Exam Questions for Practice

- 1. Let $\mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$ be some hypothesis class over some domain \mathcal{X} .
 - (a) **Prove or refute** If \mathcal{H} is learnable, then for all $h \in \{0, 1\}^{\mathcal{X}}$, the class $\mathcal{H} \cup \{h\}$ is learnable.
 - (b) **Prove or refute** If $VC(\mathcal{H}) = d$, then \mathcal{H} shatters all domain subsets $C \subseteq \mathcal{X}$ with $|C| \leq \log d$.
 - (c) Give a dataset in \mathbb{R}^2 on which the perceptron algorithm will not halt.
 - (d) **Prove or refute** Let $f, g : \mathbb{R}^d \to \mathbb{R}$ be convex functions and let $\alpha, \beta \in \mathbb{R}$. Then $\alpha g + \beta f$ is also convex.
- 2. Let the domain $\mathcal{X} = \{ \boldsymbol{x} \in \mathbb{R}^2 : x_1 \ge 0, x_2 \ge 0 \}$ be the positive quadrant of the real plane. Consider the following two classes over \mathcal{X} . Let H_r be the class of rectangles whose lower left corner is the origin. That is,

$$H_r = \{h_{a,b} : a, b \in \mathbb{R}, a, b \ge 0\}$$

with

$$h_{a,b}(\boldsymbol{x}) = \begin{cases} 1 & \text{if } x_1 \leq a \text{ and } x_2 \leq b \\ 0 & \text{else.} \end{cases}$$

Let H_{ds} be the class of positive decision stumps. That is,

$$H_{ds} = \{h_{c,d,i} : c, d \in \mathbb{R}, c, d \ge 0, i \in \{1, 2\}\}$$

with

$$h_{c,d,i}(\boldsymbol{x}) = \begin{cases} 1 & \text{if } i = 1 \text{ and } x_1 \leq c \\ 1 & \text{if } i = 2 \text{ and } x_2 \leq d \\ 0 & \text{else.} \end{cases}$$

- (a) What is the VC-dimension of H_r ?
- (b) What is the VC-dimension of H_{ds} ?

- 3. Let \mathcal{X} be some domain. Consider the learner *Memorize*. On a sample *S*, it will output a function that agrees with the label of the sample points, and is elsewhere (on points not in the sample) constant 0. If a point *x* appears multiple times in the sample, *Memorize* outputs the majority label with which it appears (and breaks ties to 0).
 - (a) Let \mathcal{H}_k be the class of functions that map at most k elements of the domain to 1. Show that *Memorize* (PAC)-learns (satisfies the definition of learnability for) \mathcal{H}_k in the realizable case.
 - (b) Give an example of a class, that is learnable, but not with *Memorize* (that is, for this class *Memorize* does not satisfy the definition of learnability).