) stage, and5. an augmentation stage.Each phase ends with an augmentation stage. The details are as follows.If � > 0, then we need to readjust the dual variables corresponding to maximal blossomsas follows: �(B) := ( �(B) + � if B is an S-blossom�(B)� � if B is a T -blossomThis increases the dual objective value by � times the number of exposed maximal blos-soms. (The exposed maximal blossoms are S-blossoms and the others are either F type ormatched in pairs of S type and T type). It would be too costly to make these repeated dualvariable changes. To avoid this, we will use an o�set for each S or T blossom similar to [28]as follows. Let � be the accumulated � values for the current phase (� is set to 0 at thebeginning of the phase). For each maximal blossom B, let �(B) denote the value of � at thetime B became active most recently. Then, we let �(B) remain �xed, but we use the quantity�(B)+���(B) (respectively, �(B)��+�(B)) which is the true up to date value of �(B),for an S-blossom (respectively, T -blossom) B. At the end of each phase, and when B stops9



being a maximal blossom (for instance, due to being shrunk into a larger blossom), we update�(B) by adding (subtracting) ���(B) to it (from it) if B is an S-blossom (T -blossom). Wealso set �(B) := 0 at this point. Fact 2.3 below shows that we will need to perform such anoperation for a total of only O(n) times in each phase.Otherwise, � = 0. There are three possible subcases:The case �FS = 0 corresponds to the tree growing stage. This means that an edge betweenan S-blossom BS and an F -blossom BF becomes admissible. We add BF as a child of BS inits alternating tree; change the label of BF to T and change the label of its mate from F toS. We also add to the alternating tree the mate of BF as the child of BF and the matchededge between them.The case �SS = 0: This means that an edge between two S-blossoms B and C hasbecome admissible. If B and C are in the same alternating tree, then a new blossom mustbe activated (the blossom shrinking stage). The new blossom D consists of all the ancestorblossoms of B and C in the alternating tree starting from B and C up to and includingtheir lowest common ancestor Bo. Suppose these ancestors of B along the alternating pathare B1 = B;B2; � � � ; Bk; Bo, and similarly, the ancestors of C are C1 = C;C2; � � � ; Cp; Bo.Then the alternating cycle of the new blossom D is Bk ; Bk�1; � � � ; B2; B1; C1; C2; � � � ; Cp; Bo.We contract (or shrink) these blossoms into the newly activated maximal blossom D in thealternating tree, and label it S. Subblossom Bo becomes the base of D. Accordingly, weintroduce a new root in the blossom structure forest corresponding to the newly activatedblossom D. We make its children those old roots that are no longer maximal and correspondto its subblossoms. The subblossoms loose their labels.On the other hand, if the two S-blossoms B and C are in two di�erent alternating trees,then we have found an augmenting path, namely the path that consists of the admissible edgebetween B and C, and the two alternating paths from, respectively, B and C up to their rootsin the alternating forest. In the latter case, we augment the matching and end the currentphase.The case �T = 0 corresponds to the blossom deactivation (or blossom expansion) stage.This occurs when �(B) has become 0 for some T -blossom B. We need to expand B. This10



M := ;; set dual variables and vertex weights to zero;initialize the blossom structure forest by setting eachsingleton vertex as a maximal blossom;for phase := 1; � � � ; n doinitialize the alternating forest for this phase;augmented := false;while not augmented docalculate �SS ; �FS ; �T ; �;case:� > 0 : update dual variables;�T = 0: deactivate blossom;�FS = 0: grow alternating tree;�SS = 0: if the two S-blossoms incident to the newadmissible edge are in the same alternating treethen activate blossomelse augment matching ; augmented := trueendfwhilegendfforgFigure 2: A summary of Edmonds' Minimum Weight Matching Algorithm.needs restructuring of both the blossom structure forest and the alternating forest. The rootB in the blossom structure forest is removed. This causes its previous children to becomenew roots in the forest. These new roots are now maximal blossoms. In the alternating treecontaining B, we similarly expand B. This expansion can be described as follows. Firstreplace B by its alternating cycle of subblossoms. This alternating cycle is partitioned intotwo chains delimited by the connection to the old parent of B and child of B. One of thechains has odd length, the other one even. Remove the chain with odd length from thealternating tree and relabel the (now) maximal blossoms on it as F -blossoms. The (now)maximal blossoms on the remaining chain of the alternating cycle are relabeled as S-blossomsand T -blossoms so as to maintain the alternating property of the tree.Figure 2 shows a summary of Edmonds' algorithm.11



Fact 2.3 ([28,54]) Within each of the n phases of the algorithm, the following quantities areO(n) : the number of alternating tree growings, blossom deactivations, blossom activations,dual variable changes, the total number of di�erent maximal blossoms, the number of times�SS ; �FS ; �T ; and � are computed.Proof sketch: These mainly follow from the nested structure of the active blossoms andthe fact that within a phase each S-blossom corresponds to a unique node in the blossomstructure forest at the end of the phase, and each T -blossom corresponds to a unique node inthe blossom structure forest at the beginning of the phase. 2Let W be any subset of V . We de�ne �(W ) = �f �(B) j W � B 2 Bg. Let lca(u; v)denote the blossom that is the lowest common ancestor of vertices u and v in the blossomstructure forest. Assume the lowest common ancestor is V if u and v are not in the same treeof the forest. (Note that �(V ) = 0.)Lemma 2.4 Consider an arbitrary edge e = (u; v) 2 E. Then, �(e) = �(u) + �(v) �2�(lca(u; v)), where �(x) = �f �(B) j x 2 Bg for a vertex x. Thus, if u and v are notin the same active blossom, then �(e) = �(u) + �(v) :Proof: This easily follows from the nested structure of active blossoms. 2We represent blossoms, as ordered sets of vertices, by an o�setted concatenable queueexplained below. (This is the same as priority queue p:q:1 in [28].) The linear ordering isaccording to the order of subblossoms on the alternating cycle when the blossom was activated.The base of the blossom is considered the last subblossom in this ordering. The same orderingis inductively applied to subblossoms, in the blossom structure forest. We need to performthe following operations on the o�setted concatenable queues:� find(v) : �nd the maximal blossom containing vertex v,� eval(v) : return up-to-date value of �(v) (including the o�set �(� � �(B)) if B, themaximal blossom containing v, is an S-blossom or a T -blossom).12



� concatenate(B1; B2) : concatenate the two maximal blossoms B1 and B2,� split(B; v) : split maximal blossom B and its linear ordering at vertex v into two disjointo�setted concatenable queues.We need the operation find for deciding whether two ends of an edge belong to the samemaximal blossom. The second operation is also needed for edge-slack computations whenthe two vertices are not in the same blossom. Operations concatenate and split are requiredfor blossom expansion and shrinking and for augmentation. We can implement an o�settedconcatenable queue by 2-3 trees whose leaves correspond to the vertices of the blossom in itslinear order [4]. This will allow us to perform find, concatenate and split in O(logn) time.We also maintain an additional real number in each node of the tree so that the sum of thenumbers on the path from the root to any leaf v is �(v). We can accomplish this by usingthe idea of [28]. In this way, the operation eval can also be performed in O(logn) time. Ablossom expansion or shrinking involving r subblossoms can be performed in O(r logn) time(for a total of O(n logn) time per phase by Fact 2.3). Also, an augmentation stage may causethe base of the blossoms on the augmenting path to be shifted around its alternating cycle.This can be implemented by a split and concatenate on the a�ected blossoms to maintaintheir appropriate linear ordering. There is only one augmentation per phase and it can beperformed in O(n logn) time. We also maintain T -blossoms in a priority queue for logarithmiccomputation of �T . We conclude:Theorem 2.5 Excluding the maintenance of �FS and �SS , Edmonds' algorithm can be im-plemented to run in O(n logn) time per phase, O(n2 logn) time total, and O(n) space.2.3 The Euclidean caseThe remaining issue is how to maintain �SS and �FS e�ciently. The rest of the paperconcentrates on this issue for the Euclidean case. So, now G is a complete graph on 2nplanar point sites as its vertices, and d(u; v) is the Euclidean distance between sites uand v. In the next section we will show that in the Euclidean case �(v) is nonnegativefor every vertex v. Think of �(v) as the weight, or radius of a circular disk centered at13



vertex v. Let the weighted distance between a pair of sites u and v be the slack valueslack(u; v) = d(u; v) � �(u; v). When u and v are not in the same active blossom, thenby Lemma 2.4 we have slack(u; v) = d(u; v)� �(u)� �(v) � 0. The e�cient maintenance of�FS and �SS suggests the following two query processing problems respectively:Problem 1. (Bichromatic weighted closest-pair maintenance):We have two disjoint subsets of the 2n point sites: S (red) and F (blue). we want to maintainthe minimum weighted red-blue distance dynamically, when weighted red points can be addedto S and weighted blue points can be added to or deleted from F.Problem 2. (Unichromatic weighted closest-pair maintenance):We have a set of at most 2n planar point sites S with the nonnegative weight �(v) for site v.Think of these as circular disks with radius �(v) centered at v. These disks form a number ofconnected components in the plane. Two sites belong to the same active blossom if and onlyif their disks belong to the same connected component (see the next section). The problemis to maintain the minimum (nonnegative) weighted distance between connected componentsdynamically subject only to site insertions.These are modi�ed versions of the two query processing problems posed by Vaidya [54].Vaidya was able to show that these two problems can be solved by maintaining data structuresso that each of the individual operations can be performed in O(pn polylog(n)) amortizedtime, and O(n logn) space. This resulted in his O(n2pn polylog(n)) time algorithms for boththe bipartite and the nonbipartite Euclidean Minimum Weight Matching problems. Recently,as noted in [7], new developments in dynamic bichromatic closest-pair algorithms furtherreduces the running time of Vaidya's bipartite algorithm to O(n2+�), for any � > 0, with theconstant of proportionality depending on � [1,2]. Can Problem 2 also be solved in o(pn) peroperation? Can Problems 1 or 2 be solved in O(polylog(n)) time per operation? The mainstrategy of this paper is developed in the next section. Here let us briey o�er a possiblealternative about tackling Problem 2. Maintain the Additively Weighted Voronoi Diagramof the sites in S. Since the weights of all vertices in S grow at the same rate, the WeightedVoronoi diagram remains �xed during a phase, except the only changes occur when new sites14



are inserted into S with given weights. How fast can we insert new weighted sites in thediagram? We in fact need the dual of the diagram | the Weighted Delaunay Diagram. Tomaintain the closest pair, we label the O(n) edges of the dual depending on whether thetwo end points are in the same S-blossom or not. Maintain the edges whose two ends arein di�erent S-blossoms in a priority queue, with their weighted distances as their priorities.In this way, we can maintain the closest-pair in logarithmic time. The only open question ishow fast can we insert new sites in the diagram. For the related randomized problem in theunweighted case see [15,29]. Eventhough in the worst case insertion of O(n) sites may cause
(n2) combinatorial changes in the diagram even in the unweighted case, such worst casesmay not occur in the matching algorithm, due to a fare amount of locality and clustering. Weleave this as an open problem. In the rest of the paper we develop an alternative strategy, aswell as establish the necessary geometric ideas.3 New Geometric Results3.1 The Euclidean Linear ProgramThe main result of this subsection is the following theorem which removes the distinctionbetween the trivial and nontrivial blossoms in the linear program for the minimum weightmatching in the Euclidean case.Theorem 3.1 In the minimum weight matching problem on a complete graph if the edgeweights form a distance metric, such as the EMWM problem, then the dual variables corre-sponding to the vertices (that is, trivial blossoms) remain nonnegative in Edmonds' algorithm.Proof: A proof based on the primal linear program is possible. Here we give a proof based onthe dual program and Edmonds' algorithm. Let us �rst consider EMWM; the generalizationto other cases would be straightforward. Suppose to the contrary that for some vertex v, �(v)becomes negative in Edmonds' algorithm. Consider the �rst time that this occurs. Just priorto that time, v must have been a maximal T -blossom. At this point �(v) = �(v) > 0, andv is incident to two maximal active S-blossoms B1 and B2 via two admissible edges. Theseare the parent and the unique child of v in its alternating tree. Suppose these two admissible15



edges are (v; u) and (v; w), with u 2 B1 and w 2 B2. At this point the three disks centeredat v; u; w have positive radii �(v); �(u); �(w). Furthermore,d(v; u) = �(v) + �(u) ;d(v; w) = �(v) + �(w) ;d(u; w) � �(u) + �(w) :These follow from Lemma 2.4, the dual feasibility, and the fact that edges (v; u) and (v; w)are admissible. Also, v is a T -vertex and its radius decreases, while u and w are S-verticesand their radii are increasing. This progress will stop when the third inequality in equation 1becomes equality, before �(v) becomes negative. That is, at this point the circles centeredat the triple (v; u; w) will form Apollonius circles (that is, three pairwise externally tangentcircles [13,14]) with radii �(v) = (d(v; u) + d(v; w)� d(u; w))=2 ;�(u) = (d(u; v) + d(u; w)� d(v; w))=2 ;�(w) = (d(w; v)+ d(w; u)� d(v; u))=2 :These are nonnegative radii since the edge distances satisfy the triangle inequality (and theother metric axioms). Note that at this point d(u; w) = �(u) + �(w). Thus, the edge (u; w)between two distinct S-blossoms B1 and B2 has become admissible. So, v, B1 and B2 will beshrunk into a new S-blossom, and �(v) = �(v) � 0 will be �xed. A contradiction.The generalization to other metric distances is now obvious; use the same argument em-phasizing the above equations without mentioning circles. 2Thus, without loss of generality, we can add the constraints�(B) � 0 (for each trivial blossom B )to Edmonds' dual linear program. We thus obtain the following simpli�ed primal-dual linearprograms for EMWM:minimize dT � xsubject to : xuv � 0 (for each pair of sites u; v)x(B) � 1 (for each blossom B) :16



maximize �B2B �Bsubject to : �B � 0 (for each blossom B)�(u; v) � d(u; v) (for each pair of sites u; v) :Now, dual feasibility implies �(v) � �(v) � 0 for each vertex v.3.2 Disks and blossoms in EMWMLet disk(v) denote the circular disk centered at v with the nonnegative radius �(v). For eachactive blossom B associate the planar region Region(B) = Sv2B disk(v).Lemma 3.2 Suppose Edmonds' algorithm is applied to EMWM. Then, for each active blos-som B (ie, �(B) > 0), the interior of Region(B) is connected.Proof: The proof follows by an easy induction on the cardinality of the blossoms. If B isa trivial active blossom, then Region(B) is a disk and its interior is obviously connected.Otherwise, consider when B is formed from subblossoms when it is activated. By inductionthe subblossoms satisfy the assertion of the lemma. When B is activated, Region(B) becomespath connected since the admissible edges along its alternating cycle connect its subblossomregions. At this point the only possible disconnection points for interior of Region(B) arewhere two regions of subblossoms become tangent to each other. However, when �(B) > 0,the abutting disks from its di�erent subblossoms overlap and make the interior of Region(B)also connected. 2Lemma 3.3 Consider any two distinct maximal blossoms B1 and B2. Then, the interiors ofRegion(B1) and Region(B2) are disjoint.Proof: Otherwise, there must be vertices v 2 B1 and u 2 B2 such that disk(v) and disk(u)overlap. But then, d(u; v) < �(u) + �(v) = �(u; v), since u and v are not in the same activeblossom. This violates dual feasibility. 2Corollary 3.4 Two vertices are in the same maximal active blossom if and only if they arein the same connected component of the interior of Sv2V disk(v).17



Figure 3: Blossom clusters in EMWM.Theorem 3.5 During Edmonds' algorithm applied to EMWM, there is no pair of distinctvertices u and v such that disk(u) is included in the interior of disk(v). That is, j�(u)��(v)j �d(u; v), for each pair of sites u and v.Proof: By dual feasibility and Lemma 2.4, at all times we have d(u; v) � �(u) + �(v) �2�(lca(u; v)) . Let us de�ne ru = �(u) � �(lca(u; v)) and rv = �(v) � �(lca(u; v)). Thus,d(u; v) � ru + rv. We note that ru = �f �(B) j u 2 B � lca(u; v) g � 0. Similarly, rv � 0.Therefore, the two disks centered at u and v with radii, respectively, ru and rv have disjointinteriors. Hence, jru � rvj � d(u; v). By adding �(lca(u; v)) to these two radii, we obtainj�(u)� �(v)j � d(u; v). 2Figure 3 shows the clustering structure of blossoms and subblossoms in an example. Theadmissible edges are shown in straight line-segments, the bold ones are matched edges.3.3 The Weighted Voronoi Diagram, Gabriel and Relative NeighborhoodGraphsWeighted Voronoi Diagram: Let �(s) be the weight of each site s. For any point x inthe plane, the weighted distance of x from site s is de�ned as �s(x) = d(x; s)� �(s). Consider18



the location of the points that have smaller or equal weighted distance from site u than v.This region is empty if �(u) < �(v)� d(u; v). Otherwise, it includes u and is bounded by thebisector of u and v, denoted by H(u; v), which is one branch of a hyperbola with foci u andv. This bisector is bending towards the site with smaller weight (it is a line if both sites haveequal weight and it is a half line if j�(u)� �(v)j= d(u; v)). This region (if nonempty) is starshaped and u is one of its kernel points. The Weighted Voronoi cell (or Voronoi region) of sites, V or(s), is the set of points in the plane that are at least as close (in the sense of weighteddistance) to s than to any other site. A Weighted Voronoi region V or(s) is star shapedwith s as one of its kernel points, and its boundary consists of a chain of hyperbolas. Thesubdivision of the plane by Weighted Voronoi regions of the sites is their Weighted VoronoiDiagram (WVD). The vertices and edges of the subdivision are called Voronoi vertices andVoronoi edges, respectively. In the absence of degeneracy, Voronoi vertices have degree three.For more details on the general properties of WVD see for example [5,6,20,31,48].Remark: In this paper the weights are not entirely general due to Theorem 3.5. Some ofthe properties we prove here do not hold for general weights.Weighted Delaunay Diagram: The WDD is the topological dual of the Weighted Voronoidiagram. The sites are the vertices of WDD, and there is an edge between a pair of sites u andv, if V or(u) and V or(v) share a common boundary edge. In the unweighted case (excludingdegenerate cases) WDD is a straight-line triangulation of the sites and is called DelaunayTriangulation. In the weighted case, WDD is possibly a multi-graph and can be drawn quasi-straight-line as follows. In the weighted case, V or(u) (if non-empty) is not necessarily convexbut it is star-shaped with site u one of its kernel points (that is, the line segment between uand any point x 2 V or(u) does not intersect the exterior of V or(u)). First suppose V or(u)has a non-empty interior. Draw a line-segment between u and each Voronoi vertex on theboundary of V or(u). These segments partition V or(u) into sectors. We can associate eachsector with the boundary edge of V or(u) it contains. This boundary edge is called the baseof the sector. Now, if V or(u) and V or(v) share a common boundary edge, then consider the19



sectors of V or(u) and V or(v) with the common base. If the common base does not intersectthe line segment (u; v), then draw the edge between u and v as two connected straight linesegments within the two sectors with the connection point on the common base. Draw theedge as straight-line, if the segment (u; v) intersects the common base. The common boundarybetween a pair of Voronoi regions may consist of several bases. In that case we will have thecorresponding multiple edges in the WDD. In the absence of degeneracy, and if none of theVoronoi regions are empty, this drawing gives a quasi-straight-line topological triangulation(that is, each bounded face is incident to three sites). A site u is on the boundary of theunbounded (exterior) face, if and only if disk(u) touches the boundary of the convex-hull ofSv2V disk(v). In the presense of degeneracy, a Voronoi region might be a half-line or a linesegment, and some internal faces may not be triangles. These cases can be resolved by slightperturbation: in the �rst case thicken the half-line or the line segment slightly to endow itan interior; in the second case triangulate these non-triangular faces by adding to them amaximal number of non-crossing chords. For additional properties of Voronoi Diagrams andWeighted Delaunay Diagrams and how to compute them in O(n logn) time see [20,48].Weighted Gabriel Graph: The WGG is the straight-line graph whose vertices are thegiven sites, and the line segment between sites u and v is an edge of the graph if and only ifthe (closed) line segment (u; v) intersects the bisector H(u; v) and this intersection point cuvis on the common boundary of V or(u) and V or(v). In other words, let cuv = (u; v)\H(u; v)(if it exists). Then (u; v) is an edge of the WGG, if and only if cuv is closest (in terms ofweighted distance) to u and v than to any other site (except the degenerate case mentionedbelow). Point cuv is called the Weighted Gabriel Center of sites u and v. The following isnow obvious.Theorem 3.6 The Weighted Gabriel Graph is a subgraph of the Weighted Delaunay Diagram.A degenerate case: Consider a quadruple of sites (a; b; c; d) such that (a; b) and (c; d) crosseach other at a point x and cab = ccd = x. In this case x has the same weighted distance from20



all four sites a; b; c; d. This is considered a degenerate case. In WGG if the ends of a pair ofedges form the degenerate case above, we remove one of these two edges. If, in addition, sitesa; b; c; d are collinear, then we remove edge (a; b) if (as a line segment) it is not included in(c; d); similarly, we remove edge (c; d) if it is not included in (a; b). 2Below, we will prove some additional properties of the Gabriel Graphs (and later WeightedRelative Neighborhood Graphs) when the weights satisfy Theorem 3.5.Lemma 3.7 The Weighted Gabriel Center cuv of each pair of sites u and v exists and is onthe line segment (u; v).Proof: Select the point p on the line segment (u; v) such that d(u; p) = (d(u; v) + �(u) ��(v))=2. By Theorem 3.5 j�(u)��(v)j � d(u; v). Thus, p is indeed on the line segment (u; v).Also, �u(p) = �v(p) = (d(u; v)� �(u)� �(v))=2. Therefore, p = cuv is the desired point. 2Lemma 3.8 For each site u, V or(u) is a nonempty star shaped region and u is one of itskernel points.Proof: From Lemma 3.7, the bisector H(u; v) of any pair of sites u and v intersects theline-segment (u; v). Hence, u is at least as close (in weighted distance) to itself as to v. Thisimplies u 2 V or(u), and hence, V or(u) is nonempty. Furthermore, The region of the planebounded by H(u; v) that includes u is star shaped and u is its kernel point. Since V or(u) isthe intersection of such regions, itself is star shaped and u is its kernel point. 2In fact, we prove a stronger result below.Theorem 3.9 The Weighted Gabriel Graph is a connected straight-line planar graph andspans all the sites.Proof: The fact that WGG is straight-line planar follows from the quasi-linear drawingand planarity of WDD and Theorem 3.6. Now suppose to the contrary that WGG is notconnected. Consider a pair of sites u and v that are disconnected in WGG. Select u and v suchthat �u(cuv) = (d(u; v)��(u)��(v))=2 is minimum possible. If the choice is not unique, select21



a pair (u; v) among them such that d(u; v) is minimum. If the choice is still not unique, selecta pair (u; v) among them such that the minimum x-coordinate of u or v is as small as possible(break the tie arbitrarily). If there is no other site w, such that �w(cuv) � �u(cuv), then byde�nition, the line segment (u; v) is an edge in WGG, a contradiction. Now, assume there is asite w such that �w(cuv) � �u(cuv). Without loss of generality assume w is not collinear with uand v, or the above inequality is strict (otherwise, by the degeneracy convention, (u; v) wouldstill be an edge in the graph, a contradiction). Then d(u; w) < d(u; cuv) + d(w; cuv). Thus,2�u(cuw) = d(u; w)� �(u)� �(w) < �u(cuv) + �w(cuv) � 2�u(cuv). Thus, �u(cuw) < �u(cuv).Similarly, �v(cvw) < �v(cuv). Then, by the selection criterion of (u; v), we conclude that WGGcontains a path between u and w and a path between v and w. Thus, u and v are connected,a contradiction. 2Weighted Relative Neighborhood Graph: The WRNG, which is also a straight-linegraph with the given sites as vertices, is de�ned as follows. Let �(a; b) = d(a; b)� �(a)� �(b)be the (symmetric) relative distance between sites a and b. The line segment (a; b) is an edgeof WRNG if and only if �(a; b)� maxf�(a; c); �(b; c)g, for any other site c.Theorem 3.10 The Weighted Relative Neighborhood Graph is a subgraph of the WeightedGabriel Graph.Proof: Suppose (a; b) is an edge of WRNG. Then, for any other site c we have �(a; b) �maxf�(a; c); �(b; c)g. Thus, �c(cab) = d(c; cab)� �(c)� d(a; c)� d(a; cab)� �(c)= �(a; c)� �(a; b)=2 :Similarly, �c(cab) � �(b; c)� �(a; b)=2. Thus,�c(cab) � maxf�(a; c); �(b; c)g� �(a; b)=2� �(a; b)=2= �a(cab) :22



This implies (a; b) is an edge in WGG. 2.Corollary 3.11 The Weighted Relative Neighborhood Graph is a straight-line planar sub-graph of the Weighted Delaunay Diagram.Proof: Follows from Theorems 3.6, 3.9 and 3.10. 23.4 The Admissible EdgesIn this subsection we establish some connection between the admissible edges and the struc-tures discussed in the previous subsection, such as Weighted Relative Neighborhood Graphs.Lemma 3.12 Consider any site v during the algorithm. Initially v is an exposed S-vertex.After a while v acquires an incident admissible edge for the �rst time. From that point on vmaintains at least one incident admissible edge.Proof: Initially every site v is an exposed S-vertex and hence �(v) keeps increasing. There-fore, eventually some edge (v; u) incident to v must become admissible. The only way thisedge can become inadmissible later is when both u and v are T -vertices in di�erent blossoms.However, any T -vertex is already matched, and matched vertices do not become exposed.The matched edge incident to v is an admissible edge. 2Recall that �(a; b) = �(lca(a; b)) = �f�(B) j a 2 B; b 2 Bg. Furthermore, by Lemma 2.4and dual feasibility, we have d(a; b) � �(a; b) = �(a) + �(b)� 2�(a; b). So, for an admissibleedge (a; b) we have �a(cab) = ��(a; b) = (d(a; b)��(a)��(b))=2. Consider applying Edmonds'algorithm to EMWM. We have the following:Lemma 3.13 For any three sites a; b; c, we have �(a; b)� minf�(a; c); �(b; c)gProof: Here we use the nested structure of the blossoms, that is, the blossom structureforest. To simplify the discussion, we convert the blossom structure forest to a tree by addingthe super�cial \blossom" V as the root and making all maximal blossoms its children. Nowevery blossom is a descendent of the new root in the tree. Consider the subtree rooted at23



lca(a; b). If c is outside this subtree, then lca(a; b) is a descendent of lca(a; c) = lca(b; c).Hence, �(a; b) � �(a; c) = �(b; c). If c is in the subtree, there are two case: (i) lca(a; c) isa descendent of lca(a; b) = lca(c; b). In that case �(a; c) � �(b; c) = �(a; b). (ii) lca(b; c)is a descendent of lca(a; c) = lca(a; b). In that case �(b; c) � �(a; c) = �(a; b). In all cases�(a; b) � minf�(a; c); �(b; c)g. 2Theorem 3.14 Admissible edges form a subgraph of the Weighted Relative NeighborhoodGraph.Proof: Let (a; b) be an admissible edge. Let c be any other site. By Lemma 3.13 we have�(a; b) = d(a; b)� �(a)� �(b)= �2�(a; b)� maxf�2�(a; c);�2�(b; c)g� maxfd(a; c)� �(a)� �(c); d(b; c)� �(b)� �(c)g= maxf�(a; c); �(b; c)g :This implies (a; b) is an edge of WRNG. 2Corollary 3.15 At any time during the algorithm there are only O(n) admissible edges andthey are non-crossing.Proof: By Theorems 3.9, 3.10, 3.14, and the convention on resolving the degenerate cases.2Remark: A necessary condition for optimality is that the Weighted Relative NeighborhoodGraph must contain a perfect matching (the alleged optimum matching). The WRNG, forarbitrary weights, may not necessarily contain a perfect matching. So, an open question isto �nd out under what condition on the weights does the corresponding WRNG contain aperfect matching. Also, how does WRNG change as the weights change? 224



3.5 The Edge-Flip CriterionIn this subsection we show how to compute the � change needed before an edge-ip in WDDoccurs. There are two kinds of ips possible and are explained below. Let the triple (xi; yi; ri)denote a circle Ci with radius ri whose center is at Cartesian coordinates (xi; yi). We saythree circles Ci, i = 1; 2; 3, are collinear, if there is a line tangent to the three given circles,and all three circles are on the same side of the line. Also, we say four circles Ci, i = 1; 2; 3; 4,are cocircular, if there is a circle C tangent to the four given circles, and all four circles are onthe same side of C, that is, all external tangents, or all internal tangents to C. (Cocircularitycondition corresponds to the degenerate case mentioned earlier with respect to WeightedDelaunay and Voronoi Diagrams.) We need the following two lemmas.Lemma 3.16 Three circles Ci = (xi; yi; ri), i = 1; 2; 3, are collinear, only if A2�B2�C2 = 0,where A = ������� x1 y1 1x2 y2 1x3 y3 1 ������� ; B = ������� r1 y1 1r2 y2 1r3 y3 1 ������� ; C = ������� r1 x1 1r2 x2 1r3 x3 1 ������� :Proof: Let the equation of the line tangent to the three circles be ax+ by + c = 0. Supposethis equation is normalized so that a2 + b2 = 1. Now consider the signed distance of thecenters of the three circles from this line. We get the three equations axi + byi + c = ri, fori = 1; 2; 3. Using Cramer's rule, we obtain a = B=A, b = �C=A. Substitute these in thenormalization condition a2 + b2 = 1 to obtain the lemma. 2Lemma 3.17 Four circles Ci = (xi; yi; ri), i = 1; 2; 3; 4, are cocircular, only if4AB + C2 +D2 �E2 = 0 ;where A = ��������� 1 x1 y1 r11 x2 y2 r21 x3 y3 r31 x4 y4 r4 ��������� ; B = ��������� z1 x1 y1 r1z2 x2 y2 r2z3 x3 y3 r3z4 x4 y4 r4 ��������� ; C = ��������� 1 z1 y1 r11 z2 y2 r21 z3 y3 r31 z4 y4 r4 ��������� ;25



D = ��������� 1 z1 x1 r11 z2 x2 r21 z3 x3 r31 z4 x4 r4 ��������� ; E = ��������� 1 z1 x1 y11 z2 x2 y21 z3 x3 y31 z4 x4 y4 ��������� ; and zi = x2i + y2i � r2i :Proof: Suppose the (unknown) circle tangent to the given four circles Ci is (x; y; r), where ris positive for external tangency and negative for internal tangency. Then, the cocircularitycondition is (x� xi)2 + (y � yi)2 = (r + ri)2 ; for i = 1; 2; 3; 4 :To linearize these equations, de�ne the new variable z asz = x2 + y2 � r2 :Then, we have the four linear equations�z=2 + xix+ yiy + rir = zi=2 ; for i = 1; 2; 3; 4 :Using Cramer's rule, we obtain the solutions z = �B=A; x = C=2A; y = �D=2A; r = E=2A.Substitute these in the condition z = x2 + y2 � r2 to obtain the lemma. 2As the site weights change, the Weighted Delaunay Diagram changes by edge-ips. Thereare two kinds of edge-ips (corresponding to Lemmas 3.16 and 3.17).One kind is when an unbounded Voronoi edge appears or disappears. This happenswhen the Voronoi vertex incident to the unbounded Voronoi edge moves to (or from) in�nity.This occurs when the disks of the three sites that share that Voronoi vertex on their com-mon boundary become collinear. The corresponding condition is given in Lemma 3.16. InLemma 3.16 the three circles Ci = (xi; yi; ri) are the associated three sites, where ri is �(i)if site i is an F -vertex, �(i) + � if i is an S-vertex, and it is �(i)� � if i is a T -vertex. Wesubstitute these values in the stated condition of the lemma and compute the smallest positivevalue of �. It should not be hard to see that the condition is a second degree polynomial in�. The corresponding event in WDD is called an edge-ip of the �rst kind: the edge of WDDcorresponding to the in�nite edge in WVD is either deleted or added.26



The second kind is when a bounded Voronoi edge shrinks to zero length, that is, itstwo incident Voronoi vertices coincide. The corresponding condition is given in Lemma 3.17.Similar to the above, this involves solving the stated condition of Lemma 3.17 for the unknown�. The corresponding event in WDD is called an edge-ip of the second kind. In general,the condition becomes a 6-th degree polynomial in �. However, if the four sites involved areof at most 2 types (from among the 3 possible types: T , S, F ), then the polynomial is ofdegree 4, since it involves computing the intersection of two known hyperbolas. It is onlywhen all 3 types are present (that is, an S-vertex, a T -vertex, an F -vertex, and one othervertex of any type) that the degree of the polynomial is 6. We will assume that this equationcan be solved for the smallest positive root � in O(1) time. (Implicitly we are also makingan assumption that extracting square roots is also done in O(1) time in order to computeinter-point distances.)4 The New AlgorithmThe proposed new algorithm for EMWM is the following modi�cation of Edmonds' algorithm.During the initialization we also construct, in O(n logn) time, the (unweighted) WeightedDelaunay Diagram (since site weights are zero at this point). As the weights change, theWDD changes when an edge-ip occurs as discussed in the previous subsection. Consideran edge (a; b) of WDD that is incident to two triangles (a; b; c) and (a; b; d). Flipping edge(a; b) means replacing it with edge (c; d). This occurs when the circles corresponding to thequadruple (a; b; c; d) become cocircular. Suppose �(a; b) � 0 is the minimal change neededafter which edge (a; b) of WDD should be ipped (an edge-ip of the second kind). Similarly,let �(a; b) � 0 be the minimal change needed after which edge (a; b) must go through anedge-ip of the �rst kind. Let us modify the de�nition of � as follows:�V = min f �(a; b) j (a; b) is an edge of WDD g� = min f �V ; �SS ; �FS ; �T g :We have already discussed how to maintain �T . By Fact 2.3, we perform only O(n)27



operation on �T per phase, for a total of O(n logn) time per phase. Here �V is the minimalamount of weight change needed before an edge-ip occurs. (The subscript V stands forVoronoi.) We maintain each edge (a; b) of WDD, in a priority queue, called PQV , with �(a; b)as its priority. Thus, we can compute �V and execute an edge-ip event in O(logn) time.When an edge-ip occurs, the neighboring four edges in WDD must also be checked and theirpriorities in PQV must be updated. When a site incident to a WDD edge changes label (S,F , or T ), we need to directly access the edge in PQV and change its priority.To maintain �SS , we store each SS-edge (u; v) of WDD (that is both ends are S-vertices)in another priority queue called PQSS , with priority slack(u; v)=2. We are interested in thoseedges in PQSS whose two ends are in distinct S-blossoms. Therefore, when we extract theSS-edge with minimum priority, we check to see if both ends are in the same S-blossom ornot. This can be done in O(logn) time using the o�setted priority queues of the blossoms. Ifthe two ends of the edge are in the same S-blossom, then we simply ignore that edge. Thishappens only once per edge in a phase. When some sites are relabeled and become S-vertices,we may need to add edges to PQSS using O(logn) time per edge. An SS-edge will neitherbe ipped nor will change label for the duration of the phase. Thus, such an edge remains inWDD for the duration of the phase. Hence, there are only O(n) (insert or delete) operationsperformed on PQSS per phase, for a total of O(n logn) time per phase.It remains to show how we maintain �FS . We essentially use the two level priority queuestructure of [28] that they call p:q:2. To be self contained, we give the necessary details here.For each F -blossom or T -blossom B, we maintain the set of edges that are incident both to Band an S-blossom into an ordered concatenable priority queue OCPQ(B), where the priorityof an edge is its slack value. The linear ordering is an extension of the linear ordering usedto implement the o�setted priority queue of that blossom, namely, for each vertex j 2 B,all edges incident to j appear consecutive (but in arbitrary order) in the linear ordering.This is needed for the split operation to work properly. (We need to maintain OCPQ(B)even if B is T -blossom, since it may subsequently expand and some of its subblossoms maybecome F -blossoms. Also, some F -blossoms during the tree growing stage may become T -blossoms.) These form the lower level of the two level data structure. At the top level, we28



maintain a priority queue PQFS which stores the minimum priority edge of each F -blossom Bfrom OCPQ(B). Now �FS corresponds to the minimum priority of PQFS . When a blossomchanges label between T or F , we need to perform a corresponding insert or delete on PQFS .According to Fact 2.3 this occurs only O(n) times per phase. What happens if a T -blossomor an F -blossom B becomes an S-blossom? This happens during the tree growing stage andthe blossom expansion or shrinking stage. We �rst remove the record corresponding to Bfrom PQFS if B was an F -blossom. Then, move all edges of OCPQ(B) to PQSS and at thesame time multiply their priorities by 1=2. From the analysis on PQSS above, we concludethat only a total of O(n) edges per phase will be moved from any OCPQ(B) to PQSS .What happens when edges are ipped? Suppose Fi edge ips occur in phase i. (RecallF = �ni=1Fi.) So, the total number of edges involved in phase i is Ei = O(n+ Fi). Since anedge-ip can never remove an SS-edge, no delete operations are done on PQSS . However,if necessary the corresponding edges must be deleted or added to OCPQ(B) for some F -blossom or T -blossom B. A similar add or delete may also have to be done on PQFS . Thetotal number of such operations is O(Ei), for a total of O(Ei logn) time per phase. Thisconcludes the description of the new algorithm and we have:Theorem 4.1 The proposed new algorithm solves the MWEM problem in O((n2 + F) logn)time and O(n) space, where F is the total number of edge-ips during the algorithm.5 DiscussionThe aim of this paper has been to devise a more geometric solution of the weighted Euclideanmatching problem. A number of open questions regarding weighted relative neighborhoodgraphs and their relation with the EMWM problem remain. On a related note, let us alsomention that the fractional version of EMWM gives rise to a circle packing problem whichadmits a more e�cient solution [43].Another remaining problem is to �nd a tight upper bound on F . A very crude estimateof F can be obtained as follows. From [20] we know that the WVD is the projection ofthe lower envelope of vertical circular cones. These are identical circular cones in one-to-one29
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