
DETERMINING CONSENSUS NUMBERS∗

ERIC RUPPERT†

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 1156–1168

Abstract. Conditions on a shared object type T are given that are both necessary and sufficient
for wait-free n-process consensus to be solvable using objects of type T and registers. The conditions
apply to two large classes of deterministic shared objects: read-modify-write objects [C. P. Kruskal,
L. Rudolph, and M. Snir, ACM Trans. Prog. Lang. Syst., 10 (1988), pp. 579–601] and readable
objects, which have operations that allow processes to read the state of the object. These classes
include most objects that are used as the primitives of distributed systems. When the sequential
specification of T is finite, the conditions may be checked in a finite amount of time to decide the
question “Is the consensus number of T at least n?” The conditions are also used to provide a clear
proof of the robustness of the consensus hierarchy for read-modify-write and readable objects.

Key words. consensus, distributed computing, asynchronous, wait-free, shared memory, read-
modify-write, readable, consensus hierarchy, robust

AMS subject classifications. 68Q22, 68Q10

PII. S0097539797329439

1. Introduction. A shared-memory distributed system consists of a number of
processes that communicate with one another by performing operations on shared
data objects. This paper studies asynchronous systems where processes take steps
at arbitrarily varying speeds. The wait-free model of fault tolerance is used: each
nonfaulty process must complete its task correctly even if any number of processes
experiences halting failures. The power of a system to solve problems depends on
the types of shared data objects that are available. Determining whether a given
collection of object types can be used to solve a given problem is therefore of great
importance in the design of distributed systems. A problem may, itself, be modelled
as a shared object type: processes pass their input to the object, and the object
returns the desired output. Thus, a question about computability may be formulated
as a question about implementations: Can one object type be implemented using a
given set of primitive object types? Herlihy [10] showed that the consensus problem,
in which each process begins with an input and all nonfaulty processes must agree on
one of the input values, plays a central role in the study of the power of object types.
He proved that objects that solve the consensus problem for n processes can be used,
along with read/write registers, to obtain a wait-free implementation of any object
for n or fewer processes. This leads to the idea of classifying object types according
to their consensus number [10, 14]. An object type T has consensus number n if n-
process consensus can be solved by using objects of type T and read/write registers,
but (n+ 1)-process consensus cannot. If there is no such n, the consensus number of
T is ∞. Similarly, the consensus number of a set S of types is the largest n for which
n processes can solve consensus using objects whose types are in S ∪ {register}, or ∞
if no such n exists.

∗Received by the editors November 3, 1997; accepted for publication (in revised form) April 14,
2000; published electronically September 20, 2000. A preliminary version of this paper appeared at
the 16th ACM Symposium on Principles of Distributed Computing, Santa Barbara, CA, 1997, pp.
93–99. This research was supported by the Natural Sciences and Engineering Research Council of
Canada.

http://www.siam.org/journals/sicomp/30-4/32943.html
†Department of Computer Science, Brown University, Providence, RI 02912 (ruppert@

cs.brown.edu).

1156

DETERMINING CONSENSUS NUMBERS 1157

This paper addresses the problem of determining whether a given deterministic
object type has consensus number n. Two important classes of objects that include
most of the objects considered as primitives for distributed systems are studied: read-
modify-write (RMW) objects [16] and readable objects. It is reasonable to assume
that processes will be able to access the information stored in the data object in
some simple way. If processes may read the information directly, without altering
the object’s state, then the object is called readable. If the operation that reads the
information in the data object is combined with an update operation, so that the read
and update occur as a single atomic action, the object may be modelled as an RMW
object.

A readable object O is modelled by an I/O automaton whose state set is the

Cartesian product Q =×k∈Γ
Qk, where Γ is an index set and Qk is a set for each

k ∈ Γ. Neither Γ nor Qk must be finite. For each k ∈ Γ, processes may execute the
operation readk, which returns component k of the current state of O. In addition
to the read operations, the object may have an arbitrary set of other (deterministic)
operations defined on it. Each operation can update any set of components of the
state, and the set of components that are updated by an operation may depend on
the current state of the object. Any object type with a read operation that returns
the entire state of the object is readable; in this case, |Γ| = 1. An array of m 1-bit
registers is a readable object, with Γ = {1, . . . ,m} and Qk = {0, 1} for all k ∈ Γ.
Readable objects include arrays of registers whose elements can be read, copied, or
swapped atomically. An array of unbounded registers that can be read or used for
indirect addressing is another example of a readable object; in this case the state set

would be Q =×k∈N
N and an indirect write to component i updates the component

indexed by the number stored in component i.

An RMW object type allows various kinds of RMW operations to be performed
on it. Let V be the state set of the RMW object. Any function f : V → V defines
an RMW operation, denoted RMW f , that reads the current value, x, of the RMW
object, updates the value to f(x), and returns x. For example, a fetch&increment
operation applies the function f(x) = x+1, and a read operation applies the identity
function. An RMW object type is defined by the set F of functions mapping V to
itself that may be applied by the RMW operations. This class of objects includes
compare&swap, test&set, and fetch&add variables.

Previously, ad hoc arguments have been used to determine whether particular
object types can be used along with registers to solve n-process consensus. An excep-
tion was Herlihy’s proof [10] that 2-process consensus can be solved using registers
and RMW objects, where the RMW operations apply functions from the set F if and
only if F contains a function different from the identity. Herlihy also gave a necessary
condition on the set F to describe when RMW objects can be used with registers to
solve 3-process consensus. In this paper, a decision procedure is developed to deter-
mine whether given readable and RMW types with finite specifications can be used to
solve n-process consensus for any n. Jayanti and Toueg [15] showed that this question
is undecidable for arbitrary object types that are allowed to have infinite state sets.
It will be shown here that an RMW or readable type T can be used together with
registers to solve the consensus problem among n processes if and only if T satisfies
certain conditions which are decidable for types that have finite specifications. An
object type that satisfies the conditions is called n-discerning. This characterization
has been useful for studying the consensus numbers of multi-objects and transactional
objects, where processes can access more than one object in an atomic action [21, 22].

1158 ERIC RUPPERT

Some work has been done on deciding whether a given task can be solved using
some particular types of shared objects. Biran, Moran, and Zaks [4] showed that one
can decide whether a given task can be solved in a message-passing system if at most
one process may fail. Chor and Moscovici [7] gave a decidable characterization of
tasks that can be solved by randomized algorithms that use registers only. Gafni and
Koutsoupias [9] showed that there is no algorithm which determines whether a given
task for three processes can be solved by read/write registers in a wait-free manner.
Herlihy and Rajsbaum [11] gave decidability results for the question of whether a
given task can be solved using various types of objects (registers, consensus objects,
and set consensus objects) in the presence of t process failures.

The proof that the property of being n-discerning is sufficient for the solvability of
n-process consensus will also provide upper bounds on the resources required to solve
the consensus problem. If an RMW or readable object type T can be used together
with registers to solve consensus among n processes, then there is a consensus protocol
that uses at most n− 1 objects of type T and 2(n− 1) registers. Furthermore, if T is
an RMW object type, each process takes O(n) steps in this protocol. It also follows
from the construction of the protocol that n-process consensus can be solved using
2(n− 1) registers and n− 1 objects, X2, . . . , Xn, where Xi’s type is i-discerning, for
each i.

The characterization of n-discerning types will be used in section 5 to obtain a
clear proof that the consensus hierarchy is robust [14] for RMW and readable objects.
This means that if n-process consensus can be solved using RMW and readable objects
of types T1, . . . , Tr and registers, then n-process consensus can also be solved using
only registers and objects of type Ti for some i. This robustness property allows the
consensus number of a set of RMW and readable types to be determined by finding
the consensus number of each type separately. Borowsky, Gafni, and Afek [5] claimed
that the consensus hierarchy is robust for all deterministic objects. A full version of
their paper is not yet available.

The n-discerning conditions for readable objects will also be used to generalize
a result about atomic snapshot objects. A snapshot object can be thought of as a
finite array of registers with an additional scan operation that reads the entire array
at once. It is known that the addition of the scan operation does not increase the
power of an array of registers to solve consensus, since the snapshot object can be
implemented from ordinary registers [1, 2, 3]. Here, it will be shown that the addition
of an atomic scan operation does not increase the power of any readable object type
to solve consensus.

2. Preliminaries. An object type is defined using a sequential specification,
which describes the operations that may be performed on the object and the responses
the object should return if the operations are performed sequentially. Formally, an
object can be specified as an I/O automaton (see [18]). Each operation causes a
state transition and returns a response. If the state transition and response are
uniquely determined by the current state of the object and the operation applied,
then the object is deterministic. When an object is accessed by more than one process
concurrently, its behavior can be specified by insisting that operations appear to occur
instantaneously at some time between their invocations and their responses. Such an
object is called linearizable [12]. This paper deals only with deterministic, linearizable
objects. For simplicity, it is assumed that all objects are oblivious: every process can
invoke every operation, and, for any operation, the state transition and response do
not depend on the process that invokes the operation.

DETERMINING CONSENSUS NUMBERS 1159

It is assumed that the designer of a consensus protocol may choose the initial
states of the shared objects. There is no real loss of generality in this assumption;
Borowsky, Gafni, and Afek [5] showed that if consensus can be solved when the initial
states are chosen by the programmer, then consensus can be solved using objects
initialized to a particular state, assuming there is some sequence of operations that
will move the object from the given initial state into any other state.

The systems studied here are completely asynchronous, so that algorithms must
exhibit correct behavior regardless of the way in which the steps of different processes
are interleaved by a scheduler. Algorithms are required to be wait-free [10]. This
means that the algorithm executed by each nonfaulty process must work correctly
even if other processes experience halting failures.

An implementation of an object of type T from objects O1, . . . , Om is a protocol
that uses only the shared objects O1, . . . , Om. This protocol consists of an algorithm
apply(op) for each process that can simulate every operation op on an object of type T .
The protocol should also specify the initial states for O1, . . . , Om to be used for any
possible initial state of the simulated object. If each process performs the apply routine
repeatedly, the responses returned should appear as if the operations were carried out
atomically on an object of type T . All implementations are assumed to be wait-free.

The consensus number of a set of object types is defined in terms of its ability
to solve the consensus problem. For the n-consensus problem, n processes each begin
with a private input value, and each nonfaulty process outputs a value in a wait-free
manner. The output values must all be the same, and every output must be the
input value of some process. These two conditions are called consistency and validity,
respectively.

The proofs that the property of being n-discerning is necessary for the solvability
of n-consensus are bivalency arguments. This type of proof was introduced by Fischer,
Lynch, and Paterson [8]. The following terminology will be used in the bivalency
arguments. The configuration of a protocol at any moment in its execution consists
of the state of every shared object, together with the internal state of every process.
Two configurations are indistinguishable to process P if the state of each shared object
and the internal state of P is the same in the two configurations. A configuration of
a consensus protocol is x-valent if all nonfaulty processes decide on the value x in all
executions continuing from that configuration. A configuration is called univalent if
it is x-valent for some x, and multivalent otherwise. A configuration is critical if it is
multivalent and the next step by any process will move the system into a univalent
configuration. The value that would be decided if a particular process takes the next
step after a critical configuration is called the critical value of that process.

3. Solving consensus with RMW objects. Consider an RMW type T with
state set V whose RMW operations can apply functions from the set F . This section
describes the power of a distributed system with n ≥ 2 processes, P1, . . . , Pn, to solve
consensus using objects of type T and registers. The sets V and F need not be finite.

Let v0 be a value in V . Partition the set of processes {P1, . . . , Pn} into two
nonempty teams, A and B. Associate a function fi ∈ F with each process Pi. The
functions fi need not be distinct. The type T is called n-discerning if there exist
choices for v0, A,B, f1, . . . , fn so that, in any schedule in which each process Pi applies
the single operation RMWfi to an object X which initially has value v0, every process
can determine (from the value returned by its operation) whether a process from team
A or a process from team B was the first process to take a step in the schedule. Such
a type T is called n-discerning since processes can easily use an object of type T to

1160 ERIC RUPPERT

discern the difference between schedules that start with a process on team A from
those that begin with a process on team B. This description is formalized in the
following definition. The notation f ◦ g is used to denote functional composition:
(f ◦ g)(x) = f(g(x)).

Definition 1. Let n ≥ 2. The RMW type defined by the state set V and the
set F of functions is n-discerning if there exist

• v0 ∈ V ,
• a partition of the set of processes {P1, . . . , Pn} into two nonempty teams A and

B, and
• a function fi ∈ F for each process Pi

such that
I. for all j ∈ {1, . . . , n}, VA,j ∩ VB,j = ∅,
II. for all Pj ∈ B, v0 /∈ VA,j, and
III. for all Pj ∈ A, v0 /∈ VB,j, where

VA,j = {(fiα ◦· · ·◦fi1)(v0) | Pi1 ∈ A, α ≥ 1, and i1, . . . , iα are distinct process indices,
not including j}, and VB,j = {(fiα ◦ · · · ◦ fi1)(v0) | Pi1 ∈ B, α ≥ 1, and i1, . . . , iα are
distinct process indices, not including j}.

Suppose each process performs its assigned operation to the object X, which is
initialized with the value v0. Consider a process Pj on team A. The set VA,j contains
the values that Pj can see when it accesses object X if some other process on team
A performs the first step. (The set VA,j will be empty if Pj is the only process on
team A. It may be the case that v0 is in VA,j .) The set VB,j is the set of responses
that Pj can receive if a process from team B takes the first step. Thus, condition
I ensures that Pj can distinguish, using the response it receives, executions starting
with another process on team A from those in which a process on team B takes the
first step. Condition III ensures that Pj can distinguish executions in which Pj itself
takes the first step from those executions in which a process from team B takes the
first step. (Similarly, if the process Pj is on team B, conditions I and II guarantee
that it can tell which team took the first step.)

It will be shown in Theorems 3 and 9 that RMW objects of type T can be used
with registers to solve n-consensus if and only if T is n-discerning.

Lemma 2. If S0 is a critical configuration of an n-process consensus protocol
where the next step of every process accesses the same RMW object X of type T , then
T is n-discerning.

Proof. Suppose each process Pi applies the operation RMWfi to X during its first
step after S0. Let v0 be the value of X in the configuration S0. Let a be the critical
value of one of the processes. Let A be the set of processes with critical value a, and
let B contain the rest of the processes. Team A is nonempty by construction. Since
S0 is multivalent, team B must also be nonempty.

Condition I of Definition 1 must hold for these values of v0, A,B, f1, . . . , fn. Oth-
erwise, let j be a process index such that VA,j ∩ VB,j is nonempty. Then, X has
the same value in two configurations that can be reached from S0 by sequences of
steps in which each process takes at most one step, process Pj takes no steps, and
the first steps in the two sequences are taken by processes on opposite teams. These
two configurations are indistinguishable to Pj . A solo execution by Pj from either
of these configurations would therefore lead to the same decision value, contradicting
the definitions of teams A and B.

Condition II must also hold. Otherwise, let j be the index of a process on team B
such that v0 ∈ VA,j . Then, some sequence of processes, not including process Pj ∈

DETERMINING CONSENSUS NUMBERS 1161

B and starting with a process on team A, could each take a step to arrive at a
configuration that Pj cannot distinguish from S0. A solo execution of Pj from these
two configurations would then lead to the same decision, contradicting the fact that
Pj ∈ B.

The argument that condition III holds is symmetric.

This lemma can be combined with a bivalency argument to prove that the condi-
tions for being n-discerning are necessary for solving n-process consensus using RMW
objects.

Theorem 3. If the n-process consensus problem can be solved using registers and
RMW objects of type T , then T must be n-discerning.

Proof. Suppose there is some protocol for n-process consensus using registers and
RMW objects of type T . If only one process is scheduled to take steps in an execution,
the process must output its own input value. Thus, any initial configuration where
processes begin with different input values is multivalent. It follows that there is a
critical configuration S0 of the protocol. Otherwise, one could produce an execution of
infinite length by always scheduling a process whose next step produces a multivalent
configuration. No process would ever output a decision in this execution, since any
configuration in which some process has produced an output is univalent. This is
impossible in a wait-free protocol.

A bivalency argument (see [10]) may be used to show that the next operation
performed by any process when the system is in the configuration S0 must be an
operation on the same object, say X, and that X cannot be a register. It follows from
Lemma 2 that T is n-discerning.

The following lemma and Propositions 5 and 6 will be used first in the proof of
Theorem 9, which provides a converse to Theorem 3, and again in section 4.

A set O of objects is said to be capable of solving team-restricted n-consensus if
there is a partition of the n processes P1, . . . , Pn into two nonempty teams A and B
such that the consensus problem can be solved using only the objects in the set O,
provided all processes on the same team have the same input value.

Lemma 4. If a set O of objects can be used to solve team-restricted (n + 1)-
consensus, then O can be used to solve team-restricted n-consensus.

Proof. Any consensus protocol for team-restricted (n + 1)-consensus may be
viewed as a protocol for team-restricted n-consensus by thinking of one of the processes
on a team with at least two processes as having failed before executing any of its
steps.

Proposition 5. Let n ≥ 2. Suppose Oi is a shared object that can be used
along with k registers to solve team-restricted i-consensus for all i, 2 ≤ i ≤ n. Then
n-consensus can be solved using objects O2, . . . , On and k(n− 1) registers.

Proof. The proposition will be proved by induction on n. For n = 2, the team-
restricted form of the consensus problem is identical to the general problem of con-
sensus for two processes.

Let n > 2. Suppose the claim holds when the number of processes is less than n.
This means that, for all m < n, O2, . . . , Om can be used, along with k(m−1) registers,
to solve m-consensus. Divide the n processes into two nonempty teams A and B as
described in the definition of team-restricted n-consensus. The processes of team A
first execute a consensus protocol to agree on one of their input values. If |A| = 1,
no shared objects are used. Otherwise, team A can agree on an input value using
k(|A| − 1) registers and the shared objects O2, . . . , O|A|, by the induction hypothesis.
Similarly, the processes of team B agree on one of their input values. If |B| = 1, no

1162 ERIC RUPPERT

shared objects are used. Otherwise, it can be done using k(|B| − 1) registers and the
shared objects O|A|+1, . . . , On−1. This is possible, since Oi+|A|−1 can be used with k
registers to solve team-restricted i-consensus for 2 ≤ i ≤ |B|, by Lemma 4.

Next, the processes agree on which team’s value should be used as the common
decision value. The processes execute the team-restricted n-consensus protocol, with
each process using the decision value of its team as its input. This can be done using
On and an additional k registers for a total of k(n− 1) registers.

By the inductive hypothesis, the agreement within each team is wait-free. The
team-restricted n-consensus protocol used to decide between the two teams’ values is
also wait-free. So, the entire consensus protocol is wait-free. The protocol satisfies
the validity condition, since the value agreed upon by the winning team must be one
of the input values of a process on that team, by the inductive hypothesis. The proto-
col satisfies the consistency condition, since the team-restricted n-consensus protocol
must satisfy the consistency condition.

Proposition 6. Suppose that one object of type T and k registers can be used
to solve team-restricted n-consensus. Then, n-consensus can be solved using n − 1
objects of type T and k(n− 1) registers.

Proof. This follows immediately from Lemma 4 and Proposition 5.

Lemma 7. An RMW object of type T and two registers can be used to solve
team-restricted n-consensus if T is n-discerning.

Proof. Divide the processes into two nonempty teams A and B, assign a function
fi to each process Pi, and choose v0 to satisfy the conditions of Definition 1. An
algorithm will be constructed for the team-restricted n-consensus problem. The algo-
rithm uses an object X of type T that initially has state v0 and two registers called
RA and RB .

Each process Pj first writes its team’s common input value into the register RA,
if it belongs to team A, or into the register RB , if it belongs to team B. The process
Pj then performs its assigned operation RMWfj on X and uses the result of this
operation to determine whether a process from team A or from team B was the first
to access X.

Without loss of generality, suppose that process Pj belongs to team A. If Pj ’s
RMW operation returns the value v0, then a process from team A was the first to
accessX. To see why this is true, suppose some processes, starting with a process from
team B, did access X before Pj . Let i1, . . . , iα be the indices of these processes. Then
(fα ◦ · · · ◦ f1)(v0) = v0 and Pi1 ∈ B, violating condition III. If Pj ’s RMW operation
returns a value different from v0, the process must be able to deduce which team
accessed X first by checking whether the value belongs to VA,j or VB,j . These two
finite sets are disjoint (by condition I), and contain all possible values of the object X
that can be observed by process Pj in this protocol. Once Pj decides whether team A
or team B accessed X first, it returns the value in RA or RB , respectively.

Each process performs only O(1) steps, so wait-free termination is guaranteed.
The protocol satisfies the validity condition, since the winning team’s value is written
into the team’s register before any process from that team can access the object X.
The protocol also satisfies the consistency condition: all processes agree on the winning
team and return the value of that team’s register (which never changes after it is first
written, since all processes on the same team have the same input value).

The following theorems follow immediately from Lemma 7 and Propositions 5
and 6.

Theorem 8. The RMW objects X2, . . . , Xn can be used, with 2(n− 1) registers,

DETERMINING CONSENSUS NUMBERS 1163

to solve n-consensus if the type of Xi is i-discerning for each i.
Theorem 9. If T is an n-discerning RMW type, then there is a protocol for

n-consensus that uses n− 1 objects of type T and 2(n− 1) registers.
Theorems 3 and 9 show that an RMW type can be used with registers to solve

n-consensus if and only if it is n-discerning. The remainder of this section discusses
some consequences of this characterization.

The constructive proof of Theorem 9 provides upper bounds on the complex-
ity of solving the consensus problem using RMW objects and registers. If objects
of an RMW type T and registers can be used to solve n-consensus at all, then T
is n-discerning by Theorem 3, and the tournament-style algorithm in the proof of
Proposition 5 can solve n-process consensus in O(n) steps per process, using n − 1
objects of type T and 2(n− 1) registers.

Corollary 10. RMW objects of type T can be used, with registers, to implement
any type of object in a system of n processes if and only if T is n-discerning.

Proof. This follows from Theorems 3 and 9 and the fact that n-consensus objects
can be used to obtain an implementation of any shared object in a system of n
processes [10].

Corollary 11. For RMW types with finite state sets, the following question is
decidable: “Given an integer n and an RMW type T , can n-consensus be solved using
registers and RMW objects of type T?”

Proof. The conditions of Definition 1 can be checked for each of the finite number
of possible choices of v0, A,B, f1, . . . , fn in a finite amount of time.

For every value of n, there is an RMW object type with consensus number ex-
actly n. This can be shown by considering an RMW object that behaves like a sticky
bit [20] that gets reset after n accesses.

Proposition 12. Let n ≥ 2. Let V = {⊥} ∪ ({A,B}× {1, . . . , n− 1}). Let T be
the RMW type with state set V whose operations can apply the functions fA and fB,
where

fteam(x) =

(team, 1) if x = ⊥,
⊥ if x = (team′, n− 1),
(team′, z + 1) if x = (team′, z) and z < n− 1.

Then T is n-discerning but not (n+ 1)-discerning.
Proof. First, it is shown that T is n-discerning. Let v0 = ⊥, A = {P1}, B =

{P2, . . . , Pn}, f1 = fA, and f2 = · · · = fn = fB . Then, each value in Vteam,j is
an ordered pair whose first component is team. The conditions of Definition 1 are
therefore clearly satisfied.

Next, it is shown that T is not (n + 1)-discerning. Consider any choice of
v0, A,B, f1, . . . , fn+1.

If v0 is an ordered pair, let z be the second component of v0. Let Pj be any
process. Both VA,j and VB,j contain the element ⊥, since any sequence of n − z
functions applied to v0 will result in the value ⊥. This violates condition I in the
definition of (n+ 1)-discerning.

If v0 = ⊥, let Pj be a process in team B. The set VA,j contains v0, since any
sequence of n functions when applied to ⊥ results in the value ⊥. This violates
condition II of the definition of (n+ 1)-discerning.

4. Solving consensus with readable objects. Let T be a readable object

type with state set Q = ×k∈Γ
Qk. Consider a distributed system with n ≥ 2

processes, called P1, . . . , Pn, which communicate via shared objects of type T and

1164 ERIC RUPPERT

registers. The ability of such a system to solve the consensus problem will be studied
in this section.

A readable type T is defined to be n-discerning if the set {P1, . . . , Pn} can be
partitioned into two nonempty teams and a single operation can be assigned to each
process so that if processes from some subset of {P1, . . . , Pn} each perform their own
operation on an appropriately initialized object X of type T , then each one could
determine which team accessed X first, provided that it could see the final state of X.
The operation assigned to each process cannot be a read operation: it must be possible
for the operation to update the state of the readable object. This is formalized as
follows.

Definition 13. The readable type T is called n-discerning if there exist
• a state q0 ∈ Q,
• a partition of the set of processes {P1, . . . , Pn} into two nonempty teams A and

B, and
• an update operation opi for 1 ≤ i ≤ n

such that RA,j ∩RB,j = ∅, for all j ∈ {1, . . . , n}, where RA,j is the set of pairs (r, q)
for which there exist distinct process indices i1, . . . , iα including j with Pi1 ∈ A such
that if Pi1 , . . . , Piα each perform their operations (in that order) on an object of type T
that is initially in state q0, Pj gets the result r, and the object ends in state q. The set
RB,j is defined similarly as the set of pairs (r, q) for which there exist distinct process
indices i1, . . . , iα including j with Pi1 ∈ B such that if Pi1 , . . . , Piα each perform their
operations (in that order) on an object of type T that is initially in state q0, Pj gets
the result r, and the object ends in state q.

It will be shown in Theorems 15 and 18 that readable objects of type T can be
used, along with registers, to solve the consensus problem for n processes if and only
if T is n-discerning. First, the conditions are shown to be necessary.

Lemma 14. If S0 is a critical configuration of an n-process consensus protocol
and the next step by every process is an operation on a readable object X of type T ,
then T is n-discerning.

Proof. This proof is similar to the proof of Lemma 2. Let q0 be the state of X in
S0, and let opi be the operation performed by Pi in its first step after S0. Partition
the processes into two teams A and B according to their critical values.

To derive a contradiction, suppose these choices for q0, A,B, op1, . . . , opn do not
satisfy Definition 13. Then, there is a pair (r, q) ∈ RA,j ∩ RB,j for some j. There
is some sequence i1, . . . , iα of distinct process indices, including j, such that Pi1 ∈ A
and if processes Pi1 , . . . , Piα each perform their next operation, in that order, starting
from S0, process Pj will receive the result r, and the system will end in a configuration
SA where X is in state q. There is some other sequence k1, . . . , kβ of distinct process
indices, including j, such that Pk1 ∈ B and if processes Pk1 , . . . , Pkβ

each perform
their next operation, in that order, starting from S0, process Pj will again receive
the result r, and the system will end in a configuration SB where X is in state q.
The configurations SA and SB are indistinguishable to Pj , so a solo execution by Pj

from either of these two configurations would lead to the same decision value. This
contradicts the fact that SA and SB are univalent configurations that lead to different
decision values.

The operation performed by each process must be an update operation; otherwise
the configuration obtained from S0 by allowing the process to perform its operation
could not be distinguished from S0 by any process on the opposite team.

Combining this lemma with a bivalency argument yields the following theorem.

DETERMINING CONSENSUS NUMBERS 1165

Theorem 15. If n-process consensus can be solved using registers and objects of
a readable type T , then T is n-discerning.

Proof. A bivalency argument, as in the proof of Theorem 3, shows that any
n-consensus protocol that uses registers and objects of type T must have a critical
configuration S0, and that the next operation by each process will be applied to the
same object of type T . The theorem then follows from Lemma 14.

Theorem 15 may be used to establish an upper bound on the consensus number
of any (deterministic) type T , whether it is readable or not. If, for some n, the update
operations that are permitted for type T do not satisfy Definition 13, then type T
cannot be used with registers to solve n-consensus. This is because the addition of a
read operation to the specification of type T would create a readable type T ′ that is
at least as powerful as type T but has consensus number less than n, by Theorem 15.

The team-restricted n-consensus problem will now be used to provide a converse
to Theorem 13.

Lemma 16. Let T be an n-discerning readable object type. An object of type T
and two registers can be used to solve team-restricted n-consensus.

Proof. Choose q0, A,B, op1, . . . , opn to satisfy Definition 13. A protocol will be
developed for team-restricted n-consensus that uses one register for each team and
one shared object X of type T , initialized to the state q0. Each process Pj writes its
team’s common input value into its team’s register. It then applies the operation opj
to X and attempts to read the state of X to determine which team accessed X first.

The state set of T has the form Q = ×k∈Γ
Qk. Since Γ may be an infinite

set, it will first be shown that process Pj can determine the winning team from the
values of a finite number of the components. Let RA,j and RB,j be the disjoint sets
defined in Definition 13. These sets are finite, since the number of ways to choose
α, i1, . . . , iα in the definitions of RA,j and RB,j is bounded by n ·n!. For (r, q) ∈ RA,j

and (r′, q′) ∈ RB,j , let k(q, q
′) be an element of Γ that indexes some state component

where q and q′ differ, if such a component exists. Let ∆j be the set of such indices
k(q, q′) for all possible choices of (r, q) and (r′, q′). The number of such choices is
finite, so ∆j is a finite set. Let πj be the projection function from Q to the set×k∈∆j

Qk. This projection function discards all components of the state, except for

the finite number of components indexed by the elements of ∆j .

Suppose the sets {(r, πj(q)) : (r, q) ∈ RA,j} and {(r′, πj(q
′)) : (r′, q′) ∈ RB,j} have

an element in common. Then there are two distinct pairs (r, q) ∈ RA,j and (r, q′) ∈
RB,j such that q �= q′ and πj(q) = πj(q

′). This is impossible, since k(q, q′) ∈ ∆j .
Thus, process Pj can discern executions in which team A performed the first update
from executions in which team B performed the first update, using only the response
to its own update operation and the projection πj(q) of the state q of X at any time
after Pj ’s update has been performed.

After performing its update operation, the process Pj reads, one by one, the
components of the state that are indexed by ∆j . The state of X may be updated
by other processes while process Pj is performing this scan of the components. Each
scan produces a view of the image of the state of X under the projection πj . Such a
view is called accurate if it correctly reflects the state of X at some moment during
the execution of the scan. If another process performs an update operation during a
scan, the resulting view may not be accurate, but any scan that is not interrupted by
an update will produce an accurate view.

To ensure that Pj can correctly determine which team accessed X first, the scan
of the components of X is repeated 2n− 1 times. An update of X can occur during

1166 ERIC RUPPERT

at most n− 1 of these scans, so at least n of the scans will return an accurate view of
the state of X. By Definition 13, Pj can correctly determine which team accessed X
first using the information from any accurate scan and the result of its operation opj .
Since a majority of the scans are accurate, Pj can correctly determine which team
accessed X first. Process Pj then decides on the value stored in the register belonging
to the team that accessed X first.

The validity condition for the consensus problem is satisfied, since every process
must agree on the team that accessed X first. The consistency condition is also
satisfied, since a process from the winning team must have written its value to its
team’s register before accessing X. The protocol is wait-free, since each of the 2n− 1
scans reads only a finite number of components of X.

The following theorems follow immediately from Lemma 16 and Propositions 5
and 6.

Theorem 17. Let Ti be an i-discerning readable object type for 2 ≤ i ≤ n. Then
the n-consensus problem can be solved using one object Oi of each type Ti, together
with 2(n− 1) registers.

Theorem 18. If T is an n-discerning readable object type, then there is a protocol
for n-consensus that uses n− 1 objects of type T and 2(n− 1) registers.

This completes the proof that a readable type T can be used with registers to solve
n-consensus if and only if T is n-discerning. This characterization has the following
consequences.

Corollary 19. Readable objects of type T can be used, along with registers, to
implement every other type of object in a system with n processes if and only if T is
n-discerning.

Proof. This follows from Theorems 15 and 18 and the fact that n-consensus
objects can be used to obtain an implementation of any shared object in a system of
n processes [10].

Corollary 20. If the state set of object type T and the set of possible operations
on object type T are both finite, then the following question is decidable: “Given a
positive integer n and a readable type T , can n-consensus be solved using only objects
of type T and registers?”

Proof. The conditions of Definition 13 can be checked for each of the finite number
of choices of q0, A,B, op1, . . . , opn in a finite amount of time.

It will now be shown that the addition of a scan operation, which reads the entire
state atomically, to any readable type T does not increase its power to solve consensus.

Corollary 21. Let T be a readable type. Let T ′ be a type that is the same as
T , except that it allows an additional scan operation that reads the entire state of T .
Then T and T ′ have the same consensus number.

Proof. Let n be the consensus number of T ′. Clearly, the consensus number of T is
at most n. By Theorem 15, T ′ is an n-discerning readable type. Let q0, op1, . . . , opn, A
and B be chosen to satisfy Definition 13 for T ′. None of the operations can be a scan,
since scan operations never update the state of an object. Therefore, the choice of
q0, op1, . . . , opn, A and B will also satisfy Definition 13 for type T . By Theorem 18,
it is possible to solve n-consensus using objects of type T and registers.

It can be shown that, for each n > 1, there is a readable object type, analogous
to the RMW object defined in Proposition 12, that has consensus number n. (See
[23] for a detailed description of this object.)

5. Robustness for RMW and readable objects. Jayanti [14] formalized
Herlihy’s notion of a hierarchy [10] of shared object types and defined a number

DETERMINING CONSENSUS NUMBERS 1167

of desirable properties for hierarchies, including robustness. A wait-free hierarchy
classifies object types according to their power to implement one another. Formally,
it is a mapping h of object types to the set of levels N ∪ {∞}, where a type T is in
level n only if objects of type T , together with registers, can be used to implement
any other type of object in a system of n processes. If h(T) = ∞, then objects of
type T and registers can be used to implement any other type of object in a system
of n processes for all n. A wait-free hierarchy is tight if every object type is mapped
to the highest level possible. Thus, if type T is mapped to level n of a tight wait-free
hierarchy, there is some type that cannot be implemented using objects of type T and
registers in a system of n + 1 processes. A wait-free hierarchy is robust if no object
in any level of the hierarchy can be implemented using a finite number of types of
objects from lower levels. In the consensus hierarchy, hr

m, the level of a type T is
the consensus number of T . Jayanti showed that hr

m is the (unique) tight wait-free
hierarchy [14].

Chandra et al. [6] showed that the consensus hierarchy is not robust, if nonde-
terministic, nonoblivious objects are allowed. Schenk [24] proved that the consensus
hierarchy is not robust, even for oblivious objects, if objects with unbounded non-
determinism are allowed. Lo and Hadzilacos [17] improved this, showing that the
hierarchy hr

m restricted to oblivious objects is not robust even when nondeterminism
is bounded. Moran and Rappoport [19] showed that the consensus hierarchy is not
robust for deterministic nonoblivious objects using the restricted hard-wired binding
model. (See Jayanti’s survey [13] for a description of binding models, which restrict
the ways that processes can access nonoblivious objects.)

Borowsky, Gafni, and Afek [5] claimed that the consensus hierarchy is robust
for deterministic objects using a less restrictive binding model. Their paper is quite
complex. Here, the characterizations of RMW and readable objects that can solve
n-process consensus will be used to provide a concise proof of the robustness of the
hierarchy when restricted to deterministic RMW and readable objects.

Theorem 22. Let T be a readable or RMW object type. Let S be a finite set of
readable and RMW object types such that hr

m(T ′) < hr
m(T) for each T ′ ∈ S. Then an

object of type T cannot be implemented using objects whose types are from the set S.

Proof. Let n = max{hr
m(T ′) | T ′ ∈ S} + 1. This quantity is finite, since hr

m(T ′)
is less than hr

m(T) and therefore finite for each T ′ ∈ S, and S is a finite set.

To derive a contradiction, suppose the claim is false. Then, since hr
m(T) ≥ n,

there is a protocol using objects whose types are from the set S that solves consensus
among n processes. A bivalency argument [10] shows that this protocol has a critical
configuration, S0, and that the next operation taken by any process when the system
is in this configuration must be an operation on the same object, X. Let TX be the
type of object X.

First, suppose that TX is an RMW type. Then TX is n-discerning, by Lemma 2.
It follows from Theorem 9 that hr

m(TX) ≥ n, contradicting the definition of n.

Now suppose that TX is a readable type. The type TX is n-discerning, by
Lemma 14. By Theorem 18, hr

m(TX) ≥ n, which again contradicts the definition
of n.

This theorem allows the decidability results of Corollaries 11 and 20 to be ex-
tended to finite sets of object types. If S is any finite set of finitely-specified RMW
and readable object types, then one can decide whether objects whose types are in
S ∪ {register} can be used to solve n-process consensus, by checking whether any of
the types in S are n-discerning.

1168 ERIC RUPPERT

Acknowledgments. This research forms part of my Ph.D. thesis [23] which was
done at the University of Toronto. I am grateful for the guidance of my adviser, Faith
Fich. I thank the anonymous PODC referees for their suggestions, and Vassos Hadzi-
lacos, Maurice Herlihy, Wai-Kau Lo, Michael Merritt, and Eric Schenk for helpful
discussions.

REFERENCES

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic snapshots
of shared memory, J. ACM, 40 (1993), pp. 873–890.

[2] J. H. Anderson, Composite registers, Distributed Computing, 6 (1993), pp. 141–154.
[3] J. Aspnes and M. Herlihy, Wait-free data structures in the asynchronous PRAM model, in

Proceedings of the 2nd ACM Symposium on Parallel Algorithms and Architectures, Crete,
Greece, 1990, pp. 340–349.

[4] O. Biran, S. Moran, and S. Zaks, A combinatorial characterization of the distributed 1-
solvable tasks, J. Algorithms, 11 (1990), pp. 420–440.

[5] E. Borowsky, E. Gafni, and Y. Afek, Consensus power makes (some) sense!, in Proceedings
of the 13th ACM Symposium on Principles of Distributed Computing, Los Angeles, CA,
1994, pp. 363–372.

[6] T. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg, Wait-freedom vs. t-resiliency and
the robustness of wait-free hierarchies, in Proceedings of the 13th ACM Symposium on
Principles of Distributed Computing, Los Angeles, CA, 1994, pp. 334–343.

[7] B. Chor and L. Moscovici, Solvability in asynchronous environments, in Proceedings of the
30th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Los
Alamitos, CA, 1989, pp. 422–433.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed consensus with
one faulty process, J. ACM, 32 (1985), pp. 374–382.

[9] E. Gafni and E. Koutsoupias, Three-processor tasks are undecidable, SIAM J. Comput., 28
(1999), pp. 970–983.

[10] M. Herlihy,Wait-free synchronization, ACM Trans. Prog. Lang. Syst., 11 (1991), pp. 124–149.
[11] M. Herlihy and S. Rajsbaum, The decidability of distributed decision tasks, in Proceedings

of the 29th ACM Symposium on Theory of Computing, El Paso, TX, 1997, pp. 589–598.
[12] M. P. Herlihy and J. M. Wing, Linearizability: A correctness condition for concurrent

objects, ACM Trans. Prog. Lang. Syst., 12 (1990), pp. 463–492.
[13] P. Jayanti, Wait-free computing, in Distributed Algorithms, Lecture Notes in Comput. Sci.

972, Springer-Verlag, Berlin 1995, pp. 19–50.
[14] P. Jayanti, Robust wait-free hierarchies, J. ACM, 44 (1997), pp. 592–614.
[15] P. Jayanti and S. Toueg, Some results on the impossibility, universality and decidability of

consensus, in Distributed Algorithms, Lecture Notes in Comput. Sci. 647, Springer-Verlag,
Berlin, 1992, pp. 69–84.

[16] C. P. Kruskal, L. Rudolph, and M. Snir, Efficient synchronization on multiprocessors with
shared memory, ACM Trans. Prog. Lang. Syst., 10 (1988), pp. 579–601.

[17] W.-K. Lo and V. Hadzilacos, All of us are smarter than any of us: Wait-free hierarchies
are not robust, in Proceedings of the 29th ACM Symposium on Theory of Computing, El
Paso, TX, 1997, pp. 579–588.

[18] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann, San Francisco, CA, 1996, chapter 8.
[19] S. Moran and L. Rappoport, On the robustness of hr

m, in Distributed Algorithms, Lecture
Notes in Comput. Sci. 1151, Springer-Verlag, Berlin, 1996, pp. 344–361.

[20] S. Plotkin, Sticky bits and universality of consensus, in Proceedings of the 8th ACM Sympo-
sium on Principles of Distributed Computing, Edmonton, AB, Canada, 1989, pp. 159–175.

[21] E. Ruppert, Consensus numbers of multi-objects, in Proceedings of the 17th ACM Symposium
on Principles of Distributed Computing, Puerto Vallarta, Mexico, 1998, pp. 211–217.

[22] E. Ruppert, Consensus numbers of transactional objects, in Distributed Computing, Lecture
Notes in Comput. Sci. 1693, Springer-Verlag, Berlin, 1999, pp. 312–326.

[23] E. Ruppert, The Consensus Power of Shared-Memory Distributed Systems, Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada, 2000. Available from
www.cs.yorku.ca/∼ruppert.

[24] E. Schenk, The consensus hierarchy is not robust, in Proceedings of the 16th ACM Symposium
on Principles of Distributed Computing, Santa Barbara, CA, 1997, p. 279.

