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ABSTRACT

Let Σ = { S1 , . . . , Sn } be a finite set of disjoint line segments in the
plane. We conjecture that its visibility graph,Vis(Σ), is hamiltonian. In
fact, we make the stronger conjecture thatVis(Σ) has a hamiltonian cycle
whose embedded version is a simple polygon (i.e., its boundary edges are
non-crossing visibility segments). We call such a simple polygon aspan-
ning polygonof Σ. Existence of a spanning polygon ofΣ is equivalent to
the existence of a hamiltonian triangulation ofΣ. A spanning polygonP
is said to be acircumscribing polygonof Σ, if it has the additional property
that no segment inΣ lies in the exterior ofP. We prove circumscribing
polygons exist for the special case whenΣ is extremally situated, i.e.,
when each segment Si touches the convex hull boundary ofΣ. Further-
more, for this special case we give an algorithm that constructs a circum-
scribing polygon inO(n log n) time and this is optimal.

1. Intr oduction

Throughout this paper the domain of discussion is with respect to the Euclidean
plane. It is well known that any finite set of points admits a simple polygon with the
given points as its vertices

Gra72 We may call such a polygon aspanning polygonof the point set. What is a
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suitable generalization of this fact from points to (disjoint) line segments? Unlessother-
wise stated, throughout this paper letΣ = { S1 , . . . , Sn } be a set of n pairwise disjoint
line segments. Calleach endpoint of a segmentSi ∈ Σ a vertex of Si , and also a vertex of
Σ. The visibility graph,Vis(Σ), of Σ (see e.g.,

Ede87 is the (embedded) graph whose vertices are the set of vertices ofΣ, and whose
edges are those line segments between pairs of vertices that do not cross any segment in
Σ. By definition, the segments inΣ are considered to be edges of the visibility graph.In
what follows, we will be considering the existence of various simple polygons that are
hamiltonian cycles ofVis(Σ).

Rappaport

Rap89 defined asimple circuit of Σ to be a simple polygonQ whose vertices are the ver-
tices ofΣ, and every segment inΣ is an edge ofQ. He showed that not every suchΣ has a
simple circuit, and to decide whether it does is NP-complete. (Rappaport actually proved
this NP-completeness result assuming some segments inΣ may have common vertices
and left as an open problem the complexity of the case where segments inΣ are pairwise
disjoint.) ThesetΣ is said to beextremally situatedif each segment inΣ has at least one
of its endpoints on the boundary of the convex hull of Σ. Rappaport et al.

RIT90 showed that even an extremally situatedΣ may or may not admit a simple circuit.
Furthermore, for this special case they gav eanO(n log n) time algorithm that constructs a
simple circuit, if one exists.

Definition 1. We define aspanning polygonof Σ to be a simple polygonP such that ver-
tices ofP are exactly the vertices ofΣ, and no edge ofP crosses any segment inΣ. In
other words, each segment inΣ is either an edge, an internal diagonal, or an external
diagonal ofP.

Definition 2. We define acircumscribing polygonof Σ to be a spanning polygonP of Σ
with the added property that no segment inΣ lies in the exterior ofP. In other words,
each segment inΣ is either an edge or an internal diagonal ofP. See Figure 1.

[Figure 1 about here.]

Definition 3. A hamiltonian triangulationof Σ is a triangulation ofΣ such that, when
viewed as a graph, it contains a hamiltonian cycle. (Recallthat a triangulation ofΣ is a
subdivision of the convex hull of Σ whose edge-set contains the segments inΣ, plus a
maximal set of additional noncrossing visibility segments. See,e.g.,

Ede87

We can now mention the following simple facts.
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Fact 1. Any simple circuit is a circumscribing polygon, and any circumscribing polygon
is a spanning polygon.

Proof. Obvious.

Fact 2. Σ has a hamiltonian triangulation if and only if it admits a spanning polygon.

Proof. Any hamiltonian cycle in a hamiltonian triangulation ofΣ is a spanning polygon
of Σ. Conversely, any spanning polygon ofΣ can be extended to a hamiltonian triangula-
tion, by adding additional noncrossing visibility segments to it, plus the segments inΣ.

Note that if some segments inΣ are allowed to have common vertices, thenΣ may
not have a circumscribing polygon. (See Figure 2.)

[Figure 2 about here.]

We make the following conjectures.

Conjecture 0: Any finite set of pairwase disjoint line segments has a circumscribing
polygon.

Conjecture 1: Any finite set of pairwise disjoint line segments has a hamiltonian trian-
gulation.

Conjecture 2: The visibility graph of any finite set of pairwise disjoint line segments is
hamiltonian.

Note that by Facts 1 and 2, Conjecture 0 implies Conjecture 1, and Conjecture 1
implies Conjecture 2.In contrast to Conjecture 1, we note that not every triangulation of
Σ is hamiltonian. Shamos in his Ph.D. thesis

Sha78 asked whether Delaunay Triangulations are hamiltonian. The negative answer was
given in

Kan83 Dil87a Also,

Dil87b raised two related open problems: (a) is it true that "most" Delaunay triangula-
tions are hamiltonian? and (b) how difficult is it to determine whether a given Delaunay
triangulation is hamiltonian? (Can it be solved in polynomial time?)A related result is a
classical theorem of Whitney

Whi31 which asserts that any maximal 4-connected planar graph is hamiltonian.The
proof of this theorem is simplified in

AKS84 and a linear time algorithm is given to find a hamiltonian cycle in such graphs.A
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proof of this theorem for a larger class of planar graphs and a linear time algorithm for
finding a hamiltonian cycle in such graphs appears in

Dil90 Tutte

Tut56 generalized the result of Whitney by showing that any 4-connected planar graph is
hamiltonian. Chibaand Nishizeki

ChN89 gav ea linear time algorithm to find a hamiltonian cycle in a 4-connected planar
graph.

2. Main Results

The main results of this paper are Theorems 1 and 2 below that show the existence
of circumscribing polygons (hence, the existence of spanning polygons and hamiltonian
triangulations) for the special case whenΣ is extremally situated. The proofs of the theo-
rems appear in subsequent sections.In the rest of the paper assumeΣ = { S1 , . . . , Sn} i s
a set of n extremally situated pairwise disjoint line segments.

Theorem 1. Any extremally situatedΣ admits a circumscribing polygon.

Theorem 2. There is an algorithm that constructs a circumscribing polygon of
extremally situatedΣ in linear space and O(n log n) time, and this is optimal.

In a first attempt we may try to construct simple polygons, inO(n) time, that encap-
sulate the given segments by going around the convex hull in an Euler tour fashion (see
Fig. 3), then use a triangulation of these polygons to proceed further

Cha91 The apparent difficulty in this approach is in maintaining convexity as we descend
down to subproblems.

[Figure 3 about here.]

Our proofs are based on recursion and employ a novel structure called thetourna-
ment pseudoforestof Σ. (The termpseudoforesthas been used in a different context in

GaT88 The convex planar subdivision induced by the tournament pseudoforest ofΣ is a
linear space data structure and can be constructed in optimalO(n log n) time using the
sweep method. (For an explanation of the sweep method see for example

Ede87 PrS85 Given this data structure, a circumscribing polygon ofΣ can be constructed
in O(n) additional time.
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The organization of the rest of the paper is as follows. Section3 contains a proof of
Theorem 1. Section 4 develops theO(n log n) algorithm to construct the tournament
pseudoforest subdivision. Section5 giv es a proof of Theorem 2 by using the tournament
pseudoforest subdivision for a fast implementation of the proof of Theorem 1.Section 6
mentions some applications. Section 7 contains some open problems.

3. Proof of Theorem 1

As mentioned before we assumeΣ is an extremally situated set ofn pairwise dis-
joint line segments. Let∂Σ denote the boundary of the convex hull of Σ. A segmentSi in
Σ is called anedge segment, a diagonal segment, or an internal segment, if it i s, respec-
tively, an edge of∂Σ, a diagonal of∂Σ, or has only one endpoint on∂Σ. In the latter case
the endpoint ofSi on ∂Σ is called itshead(denotedhi ) and the other endpoint is called its
foot (denotedfi ). Eachendpoint of an edge segment or a diagonal segment is considered
as both its head and foot!To simplify the discussion, we assume (a) no segmentSi is
horizontal, (b) no three endpoints of segments inΣ are collinear, and (c) no three seg-
ments are concurrent if extended.

The proof of Theorem 1 is by induction on thesizeof Σ, which is defined to be the
cardinality ofΣ plus the number of its internal segments. We need to prove a slightly
stronger version in which we allow a pair of edge segments inΣ to have a common head.

In what follows we use the following two observations. (i) Any subset of an
extremally situatedΣ is also extremally situated. (ii) In any circumscribing polygonP of
Σ, any edge segment ofΣ must be an edge ofP, and any diagonal segment ofΣ must be a
diagonal ofP. The same holds for the inductively defined subproblems.

If all segments ofΣ are edge segments, then∂Σ is a circumscribing polygon ofΣ. If
there is a diagonal segmentSi , thenSi divides the problem into two smaller subproblems
one on each of its sides, includingSi . Both subproblems have smallersizethan the main
one, andSi is an edge segment in both. By induction there is a circumscribing polygon
for each of the two subproblems. Paste together these two polygons alongSi to obtain a
circumscribing polygon ofΣ.

Now supposeΣ has no diagonal segments, but at least one internal segment. Con-
sider a sequenceσ = ( σ1 , σ2 , . . . , σ i ) of internal segments inΣ constructed as follows.
The initial segmentσ1 is any internal segment ofΣ. Supposeσ k, for 1 ≤ k ≤ j , hav ebeen
defined already. Let σ

_
j denote theextensionof σ j obtained by the following process:

extendσ j along the direction of its supporting line from the side of its foot until it hits
either (a) an edge of∂Σ (which may or may not be an edge ofΣ), (b) one ofσ

_
k (k < j ), or

(c) a new segment inΣ − ∂Σ. In case (c) the new segment becomesσ j+1. Also note that
in case (b), the extensionσ j stops and does not continue past an extension of a previously
considered segment in the sequence. Furthermore, lett j = closure(σ

_
j − σ j ). SeeFigure

4. We construct the sequenceσ until σ
_

i hits either (i)∂Σ, or (ii) someσ
_

k, k < i . In case
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[Figure 4 about here.]

(ii), the extended segmentsσ
_

k , σ
_

k+1 , . . . , σ
_

i induce a cycle. With a suitable change of
subscript, and without loss of generality, we may assume the subsequence ofσ that
induces this cycle starts atσ k with k = 1.

Case(i.1). σ
_

i hits an edge of∂Σ − Σ: In this case divide Σ in two parts (two subprob-
lems) one on each side ofσ

_
i with σ i belonging to both sides (as in Fig. 5).Note thatσ i

was an internal segment, but it becomes an edge segment in each of the two subproblems.
So thesizeof each subproblem is strictly smaller than the original problem.Now pro-
ceed inductively on each of the two subproblems, then paste together the two resulting
polygons alongσ i .

[Figure 5 about here.]

Case(i.2). σ
_

i hits an edge segmentSj at a pointp: Split Sj in two segmentsS′j andS′′j
at point p. Divide the problem in two, as in Fig. 6. One containsti , S′j , and every other
segment ofΣ on the same side ofσ

_
i asS′j , excludingσ i . The second containsσ

_
i , S′′j , and

ev ery remaining segment ofΣ (and of course excludingσ i ). Notethat p is a ‘‘new’’ end-
point in both subproblems, the head ofσ i is not an end point in the first subproblem, and
the foot ofσ i is not an endpoint in the second subproblem. The two subproblems are
strictly smaller insize, since Sj is replaced by another edge segment (namely, S′j or S′′j ),
and the internal segmentσ i is replaced by an edge segment (namely, ti or σ

_
i ). By induc-

tion there is a circumscribing polygon for each of the two subproblems. Paste together
the two resulting polygons alongti . Note that segmentsσ i andSj become edges of the
resulting polygon and the ‘‘extra vertex’’p disappears.

[Figure 6 about here.]

Case(ii). We use a similar argument as in case (i.2). See Figure 7.

[Figure 7 about here.]

Suppose the internal segments that induce the cycle, in appropriate order around the
cycle, are σ1 , σ2 , . . . , σ i . (Here the ordering is such thatσ j loses to σ j+1, for
j = 1, 2, . . . , i , where index arithmetic is taken moduloi , and this is done in the rest of the
proof of the theorem as well.)As suggested in Fig. 7, we will obtaini subproblems. In
addition to these subproblems, there is a convex ‘‘hole’’ in the middle which will become
part of the eventual circumscribing polygon. The subproblems are similar to the first
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subproblem of case (i.2) and are defined as follows. LetS′j+1 denote the portion ofσ
_

j+1

between the head ofσ j+1 and the point of intersection betweenσ
_

j andσ
_

j+1. The j th sub-
problem consists of segmentst j , S′j+1, and every segment ofΣ (other thanσ j andσ j+1)
that fall in the convex portion of the convex hull of Σ cut off by σ

_
j andS′j+1. Each sub-

problem is extremally situated and strictly smaller insizethanΣ. We proceed inductively
for each subproblem, then appropriately paste the resulting polygons of the subproblems
and the convex ‘‘hole’’ together as suggested in Fig. 7.

4. TheTournament Pseudoforest

The idea is motivated from the proof of Theorem 1.Imagine the segments inΣ play
a tournament as follows: Extend each segment inΣ along its line of support from the side
of its foot until it hits either∂Σ, or the extension of another segment. If two segment
extensions intersect, they play a match.The extension of the loser ends at the intersection
point, while the winner continues to be extended. Ifthe intersection point is in the rela-
tive interior of one of the segments, then that segment is declared the winner of that
match, otherwise the winner is chosen arbitrarily (so the structure is not unique).If a seg-
ment extension intersects∂Σ, it loses to∂Σ and its extension terminates at the intersection
point. Now let σ

_
i denote the extension ofσ i , and ti = closure(σ

_
i − σ i ) be called thetrail

of σ i .

As defined in

GaT88 apseudotreeis a tree plus possibly an extra edge, between two of its distinct ver-
tices (that creates a unique simple cycle). A pseudoforestis a vertex-disjoint collection of
pseudotrees.

The tournament pseudoforest ofΣ, denotedTP(Σ), is the plane graph that is the
union of the segments and their trails.TP(Σ) forms a convex partitioning of the convex
hull of Σ. We refer to this convex planar subdivision as the tournament pseudoforest sub-
division, denotedTP − subdivision. (See Figure 8.)The following lemmas and the corol-
lary justify these claims.

[Figure 8 about here.]

Lemma 1. TP − subdivision isa convex planar subdivision of convex hull of Σ.

Proof: This follows from the fact that if some face of the partition has a reflex vertex,
then both of the two segment extensions that intersect at that vertex are the loser of that
match, a contradiction.

We define afan to be a cyclic sequenceσ
_

1 , σ
_

2 , . . . , σ
_

i of segment extensions so
thatσ j loses toσ

_
j+1, for j = 1, 2, . . . , i , where index arithmetic is done moduloi . This is



-8-

related to the notion of convex "hole" mentioned in the proof of Theorem 1.

Lemma 2. A segment extension cannot appear in more than one fan.

Proof: Supposeσ
_

j appears in some fan. Thenσ
_

j completely determines the segment
extensions that form the fan, since each segment extension in the fan (starting withσ

_
j )

loses to a unique segment extension, which is the next one in the sequence.

Lemma 3. Let T be a connected component of the tournament pseudoforest. ThenT
contains one and only one of the following:

(i) a fan,
(ii) an edge segment ofΣ,
(iii) a diagonal segment ofΣ, or
(iv) a segment ofΣ whose trail hits an edge of ∂Σ − Σ.

Proof: Let C be the set of all the segment extensions that either appear in some fan, or are
edge segments, diagonal segments, or extensions of segments inΣ that lose to∂Σ − Σ.
Using Lemma 2, we see that at this point in time each connected component ofC is: a
fan, an edge segment, a diagonal segment, or extension of a segment that loses to∂Σ − Σ.
Now we add toC, one by one, the remaining segment extensions ofΣ and show that the
number of connected components ofC does not change. While there is a segment exten-
sion ofΣ not already placed inC, choose one such segmentS which loses to a segment
already placed inC. Since all the fans are already placed inC, there must be one such
segment. SegmentS, when placed inC, would belong to the same connected component
of C which contains the segment to whichS loses, and it will not cause any merge of two
connected components. Continue this process until all segment extensions are added toC.
When this is done,C is the tournament pseudoforest and each of its connected compo-
nents contains one and only one of the four kinds (i)−(iv) mentioned in the statement of
the Lemma.

Corollary 1. TP(Σ) is a pseudoforest.

Before describing the algorithm to constructTP(Σ) and theTP − subdivision, let us
say a few words about the representation of the data structure.We will maintain each
connected component ofTP(Σ) as a rooted pseudotree (with appropriate bidirectional
pointers with theTP − subdivision), where, by using Lemma 3, the root is chosen to be its
unique fan, edge segment, diagonal segment, or its segment which loses to∂Σ − Σ.
Except where the root corresponds to a fan, the rest of the pseudotree is like a standard
tree. We refer to this entire data structure collectively as the tournament pseudoforest
data structure, denotedΨ(Σ).
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In the rest of this section we will describe our algorithm to constructΨ(Σ) in
O(n log n) time using the sweep method.We sweepΣ by a horizontal sweep line along
the direction of the y-axis, where the event points of the sweep are the endpoints of the
segments ofΣ, plus some ‘‘tournament intersection points’’. There are a total ofO(n)
ev ent points and each contributesO(log n) to the time complexity.

The algorithm will maintain the portion of the pseudoforest below the sweep line,
excluding the extension (below the sweep line) of those segments that are above the
sweep line and hence not yet considered.The intersection of the sweep line and the
edges of the pseudoforest built so far will be called theactive set. We use the natural lin-
ear ordering of points in the active set, i.e., in increasing order of x-coordinate.The
edges of the current pseudoforest that intersect the sweep line (at the points of the active
set) are called theactive edges. We use the same natural ordering on the active edges as
their corresponding active points. Theevent-queue, a  priority queue, will maintain those
endpoints of the segments that are at or above the sweep line, and the intersection points,
above the sweep line, of adjacent active edges, in increasing order of their y-coordinates.
(Here, two active edges are called adjacent, if they are consecutive in their natural order-
ing.) Theseintersection points are potential ‘‘tournament points’’. If the sweep line
reaches the bottom end point of a segment which is not on∂Σ, its extension will penetrate
below the sweep line.To determine the extension end point of this segment below the
sweep line in logarithmic time we would need efficient ray shooting to determine the first
edge of the current pseudoforest hit by this extension. (To learn about the idea of ray
shooting see, for example,

Ede87 To accomplish this, we will extend the natural ordering of the active set as follows.
The regions of the current pseudoforest that are just below and intersect the sweep line,
form convex bays. We will extend the active set of edges, by including in it all boundary
edges of all the bays (i.e., their bottom chains).The natural ordering used on this
extended active setis to order the edges of each bay consecutively counterclockwise (as
we go from its left to right intersection points with the sweep line), and order all edges of
bay B1 before all edges of bayB2, if the left end intersection ofB1 with the sweep line is
to the left of that ofB2. (Note that the bottom chain of a bay is not necessarily x-mono-
tone.) We maintain this extended active set, according to its natural linear ordering, in a
balanced search tree called theactive-set-tree. (See Figure 9.)

[Figure 9 about here.]

Now we perform the sweep as follows. Initially the active-set-tree is empty, and the
ev ent-queue contains the 2n end points of the segments inΣ. As we continue the sweep,
supposep is the next item removed from the event-queue.
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If p is a bottom end point of a segment, sayS, that is not a vertex of ∂Σ (the case
that p is a vertex of ∂Σ is rather obvious), then we perform a ray shooting on the bays, by
consulting the active-set-tree, and split the corresponding bay, say B, into two bays B′
andB′′ along the extension ofS. (SegmentS loses to the edge ofB hit by the extension
of S.) Thenwe need to update the active-set-tree in the obvious way, and also update the
ev ent-queue by removing the ‘‘tournament point’’ corresponding to bayB (if there is
any), and inserting the ones forB′ and B′′ (if there are any). It is clear that it takes
O(log n) time to processp.

If p is the top end of a segmentS, which is not a vertex of ∂Σ, then there is only a
status change necessary. We convert from segment S to its extension. Again, this can
obviously be done inO(log n) time.

If p is a ‘‘tournament point’’ and it is the intersection of the ‘‘end edges’’ of a bay,
sayBi , then processing ofp amounts to ‘‘closing up’’ Bi as follows. Remove all edges of
Bi from the active-set-tree; appropriately declare a winner among the two ‘‘end edges’’ of
Bi that play the match atp; insert in the event-queue the new tournament point (if any)
caused by this winner segment and its new adjacent bay; finally, remove from the event-
queue the tournament point between the looser segment of the match atp and its other
neighbor (if any). (A similar ‘‘closing up’’ of a bay may occur ifp were a vertex of ∂Σ
and the top end point of a segment.) Thisstep takesO(log n + r i ) time, wherer i is the
number of edges of the bayBi which is closed up.This is caused by the collective dele-
tion of the edges ofBi from the active-set-tree. Thiscan be done by two split operations
followed by a join, assuming the data structure for the active-set-tree is chosen appropri-
ately (e.g., any balanced or self adjusting search tree such as a red-black tree, or a splay
tree). Thenthe nodes of the middle subtree (corresponding to the deactivated bay) that is
cut out of the active-set-tree are disposed.

There are a total ofO(n) ‘‘tournament points’’ ever processed by the algorithm.
Therefore the overall time complexity of the algorithm isO( n log n + Σi r i ), wherer i is
the size complexity of bay (or face) Bi . Clearly Σi r i is O(n), since the tournament
pseudoforest is a linear size planar subdivision. Therefore,the overall time complexity of
the sweep algorithm isO(n log n). We would need additionalO(n) time to traverse the
data structure to complete the construction of the pseudoforest and the corresponding
subdivision. We conclude the following.

Lemma 4. The tournament pseudoforest can be constructed in O(n log n) time.

5. Proof of Theorem 2

We use the tournament pseudoforest data structureΨ(Σ) and acareful refinement of
the proof of Theorem 1. The entire process takesO(n) time, assumingΨ(Σ) is already
constructed. We work on the pseudotrees ofTP(Σ) one by one.We should note that as
we proceed to smaller subproblems, we may have edge segments that share common ver-
tices as discussed in the proof of Theorem 1.However, this does not cause significant
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difficulty; we appropriately generalize the definition of the tournament pseudoforest and
its subdivision to make the necessary accommodation.We omit most details here and
sketch only the case corresponding to case (ii) in the proof of Theorem 1 (the most
involved case): The root of the pseudotree provides the cyclic sequence of segments
(cycle-segments) that form the fan and the convex ‘‘hole’’. Then,for each cycle-segment,
we use depth-first-search to go down the pseudotree (akin to the idea of topological
ordering of vertices around a plane tree as described in

AGS89 andclip off maximally connected trails starting from those that intersect the
cycle-segment (but not its trail) or intersect the edge of∂Σ adjacent to the cycle-segment
and on the appropriate side. (See Figure 10.) In this way, we cut the problem intomany
subproblems,all extremally situated.

[Figure 10 about here.]

Each step of the clipping process is charged to one of the trails that is clipped off, O(1)
time to each. But the number of such trails is in the order of (almost equal to) the number
of segments inΣ that were internal but have become edge segments in the smaller sub-
problems. Thisis crucial in proving the linear time complexity, giv en Ψ(Σ).

The optimality of the algorithm is implied by an easy linear time reduction from
sorting: Suppose we are given n numbersx1 , x2 , . . . , xn to sort. Let a = mini xi − 1
and b = maxi xi + 1. Let Σ = { S1 , S2 , . . . , Sn } be a set of n vertical line segments,
where the x-coordinate ofSi is xi and the y-coordinates of its two ends are
±(xi − a)(xi − b). (SeeFigure 11.) The setΣ is clearly extremally situated and∂Σ is its
unique circumscribing polygon.Given the order of vertices around∂Σ, the sorted order-
ing of xi ’s can be inferred in linear time.

[Figure 11 about here.]

6. Applications

First we mention some applications of circumscribing polygons with respect to
Euclidean matching problems. The Euclidean matching problem is: given a set of 2n
points in the plane, find a perfect matching by choosingn pairwise disjoint line segments,
called the matching edges, whose vertices are the given points and whose total length is
minimized. Vaidya

Vai89 showed that this problem can be solved inO(n2.5 log4 n) time. Marcotteand Suri

MaS89 considered a variation of the Euclidean matching problem where the given points
are some vertices of a given simple polygon and the matching edges are restricted to be
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edges or internal diagonals of the polygon.They showed that this version can be solved
in O(n log2 n) time.

An open problem in

MaS89 is the following. Let Mo be the weight of a minimum weight Euclidean matching
of a setS of 2n points;P be a simple polygon that spans the set of points; andMP be the
weight of the minimum weight matching in which all matching edges are constrained to
be edges or internal diagonals of the polygon. The question is: what polygonP achieves
the minimum ratioMP/Mo? MP/Mo = 1  is the minimum ratio if and only if a circum-
scribing polygonP of the segments that form the optimum matching exists.

Circumscribing polygons can also be used in a partial verification algorithm for the
Euclidean matching problem: Given a set M of n pairwise disjoint matching edges, we
are asked whetherM forms a minimum weight matching of the 2n points. We first find a
circumscribing polygonP of M (assuming this exists and can be found quickly), then
apply Marcotte and Suri’s O(n log2 n) algorithm to find an optimum matchingM ′ in P.
M is a minimum weight Euclidean matching of the 2n points only ifM andM ′ have the
same weight. (Of course the converse does not hold, i.e., ifM and M ′ have the same
weight thenM is not necessarily optimum.)

Finally, let us mention that this paper introduces the new data structure, namely, the
tournament pseudoforest. It would be interesting to explore other applications and exten-
sions of this data structure.

7. OpenProblems

Settling Conjectures 0, 1, and 2 are obvious open problems. Another open problem
worth mentioning is the following. TheΩ(n log n) lower bound stated in the proof of
Theorem 2 is essentially due to finding the convex hull of Σ. A natural question to ask is:
if the convex hull of Σ is given, can we compute the tournament pseudoforest in
o(n log n) time, say, in linear time?

Another open problem akin to Marcotte and Suri’s approach is the following. Sup-
pose we are given a simple polygonP with an even number of vertices. Find a minimum
weight Euclidean matching between the vertices ofP subject to the constraint that no
matched segment crosses the boundary ofP. Note thatP is a spanning polygon of any
such matching.
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9. NoteAdded in Print

We hav elearned that Urabe and Watanabe have recently found a counter-example to
Conjecture 0.


