
Linearizability Is Not Always a Safety Property

Rachid Guerraoui1 and Eric Ruppert2

1 EPFL, Switzerland
2 York University, Canada

Abstract. We show that, in contrast to the general belief in the dis-
tributed computing community, linearizability, the celebrated consistency
property, is not always a safety property. More specifically, we give an
object for which it is possible to have an infinite history that is not lin-
earizable, even though every finite prefix of the history is linearizable.
The object we consider as a counterexample has infinite nondetermin-
ism. We show, however, that if we restrict attention to objects with finite
nondeterminism, we can use König’s lemma to prove that linearizability
is indeed a safety property. In the same vein, we show that the backward
simulation technique, which is a classical technique to prove linearizabil-
ity, is not sound for arbitrary types, but is sound for types with finite
nondeterminism.

1 Introduction

One of the most challenging problems in concurrent and distributed systems
is to build software objects that appear to processes using them as “perfect”:
always available and consistent. In particular, proving that implementations of
such objects are correct can be very difficult.

To make the challenge more tractable, it is common to divide the difficulty
into proving two properties: a safety and a liveness property [2, 3]. In short, a
safety property says “bad things should never happen” whereas a liveness prop-
erty says “good things should eventually happen.” Traditionally, in the context
of building “perfect” shared objects, safety has been associated with the concept
of linearizability [9] while liveness has been associated with a progress guarantee
such as wait-freedom [8].

– Linearizability: Despite concurrent accesses to an object, the operations
issued on that object should appear as if they are executed sequentially. In
other words, each operation op on an object X should appear to take effect at
some indivisible instant between the invocation and the response of op. This
property, also called atomicity, transforms the difficult problem of reasoning
about a concurrent system into the simpler problem of reasoning about one
where the processes access each object one after another.

– Wait-freedom: No process p ever prevents any other process q from making
progress when q executes an operation on any shared object X. This means
that, provided it remains alive and kicking, q completes its operation on X

regardless of the speed or even the failure of any other process p. Process
p could be very fast and might be permanently accessing shared object X,
or could have failed or been swapped out by the operating system while
accessing X. None of these situations should prevent q from executing its
operation.

Ensuring each of linearizability or wait-freedom alone is simple. The chal-
lenge is to ensure both. In particular, one could easily ensure linearizability
using locks and mutual exclusion. But this would not guarantee wait-freedom:
a process that holds a lock and fails can prevent others from progressing. One
could also forget about linearizability and ensure wait-freedom by creating copies
of the object that never synchronize: this would lead to different objects, one
per process, defeating the sense of a shared object. So indeed the challenge is
to design shared abstractions that ensure both linearizability and wait-freedom.
But proving correctness can be made simpler if we could prove each property
separately.

It was shown that properties of distributed systems can be divided into safety
and liveness properties [2], each requiring specific kinds of proof techniques.
So the general approach in proving the correctness of shared objects is that
linearizability, being a safety property, requires techniques to reason about finite
executions (such as backward simulation [13]), whereas wait-freedom, being a
liveness property, requires another set of techniques to reason about infinite
executions. The association between safety and linearizability on the one hand,
and liveness and wait-freedom on the other, is considered a pillar in the theory
of distributed computing.

This paper shows that, strictly speaking, this association is wrong for the
most general definition of object type specifications. More specifically, we show
that, in contrast to what is largely believed in the distributed computing liter-
ature, linearizability is not a safety property. This might be surprising because
(a) it was often argued that linearizability is a safety property, e.g., in [12], and
(b) linearizability proofs have used techniques specific to safety properties, e.g.,
backward simulation [13]. In fact, there is no real contradiction with our new
result for the following reasons.

– To prove that linearizability is not a safety property, we exhibit an object,
which we call the countdown object, and a non-linearizable history such that
every finite prefix of the execution is linearizable. The object we consider has
infinite nondeterminism, which might occur, for instance, in a distributed
system that seeks to ensure fairness (as we discuss in Sect. 2.2). Interestingly,
the execution we use in our proof is by a single process, so it demonstrates
that other consistency conditions that are weaker than linearizability (such
as sequential consistency) are also not safety properties for the countdown
object.

– We show, however, that if we restrict attention to objects with finite non-
determinism, we can use König’s lemma [10] to prove that linearizability
is indeed a safety property. We thus highlight that, even if this was not

always stated in the past, claims that linearizability is a safety property,
should assume finite nondeterminism.1 Lynch’s proof that linearizability is a
safety property [12] applies only to the more restricted class of deterministic
objects.

In the same vein, we show that the backward simulation technique, which is
sometimes used to prove linearizability, is not sound for arbitrary types (if infinite
nondeterminism is permitted). It is sound, however, for finite nondeterminism.

The rest of the paper is organized as follows. We describe our system model
in Sect. 2. We recall the notion of linearizability in Sect. 3. In Sect. 4 we recall
the concept of safety and give our counterexample that shows linearizability is
not a safety property. Then we show in Sect. 5 that, if we restrict ourselves to
objects with finite nondeterminism, linearizability becomes a safety property.
We consider the implications for backward simulations in Sect. 6 and conclude
the paper in Sect. 7.

2 System Model

We consider a system consisting of a finite set of n processes, denoted p1, . . . , pn.
Processes communicate by executing operations on shared objects. The execution
of an operation op on an object X by a process pi is modelled by two events,
the invocation event denoted inv[X.op by pi] that occurs when pi invokes the
operation, and the response event denoted resp[X.res by pi] that occurs when
the operation terminates and returns the response res. (When there is no am-
biguity, we talk about operations where we should be talking about operation
executions.)

2.1 Objects

An object has a unique identity and a type. Multiple objects can be of the same
type. A type is defined by a sequential specification that consists of
– the set Q of possible states for an object of that type,
– the initial state q0 ∈ Q,
– a set OPS of operations that can be applied to the object,
– a set RES of possible responses the object can return, and
– a transition relation δ ⊆ Q×OPS ×RES ×Q.

This specification describes how the object behaves if it is accessed by one oper-
ation at a time. If (q, op, res, q′) ∈ δ, it means that a possible result of applying
operation op to an object in state q is that the object moves to state q′ and
returns the response res to the process that invoked op.

1 For example, an erroneous claim is made in two recent papers [1, 11] that explicitly
permit nondeterministic objects and make no restriction that the nondeterminism of
the objects should be finite. The latter paper states that “linearizability is a safety
property, so its violation can be detected with a finite prefix of an execution history.”
Using the definitions given in that paper, this statement is false. However, this does
not affect the correctness of that paper’s main results because those results are about
objects with finite nondeterminism.

2.2 Infinite Nondeterminism

– We say that an object is deterministic if, for all q ∈ Q and op ∈ OPS,
there is at most one pair (res, q′) such that (q, op, res, q′) is in the object’s
transition relation δ.

– An object has finite nondeterminism if, for all q ∈ Q and op ∈ OPS, the set
of possible outcomes {(res, q′) : (q, op, res, q′) ∈ δ} is finite.

Dijkstra [6] argued that infinite nondeterminism should not arise in comput-
ing systems. He showed, for example, the functionality of nondeterministically
choosing an arbitrary positive integer cannot be implemented in a reasonable
sequential programming language. Nevertheless, there is a significant literature
on infinite nondeterminism. For example, Apt and Plotkin [4] observed that in-
finite nondeterminism can arise naturally in systems that guarantee fairness.
Consider a system of two processes P and Q programmed as follows, using a
shared boolean variable Stop that is initially false.

Process P :
Stop := true

Process Q:
x := 1
do until Stop

x := x+ 1
end do
print x

If these processes are run in a fair environment, where each process is guar-
anteed to be given infinitely many opportunities to take a step (but there is
no bound on the relative speeds of the processes), Q will choose and print an
arbitrary positive integer. Thus, at the right level of abstraction, this system im-
plements a choice with infinite nondeterminism. In the context of shared-memory
computing, objects with infinite nondeterminism have also occasionally arisen
(e.g., [14]).

2.3 Histories

A (finite or infinite) sequence of invocation and response events is called a history
and this is how we model an execution. We assume that processes are sequential:
a process executes (at most) one operation at a time. Of course, the fact that
processes are (individually) sequential does not preclude different processes from
concurrently invoking operations on the same shared object.

The total order relation on the set of events induced by H is denoted <H . A
history abstracts the real-time order in which the events occur. We assume that
simultaneous (invocation or response) events do not affect one another, so that
we can arbitrarily order simultaneous events.

A local history of pi, denoted H|pi, is a projection of H on process pi: the
subsequence H consisting of the events generated by pi. Two histories H and
H ′ are said to be equivalent if they have the same local histories, i.e., for each
process pi, H|pi = H ′|pi.

As we are interested only in histories generated by sequential processes, we
focus on histories H such that, for each process pi, H|pi is well-formed: it starts
with an invocation, followed by a response (the matching response associated
with the same object), followed by another invocation, and so on.

An operation is said to be complete in a history if the history includes both the
events corresponding to the operation’s invocation and its response. Otherwise,
we say that the operation is pending. A history is complete if it has no pending
operations and incomplete otherwise.

A history H induces an irreflexive partial order on its operations as follows.
Let op and op′ be two operations. Informally, operation op precedes operation
op′, if op terminates before op′ starts. More precisely:(

op→H op′
) def

=
(
resp[op] <H inv[op′]

)
.

Two operations op and op′ are said to overlap (we also say are concurrent) in a
history H if neither op→H op′ nor op′ →H op.

2.4 Sequential Histories

A history is sequential if its first event is an invocation, and then (1) each invo-
cation event, except possibly the last, is immediately followed by the matching
response event, and (2) each response event, except possibly the last, is immedi-
ately followed by an invocation event. A complete sequential history always ends
with a response event. A history that is not sequential is said to be concurrent.
Given that a sequential history S has no overlapping operations, the associated
partial order →S defined on its operations is actually a total order.

Let S|X (S at X) denote the subsequence of history S made up of all the
events involving object X. We say that a sequential history S is legal if, for
each object X, the sequence X.op1, X.res1, X.op2, X.res2, . . . satisfies the se-
quential specification (Q, q0, OPS,RES, δ) of X in the following sense: there
exists q1, q2, . . . in Q such that (qi−1, opi, resi, qi) ∈ δ for all i.

3 Linearizability

Linearizability [9] basically requires that each operation on an object appears to
execute at some indivisible point in time, also called the operation’s lineariza-
tion point, between the invocation and response of the operation. Linearizability
provides the illusion that the operations issued by the processes on the shared
objects are executed one after another.

We first define linearizability for complete histories H, i.e., histories without
pending operations, and then extend the definition to incomplete histories. A
complete history H is linearizable if there is a “witness” history S such that:

1. H and S are equivalent,
2. S is sequential and legal, and
3. →H⊆→S .

This means that for a history H to be linearizable, there must exist a permu-
tation S of H, which satisfies the following requirements. First, S has to be
indistinguishable from H to any process. Second, S has to be sequential (in-
terleaving the process histories at the granularity of complete operations) and
legal (respecting the sequential specification of each object). Notice that, as S
is sequential, →S is a total order. Finally, S must also respect the real-time
occurrence order of the operations as defined by →H . Such a sequential history
S is called a linearization of H.

The definition of linearizability is extended to incomplete histories as follows.
An incomplete history H is linearizable if H can be completed, i.e., modified in
such a way that every invocation of a pending operation is either removed or
completed with a response event, so that the resulting (complete) history H ′

is linearizable. Intuitively, H ′ is obtained by adding response events to certain
pending operations of H, as if these operations have indeed been completed, but
also by removing invocation events from some of the pending operations of H.
We require however that all complete operations of H are preserved in H ′.

When proving that an algorithm implements a linearizable object, we need
to prove that all histories generated by the algorithm are linearizable. A history
H may allow for several different linearizations.

4 Linearizability Is Not a Safety Property

4.1 Safety

Intuitively, safety properties ensure that nothing “bad” ever happens. More
specifically, a safety property is a set of histories that is non-empty, prefix-closed
and limit-closed. Thus, a set P of histories is a safety property if it satisfies the
following three conditions.

– P is non-empty : P 6= {}.
– P is prefix-closed : if H ∈ P , then for every prefix H ′ of H, H ′ ∈ P .

– P is limit-closed : for every infinite sequence H0, H1, . . . of histories, where
each Hi is a prefix of Hi+1 and each Hi ∈ P , the limit history H = lim

i→∞
Hi

is in P .

To ensure that a safety property P holds for a given implementation, it is thus
enough to show that every finite history of the implementation is in P ; an execu-
tion is in P if and only if each of its finite prefixes is in P . Indeed, every infinite
history of an implementation is the limit of some sequence of ever-extending
finite histories and thus should also be in P .

4.2 Counterexample

Theorem 1. Linearizability is not a safety property

0 1 2 3 4
op : T

op : T

op : F

op : T

op : T op : T op : T

op : T

Fig. 1. The countdown object.

Proof. We define a type of object called a countdown object, which provides a
single operation op that outputs T or F . The first invocation of op nondetermin-
istically picks a positive integer k. The object returns T for the first k invocations
of op. After that, it returns F for all remaining invocations of op. Formally, this
type has the following sequential specification, which is illustrated in Fig. 1.

Q = N
q0 = 0

OPS = {op}
RES = {T, F}

δ = {(0, op, T, k) : k ≥ 1} ∪ {(1, op, F, 1)} ∪ {(k, op, T, k − 1) : k ≥ 2}

Consider the following infinite sequential history H that uses a single count-
down object X.

inv[X.op by p],

resp[X.T by p],

inv[X.op by p],

resp[X.T by p],

inv[X.op by p],

resp[X.T by p],

...

We first show that this history is not legal (and hence not linearizable). If we
try to assign any positive integer state k to the object X after the first operation
has been performed, then the states of the object after the next k−1 operations
must be k − 1, k − 2, k − 3, . . . , 1. Thus, the (k + 1)th invocation of op in the
execution would have to return F . Since there is no way to assign states to the
object consistent with all responses in H, we conclude that H is not legal.

Now consider any finite prefix H ′ of H. We show that H ′ is legal (and hence
linearizable). Let k be the number of complete operations in H ′. We can as-
sign the sequence of states k, k − 1, . . . , 2, 1 to X. Note that (0, op, T, k) and

(i, op, T, i − 1) (for 2 ≤ i ≤ k) are transitions of a countdown type, so this
sequence of states satisfies the definition of legality for H ′.

Let Hi be the prefix of H consisting of the first i complete operations. Then,
for all i, Hi is linearizable and Hi is a prefix of Hi+1. However, H = lim

i→∞
Hi is

not linearizable. Thus, the property of being linearizable is not limit-closed, and
linearizability is not a safety property for this object specification. ut

Remark 2. Because the execution used in the proof of Theorem 1 is a sequential
execution, the argument in fact shows that even legality is not a safety property
for the countdown object type, since the sequential execution is not legal but
every prefix of it is. Moreover, since the execution in the proof is by a single
process, it also demonstrates that other consistency conditions that are weaker
than linearizability (such as sequential consistency) are also not safety properties
for the countdown object.

5 When Linearizability Is a Safety Property

We now show that a slight generalization of König’s (Infinity) Lemma enables
us to show that linearizability, when restricted to objects with finite nondeter-
minism, is a safety property. König’s Lemma can be formulated as follows.

Lemma 3. (König’s Lemma [10]) Let G be an infinite directed graph such that
(1) each vertex of G has finite outdegree, (2) each vertex of G is reachable from
some root vertex of G (a vertex with zero indegree), and (3) G has only finitely
many roots. Then G has an infinite path with no repeated vertices starting from
some root.

Theorem 4. Linearizability is a safety property for object types with finite non-
determinism.

Proof. Consider any object type with finite nondeterminism. The set of lineariz-
able histories is non-empty, since the empty history (consisting of 0 events) is
trivially linearizable. We show that the set of linearizable histories is prefix- and
limit-closed.

Consider a linearizable history H. We show that any prefix H ′ of H is also
linearizable. Let S be any linearization of H. Let sequential history S′ be the
shortest prefix of S that contains all complete operations of H ′.

We claim that S′ is a linearization of H ′. We complete H ′ by appending
responses that are present in S′ but not in H ′ to the end of H ′ and removing
operations that do not appear in S′. Note that only incomplete operations are
removed fromH ′ since all complete ones appear in S′. Let H̄ ′ denote the resulting
complete history.

First we show that complete histories S′ and H̄ ′ contain the same set of
operations. Any operation in H̄ ′ must also be in S′ (since all operations not in
S′ are removed when forming H̄ ′). To derive a contradiction, suppose that S′

contains an operation op that does not appear in H̄ ′. Since only operations that

do not appear in S′ were removed from H ′ to obtain H̄ ′, op does not appear in H ′

either. Since S′ is the shortest prefix of S that contains all complete operations
of H ′, the last operation op′ in S′ must be a complete operation in H ′. Thus,
op 6= op′. Since op′ is complete in H ′ and op does not appear in H ′, op′ <H op.
But op <S op

′, contradicting the assumption that S is a linearization of H.
Since S′ is a prefix of a legal history S, it is also legal. Moreover, it also

respects the real-time order in H̄ ′: if op <H̄′ op′, then op <S′ op′ (otherwise,
S would violate the real-time order in H). Since S and H̄ ′ contain the same
set of operations, S′ respects the real-time order of H̄ ′, and local histories are
well-formed, S′ is equivalent to H̄ ′: local histories in S′ and H̄ ′ are identical.

So, S′ is a linearization of H ′ and, thus, linearizability is prefix-closed.
To prove the limit-closed property, we consider an infinite sequence of ever-

extending linearizable histories H0, H1, H2, Our goal is to show that H =
lim
i→∞

Hi is linearizable. We assume that H0 is the empty history and each Hi+1

is a one-event extension of Hi. (By prefix-closedness, each prefix of every Hi is
linearizable, so there is no loss of generality in this assumption.)

Now we construct a directed graph G = (V,E) as follows. Vertices of G are
all tuples (Hi, S,W), where i ∈ N, S is any linearization of Hi that ends with a
complete operation present in Hi, and W is a sequence of states that witnesses
the legality of S. There is a directed edge ((Hi, S,W), (Hj , S

′,W ′)) in G if and
only if j = i+ 1, S is a prefix of S′ and W is a prefix of W ′.

Note that for each Hi there is at least one vertex (Hi, S,W), since Hi is
linearizable and if we remove all operations at the end of the linearization that are
incomplete in Hi, we still have a linearization of Hi (the incomplete operations
can also be removed from Hi to obtain a completion of Hi). Moreover, since S
is necessarily legal, there exists a witness W for it. Thus, the graph G contains
infinitely many vertices.

We use König’s lemma to show that the resulting graph G contains an infinite
path (H0, S0,W0), (H1, S1,W1), . . . and the limit lim

i→∞
Si is a linearization of

the infinite limit history H. The legality of lim
i→∞

Si is witnessed by the infinite

sequence of states lim
i→∞

Wi.

First we observe that for each vertex (Hi+1, S
′,W ′) (with i ≥ 0), there is

an edge into the vertex from some vertex (Hi, S,W). There are two cases to
consider.

– The last operation op of S′ is a complete operation in Hi. In this case, S′

is also a linearization of Hi. Indeed, even if the last event of Hi+1 is the
invocation of a new operation op′, this operation cannot appear in S′: it
can only appear before op in S′ violating the real-time order in Hi+1. Thus,
(Hi, S

′,W ′) is a vertex in G and there is an edge from it to (Hi+1, S
′,W ′).

– The last operation op of S′ is not a complete operation in Hi. But since S′

ends with an operation op that is complete in Hi+1 and Hi+1 extends Hi

with one event only, we conclude that the last event of Hi+1 is the response of
op. Thus, Hi and Hi+1 contain the same set of operations, except that op is
incomplete in Hi. Let S be the longest prefix of S′ that ends with a complete

operation in Hi. Let W be the prefix of W ′ whose length corresponds is the
number of operations in S′. Since W witnesses the legality of S, W ′ witnesses
the legality of S′. Also, only incomplete operations in Hi do not appear in
S. Thus, S is a linearization of Hi and (Hi, S,W) is a vertex in G and there
is an edge from it to (Hi+1, S

′,W ′).

It follows that the graph G has only one root vertex, (H0, S0,W0), where
H0, S0 and W0 are empty sequences, and moreover that every vertex is reachable
from this root.

Now we show that the outdegree of every vertex of G is finite. There are only
finitely many operations in Hi+1 and each linearization of Hi+1 is a permutation
of these operations, so there can only be finitely many linearizations S′ of Hi+1.
Moreover for any finite-length sequential history S′ there can only be finitely
many witnesses to the legality of S′, since the number of possible states after
any finite number of operations has been performed is finite. (This is where we
use the assumption that the object’s specification has finite nondeterminism.)
Thus, there are only finitely many vertices of the form (Hi+1, S

′,W ′). Since
all outgoing edges of any vertex (Hi, S,W) are directed to vertices of the form
(Hi+1, S

′,W ′), the outdegree of every such vertex is also finite.

By Lemma 3, G contains an infinite path starting from the root vertex:
(H0, S0,W0), (H1, S1,W1), Let S = lim

i→∞
Si and W = lim

i→∞
Wi. First, note

that W witnesses the legality of S. We argue now that the S is a linearization
of the infinite history H. Let H ′ be the completion of H obtained by removing
the incomplete operations of H that are not included in S and inserting into
H response events for incomplete operations of H that are included in S. (The
response events should be inserted in the order they occur in S and the response
to an operation op should be inserted after the response to any operation that
appears before op in S.) By construction, S is equivalent to H ′, and S respects
the real-time order of H; otherwise there would be a vertex (Hi, Si) such that Si

is not equivalent to Hi or violates the real-time order of Hi. Thus, S is indeed
a linearization of H, which concludes the proof that linearizability is a safety
property. ut

6 Backward Simulations

A backward simulation [13] is a technique that is sometimes used to show that
an implementation of a shared object is linearizable (for example, [5, 7]). A back-
ward simulation from a system A to a system A′ (which have state sets Q and
Q′, respectively) is a relation bsr ⊆ Q×Q′ with the following properties.

1. For every state s of A, there is a state s′ of A′ such that (s, s′) ∈ bsr.
2. If there is a transition α from state s1 to state s2 in A and (s2, s

′
2) ∈ bsr

then there is a state s′1 and a sequence of transitions α′ of A′ such that

(s1, s
′
1) ∈ bsr, α′ moves from state s′1 to s′2, and the sequence of externally

observable events2 is the same in α and α′.

3. If q0 is a possible initial state of A and (q0, q
′
0) ∈ bsr then q′0 is a possible

initial state of A′.

If such a backward simulation exists from an implementation automaton to
an abstract automaton that specifies correct linearizable behaviour, it is easy
to prove that every finite history of the implementation is also a history of the
abstract automaton, and hence linearizable. Intuitively, given a history H of
the implementation A, we start from the final state of that history and find a
matching state of the abstract automaton A′ using property 1. Then, working
backwards step by step, we build a history H ′ of A′ by finding, for each transition
of H, a sequence of transitions to prepend to H ′ using property 2. Finally, when
we reach the beginning of H we observe, using property 3, that the history
we have built could take place starting from an initial state of A′. Moreover,
by construction the two histories have the same sequence of externally visible
events.

Thus, if we can build a backward simulation from the implementation to the
abstract automaton that specifies linearizable behaviour and if linearizability is
a safety property, it follows that the implementation is linearizable. However,
if linearizability is not a safety property, then the existence of the backward
simulation does not necessarily imply that the implementation is linearizable. In
fact, we can provide an example of an incorrect implementation of the countdown
object where there is a backward simulation between the implementation and
the abstract automaton.

0 1
op : T

op : T

Fig. 2. An incorrect implementation of the countdown object.

Consider the following trivial (but incorrect) implementation of a countdown
object: to perform an op on the countdown object, a process immediately returns
T . One way to model this implementation is the automaton shown in Fig. 2.
The reason that this implementation is incorrect is that it is possible for the
implementation to return T forever in an infinite execution, something that is
not permitted by the specification of the countdown object. Nevertheless, there
is a backward simulation relation from the implementation to the countdown

2 In the context of implementations of shared object of type T , observable events are
just invocations and responses on the object of type T .

type. Let
bsr = {(0, 0)} ∪ {(1, k) : k ≥ 1}.

It is easy to verify that bsr satisfies the three properties that define a backward
simulation relation using the following correspondence between actions.

α s′2 α′ external actions
0→ 1 k, where k ≥ 1 0→ k op : T
1→ 1 k, where k ≥ 1 k + 1→ k op : T

Thus, for objects with infinite nondeterminism, backward simulations are
not necessarily a sound technique for proving linearizability (unless one can also
prove that linearizability is a safety property for the object type considered). In
view of Theorem 4, proving linearizability with a backward simulations is sound
for any type with finite nondeterminism.

7 Concluding Remarks

For clarity, we have used the terms finite nondeterminism, rather than bounded
nondeterminism (which is often used in the literature) because an object may
have finite nondeterminism even when there is no bound B such that the num-
ber of possible responses to an operation is always bounded by B. For example,
consider the bag object type, which stores a set of natural numbers and provides
two operations: insert(k), which adds k to the set, and delete, which nonde-
terministically removes and returns an arbitrary element of the set. It has the
following formal specification.

Q = P(N)

q0 = {}
OPS = {insert(k) : k ∈ N} ∪ {delete}
RES = {ack, empty} ∪ N

δ = {(S, insert(k), ack, S ∪ {k}) : S ⊆ N, k ∈ N} ∪
{(S,delete, k, S − {k}) : S ⊆ N, k ∈ S} ∪ {({},delete, empty, {})}

Although the number of nondeterministic choices available to a delete operation
depends on the current state, and there is no a priori bound on this number, the
bag object does have finite nondeterminism, so Theorem 4 says that linearizabil-
ity is a safety property for the bag object.

We have shown in this paper that, strictly speaking, linearizability is not a
safety property if infinite nondeterminism is permitted in the definition of object
types. This points out the importance of considering carefully whether theorems
proved about shared-memory systems apply to arbitrary nondeterministic object
type specifications, or whether one should make the (often reasonable) restriction
that object types must have finite nondeterminism. In particular, this shows that
if linearizability is established by proving that every finite run is linearizable,
for example by using a backward simulation, then there is an additional proof

obligation to show that linearizability is a safety property for the particular type,
for example by showing that the type specification has finite nondeterminism
and then applying Theorem 4 of this paper. One open question raised by this
work would be to give a precise characterization of the object types for which
linearizability is a safety property.

Acknowledgements. The model section and definition of linearizability are based
on lecture notes written by the first author with Michel Raynal and then with
Petr Kuznetsov. The proof of Theorem 2 is inspired by a proof by Petr Kuznet-
sov, itself inspired by a proof by Nancy Lynch [12]. We thank Franck van Breugel
for helpful discussions.

References

1. Adhikari, K., Street, J., Wang, C., Liu, Y., Zhang, S.: Verifying a quantitative
relaxation of linearizability via refinement. In: Proc. 20th International Symposium
on Model Checking Software. LNCS, vol. 7976, pp. 24–42 (2013)

2. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(Oct 1985)

3. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Comput-
ing 2(3), 117–126 (Sep 1987)

4. Apt, K.R., Plotkin, G.D.: A cook’s tour of countable nondeterminism. In: 8th
Colloquium on Automata, Languages and Programming. LNCS, vol. 115, pp. 479–
494 (1981)

5. Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy
concurrent list-based set algorithm. In: Proc. 18th International Conference on
Computer Aided Verification. LNCS, vol. 4144, pp. 475–488 (2006)

6. Dijkstra, E.W.: On nondeterminacy being bounded. In: A discipline of program-
ming, chap. 9. Prentice-Hall (1976)

7. Doherty, S., Moir, M.: Nonblocking algorithms and backward simulation. In: Proc.
23rd International Symposium on Distributed Computing. LNCS, vol. 5805, pp.
274–288 (2009)

8. Herlihy, M.P.: Wait-free synchronization. ACM Trans. Progr. Lang. Syst. 13(1),
123–149 (Jan 1991)

9. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Progr. Lang. Syst. 12(3), 463–492 (Jul 1990)

10. König, D.: Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Litter-
arum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae: Sectio
Scientiarum Mathematicarum 3, 121–130 (1927), also in chapter VI of Dénes König,
Theory of Finite and Infinite Graphs, Birkhäuser, Boston, 1990.

11. Liu, Y., Chen, W., Liu, Y.A., Sun, J., Zhang, S.J., Dong, J.S.: Verifying linearizabil-
ity via optimized refinement checking. IEEE Transactions on Software Engineering
39(7), 1018–1039 (2013)

12. Lynch, N.: Distributed Algorithms, chap. 13. Morgan Kaufmann (1996)
13. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations. Information

and Computation 121(2), 214–233 (Sep 1995)
14. Schenk, E.: The consensus hierarchy is not robust. In: Proc. 16th ACM Symposium

on Principles of Distributed Computing. p. 279 (1997)

