Listing 33-1

The commands script.

Chapter

TUTORIAL:
SHELL SCRIPTING

Until now, you have been giving commands to the UNIX shell by typing them on
the keyboard. When used this way, the shell is said to be a command interpreter.
The shell can also be used as a high-level programming language. Instead of
entering commands one at a time in response to the shell prompt, you can put a
number of commands in a file, to be executed all at once by the shell. A program
consisting of shell commands is called a shell script.

33.1 A Simple Shell Script

Suppose you were to make up a file named commands as shown in Listing 33-1.

D # A simple shell script
2 cal

date

who

Let's dissect the commands script:

@ # A simple shell script

The first line in this file begins with a # symbol, which indicates a comment line.
Anything following the #, up to the end of the line, is ignored by the shell.
@ cal

date

who

The remaining three lines are shell commands: the first produces a calendar for
the current month, the second gives the current date and time, and the third lists
the users currently logged onto your system.

We can get the Bourne Shell {sh) to run these commands by typing

§ sh < commands (Return)

392

CHAPTER 33: SHELL SCRIPTING

chmod is described in
Chapter 6.

The search path is the list of
directories where the shell is
to look for executable files.

The new shell process is a
subshell or child of the
original shell.

e

The redirection operator (<) tells the shell to read from the file commands insteaqd
of from the standard input. It turns out, however, that the redirection symbol ig
not really needed in this case. Thus, you can also run the commands file by typing

§ sh commands

Is there any way to set up commands so that you can run it without explicitly
invoking the shell? In other words, can you run commands without first typing
sh? The answer is yes, but you first have to make the file executable. The chmod
utility does this:

§ chmod u+x commands (Return)

The argument u+x tells chmod that you want to add (+) permission for the user
(u) to execute (x) the shell script in the file. Now all you need do is enter the file
name

§ commands

If your search path is set up to include the current directory, the shell will run the
commands in the file. Ifit is not, the shell will complain that it cannot find the file
you want it to execute:

commands not found
If this happens, you can still get the shell to run your commands this way:
§ ./commands

Remember, “dot” (.) stands for the current working directory.

33.2 Subshells

When you tell the shell to run a script such as the commands file, your login shell
actually calls up another shell process to run the script. (Remember, the shell is
just a program, and UNIX can run more than one program at a time.) The parent
shell waits for its child to finish, then takes over and gives you a prompt:

§

Incidentally, a subshell can be different from its parent shell. For example, you can
have ksh, csh, tcsh or bash as your login shell, but use sh to run your shell
scripts. Many users in fact do this. When it comes time to run a script, the login
shell simply calls up sh as a subshell to do the job.

We will always use sh for running shell scripts. To make sure that sh is used,
regardless of your login shell, include the following line at the top of each shell
script file:

#!/bin/sh

33.3 The Shell as a Scripting Language 393

The origins of the term
“shebang” in this
connection are obscure.

Listing 33-2
The modified commands
script.

A pound sign and an exclamation point entered together (#!) as the first
characters in the file are called the “shebang.” Thus, we can modify our commands
file as shown in Listing 33-2.

#!/bin/sh

A simple shell script
cal

date

who

This modified script can be run by entering its name at the shell prompt:

§ ./commands (Return)

33.3 The Shell as a Scripting Language

The sample script commands is almost trivial—it does nothing more than execute
three simple commands that you could just as easily type into the standard input.
The shell can actually do much more. It is, in fact, a sophisticated scripting
language, with many of the same features found in other scripting languages,
including

m Variables

m Input/output functions
m Arithmetic operations
m Conditional expressions
m Selection structures

m Repetition structures

We will discuss each of these in this chapter.

33.4 Variables

Three kinds of variables are commonly used in shell scripts:

m Environment Variables. Sometimes called special shell variables, keyword
variables, predefined shell variables, or standard shell variables, they are used to
tailor the operating environment to suit your needs. Examples include TERM,
HOME, and MAIL.

m User-created Variables. These are variables that you create yourself.

m Positional Parameters. These are used by the shell to store the values of com-
mand-line arguments.

394

CHAPTER 33: SHELL SCRIPTING

$* does not contain $0, so
echo.args is neither
counted nor printed.

Of these, the environment variables have been introduced already, and the user-
defined variables will be discussed later in this chapter. The positional parameters,
which are very useful in shell programming, will be examined in this section.

The positional parameters are also called read-only variables, or automatic
variables, because the shell sets them for you automatically. They “capture” the
values of the command-line arguments that are to be used by a shell script. The
positional parameters are numbered 0, 1, 2, 3, ..., 9. To illustrate their use,
consider the following shell script, and assume that it is contained in an executable
file named echo.args:

#!/bin/sh
Illustrate the use of positional parameters
echo $0 $1 $2 $3 $4 $5 $6 $7 $8 %9

Suppose you run the script by typing the command line
§ echo.args We Tike UNIX.

The shell stores the name of the command (“echo.args”) in the parameter $0; it
puts the argument “We” in the parameter $1; it puts “1ike” in the parameter $2,
and “UNIX.” in parameter $3. Since that takes care of all the arguments, the rest of
the parameters are left empty. Then the script prints the contents of the variables:

echo.args We Tike UNIX.

What if the user types in more than nine arguments? The positional parameter $*
contains all of the arguments $1, $2, $3, ... $9, and any arguments beyond these
nine. Thus, we can rewrite echo.args to handle any number of arguments:

#!/bin/sh
I1lustrate the use of positional parameters
echo $*

The shell also counts the arguments that the user typed; this number is stored in
the parameter $#. We can modify the script echo.args to use this parameter:

#1/bin/sh
I1lustrate the use of positional parameters
echo You typed $# arguments: $*

Suppose we were then to type the command line
§ echo.args To be or not to be

The computer would respond with

You typed 6 arguments: To be or not to be

§

33.5 Making a File Executable: chex 395

Listing 33-3
The chex script.

33.5 Making a File Executable: chex

If you are planning to write a lot of shell scripts, you will find it convenient to have
a script that makes files executable. If we were to write a shell script for this, it
might resemble Listing 33-3.

#!/bin/sh
Make a file executable

® chmod u+x $1
@ echo $1 is now executable:
1s -1 $1

Let’s examine the interesting new features of the chex script:
[© chmod u+x $1 |
Recall that the chmod utility changes file permissions. The utility takes two

arguments. The first (u+x) adds execution privileges to the user. The second ($1)
is a positional parameter that contains the name of the file.

echo $1 is now executable:
1s =1 $1

The script confirms that the file permissions have been changed.

Next, we need to make the chex file executable. The easiest way to do this is to tell
the shell to run chex on itself. Try this command line:

§ sh chex chex (Return)

This tells the shell to run chex, taking the chex file as the argument. The result is
that chex makes itself executable. The output from this command will look some-
thing like this:

chex is now executable:

~rWXr-Xr-x 1, yourlogin 59 Date time chex

Now you can use chex to make other files executable.

33.6 The set Command

The positional parameters are sometimes called read-only variables because the
shell sets their values for you when you type arguments to the script. However, you
can also set their values using the set command. To see how this command
works, consider the shell script shown in Listing 33-4, which we will assume is in
the file setdate.

396

CHAPTER 33: SHELL SCRIPTING

Listing 33-4
The setdate script.

#1/bin/sh
Demonstrate the set command

@ set “date’

@ echo "Time: $4 $5"
echo "Day: $1"

echo "Date: $3 $2 $6"

This script introduces some new features:

[set ‘date’ |

The backquotes cause the date command to be run, with its output being
captured by the set command and stored in the positional parameters $1
through $5.

echo "Time: $4 $5"
echo "Day: $1"
echo "Date: $3 $2 $6"

Here is how we print out the values of the positional parameters.

Once setdate has been made executable by the chmod utility or the chex script,
we can run the script by typing the command

§ ./setdate
The output will show the current time, day, and date:

Time: 10:56:08 EST
Day: Fri
Date: 20 Aug 2004

To understand what the script does, consider the command line
set “date’

The backquotes run the date utility, which produces output something like this:
Fri Aug 20 10:56:08 EST 2004

This does not appear on the screen. Instead, the set command catches the
different parts of the output and stores them in the positional parameters $1
through $6:

$1 contains Fri

$2 contains Aug

$3 contains 20

$4 contains 10:56:08
$5 contains EST

$6 contains 2004

k.

33.7 Labeling the Output from wc: mywc

397

Listing 33-5
The mywc script.

33.7 Labeling the Output from wc: mywc

The we (“word count”) filter counts the words, lines, and characters in a file. For
example, try running wc on the chex file:

§ wc chex(Return)
5 17 84 chex

§

The output tells us that there are 5 lines, 17 words, and 84 characters in the file
chex. This can be very useful information, but it would be a bit more convenient
to use if the output were labeled. Listing 33-5 shows a shell script that does this.

#!/bin/sh

Label the output from wc
@ set ‘wc $1°
@ echo "File: $4"

echo "Lines: $1"

echo "Words: $2"

echo "Characters: $3"

This script is similar to the previous one:
|© set ‘wc $1°]

Thewc $1 command is run inside the backquotes. The output from this command
is then captured and stored in positional parameters $1 through $4. Note that $1
initially receives the file name when the mywc script is run; then it receives the
number of lines counted by the wc utility.

echo "File: $4"
echo "Lines: $1"
echo "Words: $2"
echo "Characters: $3"

As shown here, the values of the positional parameters are printed, properly
labeled.

Run the chex script to make mywc executable. Then run mywc on an ASCII file.
You might try the chex file:

§ ./mywc chex @Return)

File: chex
Lines: 5
Words: 17

Characters: 84

398

CHAPTER 33: SHELL SCRIPTING

Listing 33-6
The echo.args script.

33.8 User-Defined Variables

You can create your own shell variable by writing its name. A variable name may
include uppercase letters (A through Z), lowercase letters (a through z), numerals
(0 through 9), and the underscore character (_). A variable name may not contain
spaces or begin with a numeral.

There is no need to declare a variable’s data type because the shell only works on
character strings.

A string can be put into a variable using the assignment operator. For example, the
assignment

first_var="This is a string"

This assignment stores the string This is a string in the variable first_var,
overwriting any string that may already be in the variable. Note that no spaces are
allowed around the assignment operator. Once the assignment is done, the value
can be assigned to another variable:

second_var=$first_var

This assignment copies the string This is a string from first_var into
second_var. As a result, both variables contain the same value. The dollar sign
prefix $ indicates that the value of the variable is to be used. Suppose we were to
omit the dollar sign:

second_var=first_var

This assignment copies the string first_var into second_var.

33.9 Input Using the read Statement

The positional parameters are useful for capturing command-line arguments but
they have a limitation: once the script begins running, the positional parameters
cannot be used for obtaining more input from the standard input. For this you
have to use the read statement and a user-defined variable. Listing 33-6 shows
how this is done.

#!1/bin/sh
Use positional parameters, user-defined variables, and
the read command

D echo 'What is your name?'

@ read name

3 echo "Well, $name, you typed $# arguments:"
@ echo $*

Let’s examine the interesting features of this script:

[echo 'What is your name?’

33.10 Arithmetic Operations Using the expr Utility 399

Listing 33-7
The add script.

In this script, the echo command prints a prompt on the standard input.
[2 read name |

The read command obtains the user’s response and stores it in the user-defined
variable name.

@ echo "Well, $name, you typed $# arguments:" |

To obtain the contents of the variable name, we use a dollar sign prefix ($). The
positional parameter $# contains the count of command-line arguments that are
entered when the script is executed.

[echo $* |

The positional parameter $* contains the command-line arguments that are
entered when the script is executed

The script echo.args works something like this:

§ echo.args To be or not to be

The shell script would respond by prompting you for your name:

What is your name?
Suppose you were to type

Rumpelstiltskin
The computer would respond with

Well, Rumpelstiltskin, you typed 6 arguments:
To be or not to be

33.10 Arithmetic Operations Using the expr Utility

The shell is not intended for numerical work—if you need to do many
calculations, you should consider a scripting language such as Perl or a
programming language such as C, C++, Fortran, or Java. Nevertheless, the expr
utility may be used to perform simple arithmetic operations on integers. (expr is
not a shell command, but rather a separate UNIX utility; however, it is most often
used in shell scripts.) To use it in a shell script, you simply surround the expression
with backquotes. For example, let’s write a simple script called add that adds two
integers typed as arguments (Listing 33-7).

#!/bin/sh
Add two numbers

® sum="expr $1 + $2°
® echo $sum

400

CHAPTER 33: SHELL SCRIPTING

This script has two executable lines:
[© sum="expr $1 + $2°]

Here we defined a variable sum to hold the result of the operation. (Note that
spaces are required around the plus sign, but are not allowed around the equals
sign.) The backquotes cause the expr utility to be run, adding the contents of the
parameters $1 and $2.

|2 echo $sum |

The echo command is used to print the value of $sum. Note that the dollar sign
prefix ($) is needed.

Make the add script executable, then type the following line:
§ add 4 3

The first argument (4) is stored in $1, and the second (3) is stored in $2. The expr
utility then adds these quantities and stores the result in sum. Finally, the contents
of sum are echoed on the screen:

7
§

Next try the following line:

§ add 0.5 0.5Return)

The values 0.5 and 0.5 will not be recognized as numbers because they contain
decimal points. You might see something like this:

expr: non-numeric argument

The expr utility only works on integers (i.e., whole numbers). It can perform
addition (+), subtraction (-), multiplication (*), integer division (/), and integer
remainder (%).

33.11 Control Structures

Normally, the shell processes the commands in a script sequentially, one after
another in the order they are written in the file. Often, however, you will want to
change the way that commands are processed. You may want to choose to run one
command or another, depending on the circumstances; or you may want to run a
command more than once.

To alter the normal sequential execution of commands, the shell offers a variety of
control structures. There are two types of selection structures, which allow a
choice between alternative commands:

m if-then-elif ... else/fi

B Case

33.12 The if Statement and test Command 401

Listing 33-8
The friday script.

There are three types of repetition or iteration structures for carrying out
commands more than once:

m for
m while

muntil

33.12 The if Statement and test Command

The 1 statement lets you choose whether to run a particular command (or group
of commands), depending on some condition. The simplest version of this
structure has the general form

it condition
then

command(s)
fi

When the shell encounters a structure such as this, it first checks to see whether
the condition is true. If so, the shell runs any command(s) that it finds between the
then and the i (which is just if spelled backwards). If the condition is not true,
the shell skips the command(s) between then and f1. A shell script that uses a
simple i f statement is shown in Listing 33-8.

#!/bin/sh
D set ‘date’

@ if test $1 = Fri
then

e echo "Thank goodness it's Friday!"
3

The friday script has some interesting features:
[© set “date’ |

The date command is run (note the backquotes) and its output is captured by the
set command.

if test $1 = Fri
then

- echo "Thank goodness it's Friday!"
;

Here we have used the test command in our conditional expression. The
expression

test $1 = Fri

402

CHAPTER 33: SHELL SCRIPTING

Table 33-1

Some arguments to the
test command. Here,
file represents the
pathname of a file.

Argument Testistrueif...

~d file file is a directory

-f file file is an ordinary file

~-r file file is readable

-s file file size is greater than zero
-w file file is writable

-x file file is executable

[-d file file is not a directory
I ~f file file is not an ordinary file

bo-r file file is not readable

I -5 file file size is not greater than zero

I -w file file is not writabie

L -x file file is not executable

nl -eq n2 integer nl equals integer n2

nl -ge n2 integer nl is greater than or equal fo integer 1.2
nl -gt n2 integer nl is greater than integer n.2

nl ~le n2 integer n1 is less than or equal to integer n2
nl -ne n2 integer nl is not equal to integer n2

nl -1t n2 integer nl is less than integer n2

sl = s2 string s! equals string s2

sl 1= s2 string s1 is not equal to string s2

checks to see if the parameter $1 contains Fri;ifit does, the test command
reports that the condition is true, and the message is printed.

The test command can carry outa Variety of tests; some of the arguments it takes
are listed in Table 33-1.

33.13 The elif and else Statements

We can make the selection structures much more elaborate by combining the 1F
with the e11 f (“else if”) and e1se statements. The important thing to note about
such structures is that no more than one of the alternatives may be chosen each
time the selection structure is executed; as soon as one is, the remaining choices

are skipped.

Listing 33-9 shows a script using an if-then-elif...el se-fi structure.

33.13 The elif and else Statements 403

Listing 33-9
The weekand script.

- #1/bin/sh
;;set ‘date’

iD if test $1 = Fri

- then
echo "Thank goodness it's Friday!”
@ elif test $1 = Sat || test $1 = Sun
. then

echo "You should not be here working."
echo "Log off and go home."
@ else
echo "It is not yet the weekend.”
. echo "Get to work!"
i

The weekend script shows a three-part selection structure:

o if test $1 = Fri
then
echo "Thank goodness jt's Friday!"

Here, the first conditional expression is tested to see if the day is a Friday. If it is,
the message “Thank goodness it’'s Friday!” is printed, and the shell script is
finished.

5 e1if test $1 = Sat || test $1 = Sun

- then

echo "You should not be here working."
echo "Log off and go home.™

If the first conditional is false, the second conditional expression is tested. Note
that we have used the OR operator (| |) in this expression to test whether the day
is a Saturday or Sunday, in which case the second set of messages will be printed,
and the script is finished.

@ else
echo "It is not yet the weekend."
echo "Get to work!"
1

The e7se clause has no conditional; it is the default case, which is selected if no

other pattern is matched. Thus, the third set of messages are printed if the other
conditions are false. Note that the keyword 4 terminates the selection structure.

We could make even more elaborate selection structures by including more e 141
clauses. Regardless of the number of alternatives in an 1f-then-elif...else-
4 structure, no more than one will be selected each time the structure is executed.
And once a choice is made, the remaining choices are skipped.

e e R

404

CHAPTER 33: SHELL SCRIPTING

Listing 33-10
The weekend? script.

33.14 The case Statement

The shell provides another selection structure that may run faster than the if
statemment on some UNIX systems. This is the case statement, and it has the
following general form:

case variable in
patternl) command(s) ;;
pattern2) command(s) 3

patterniN) command(s) ;;
esac

The case statement compares the value of variable with patternl; if they match,
the shell runs the command(s) controlled by that pattern. Otherwise, the shell
checks the remaining patterns, one by one, until it finds one that matches the
variable; it then runs the corresponding command(s).

Listing 33-10 shows a simple shell script that uses the case statement instead of
an if-then-elif-else structure.

#! /bin/sh
set “date’

1 case 31 1in
Fri) echo "Thank goodness it's Friday!";;
5 Sat | Sun) echo "You should not be here working";
echo "Log off and go homel™;;
® *) echo "It is not yet the weekend.™;
echo "Get to work!"';;
- esac

This script employs a three-part case structure:

® case $1 1in
Fri) echo "Thank goodness it's Friday!";;

If $1 contains Fri, the message “Thank goodness it’s Friday!” is printed, and the
shell script is finished. The commands are separated by semicolons (;), and the
end of a group of commands is indicated by two semicolons (5 ;).

® Sat | Sun) echo "You should not be here working";
echo "Log off and go home!";;

We have used the OR operator (1) in this expression to test whether $1 contains
Sat or Sun, in which case the second set of messages will be printed, and the script
is finished. Note that the OR symbol used in case statements is a single vertical
line {]), not the double vertical lines (| |) used in the 1f statement.

33.15 for Loops

405

D+ echo "It is not yet the weekend.”;
echo "Get to work!";;
esac

The pattern *) marks the default case, which is selected if no other pattern is
matched. Thus, the third set of messages are printed if the other conditions are
false.

33.15 for Loops

Sometimes we want to run a command (or group of commands) over and over.
This is called iteration, repetition, or looping. The most commonly used shell
repetition structure is the for loop, which has the general form

for variable in list
do

command(s)
done

Here, variable is a user-defined variable—called the control variable—and list is a
sequence of character strings separated by spaces. For each repetition of the loop,
the control variable takes the value of the next item in the list and the command(s)
in the body of the loop are executed. Here is a simple application of the for loop:

#1/bin/sh
#
for name in $*
do

finger $name
done

Each time through the for loop, the control variable name takes on the value of
the next argument in the list $%. This is then used as the argument to the finger
command. Assuming this script is contained in the executable file fingerall, it
would be run by typing the name of the file, followed by the login names you wish
to finger:

§ fingerall johnp maryl frederick Returm

33.16 while Loops

The general form of the while loop is

while condition
do

commiand(s)
done

406

CHAPTER 33: SHELL SCRIPTING

As long as the condition is true, the cammand(s) between the do and the done are
executed, Here is an example of a shell script that uses the expr utility with the
wh1i e loop to echo the keyboard entry ten times:

#!/bin/sh
Print a message ten times
count=10
while test $count -gt O
do

echo $*

count="expr $count - 1~
done

33.17 until L.oops

Another kind of iteration structure is the unti1 loop. It has the general form

until condition
do

command(s)
done

This loop continues to execute the command(s) between the do and done until the
condition is true. We can rewrite the previous script using an unti loop instead
of the whiTe loop:

#1/bin/sh
Print a message ten times
count=10
until test $count -eq O
do

echo $*

count="expr $count - 1°
done

33.18 Removing Files Safely

The rm command can be very dangerous because it allows you to remove a file, but
&msnmgh@ymiaw&uﬁgdﬁngh&kaﬁkyounmyhmmrmnmmdmxﬁmnﬁw.
Most shells allow you to create an alias for the rm with the -1 (“interactive”)
option; it will ask you if you are sure you want to remove the file in question. But
sh does not allow aliases. Listing 33-11 shows a script that will duplicate the effect
of the rm -7 command. The script will also tell what action has been taken.

33.18 Removing Files Safely 407

Listing 33-11
The de’ script.

#1/bin/sh
Delete a file interactively

D if test | -f $1
then
echo "There s no file \'§I\"."
@ else
echo "Do you want to delete \"$1\"?"
read choice

3 if test S$choice = vy
then

rm $1

echo "\"$1\" deleted."
@ else

echo "\"$I\" not deleted."
® Ll

fi

The deT script has a selection structure nested within another selection structure:

@ if test | -f $1
then
echo "There is no file \"$I\"."

The script is designed take one cormmand-line argument, the name of the file to be
deleted. This file name is stored in the postitional parameter $1. The test

test | -f $1

is true if the file named in $1 does niof exist. In that case, the user is informed that
there is no file by that name, and the script quits.

% else

echo "Do you want to delete \"$1\"?"
read choice

The default alternative is chosen when the file exists. In that case, the user is asked
to confirm that he or she really wants to delete the file. The user’s choice is read
into the variable choice
@ if test $choice =y
then
rm $1
echo "\"$1\" deleted."

1f the user’s choice is y, the script calls the rm utility to remove the file, then prints
an appropriate message.

ey else
echo "\"$1\" not deleted.”

408

CHAPTER 33: SHELL SCRIPTING

Listing 33-12
The myspell script.

If spell is not available,
try ispeT7 intead. Check
the man pages for ispell.

If the user’s choice is anything but y, the script takes no action other than printing -

an appropriate message.

i
i

The first i closes the inner selection structure; the second i closes the outer
structure.

33.19 An Improved Spelling Script

The spel utility is very useful, but it has a serious limitation: it lists the (possibly)
misspelled words in a file, but does not tell you where in the file the misspelled
words reside. Listing 33-12 describes a script that will correct this problem by
labelling the output from the spel1 program.

#1/bin/sh
An improved spelling-checker

D for word in “spell $1°
do
D Tine="grep -n $word S$1°
echo " 1
echo "Misspeiled word: $word”
D echo "$1ine”
done

The myspel1 script illustrates the use of a for loop:
[for word in “spell $1°
The spell atility is run on the file (note the backquotes), producing a list of

(possibly) misspelled words. The loop variable word takes each of these misspelled
words, one at a time.

(@ Tine="grep -n $word $1°
Here, grep is run on the file to find any lines containing the current misspelled
word. The ~n option causes grep to print the line number when a match is found.
@ echo "$Tine" [

This command prints the contents of the variable 11 ne, which shows the current
misspelled word in context.

an

FEyercises

409

