

1

TOPICS

- Key Distribution

Symmetric \& Asymmetric Schemes (SKD \& AKD)

- Key Agreement

The Diffie-Hellman Exchange (NO-KD)

- Key Storage

Secret Splitting and Sharing

- Quantum Cryptography

SHor's Algorithm \& BB84 (QKD)

2

3

Selected Topics

REGULAR SKD

\qquad
Given n endpoints, i.e. applications running on hosts, we need to enable any pair to communicate securely
\qquad via symmetric means (no public / private keys).

- Each endpoint needs $\mathrm{n}-1$ secret keys
- Need couriers to deliver $n(n-1) / 2=O\left(n^{2}\right)$ keys!
- Must redo the delivery fiasco periodically*.
*Symmetric keys have a lifetime/lifecycle and an expiry date \qquad (length/ usage dependent), hence the periodic "key rollover".

4

SKD VIA KDC

\qquad
Given n endpoints, i.e. applications running on hosts, \qquad we need to enable any pair to communicate securely via symmetric means (no public / private keys).

- Designate one point as a Key Distribution Centre.
- Have each endpoint share one secret key with KDC
- This key is not a session key
- For sessions, ephemeral keys are JIT-generated
- $\mathrm{O}(\mathrm{n})$ courier deliveries (initially and periodically) \qquad
\qquad

5

KDC EXAMPLE

- A wants to communicate with B
- A creates a temporary session key K_{s}
- $A \rightarrow K D C: I D_{A} \|\left|D_{B}\right| \mid E\left(K_{A}, K_{S}\right)$
- KDC creates a ticket $T=E\left(K_{B}, I D_{A} \| K_{S}\right)$
- KDC $\rightarrow \mathrm{A}: \mathrm{ID}_{\mathrm{B}} \| \mathrm{T}$
- $\mathrm{A} \rightarrow \mathrm{B}: \mathrm{T}$
- A and B now share an ephemeral session key K_{s} \qquad
\qquad

6

KDC EXERCISES

\qquad

- Is KDC a BN (bottleneck) ? \qquad
Comment on this in terms of scalability.
- Is KDC a SPOF (single point of failure) ?

Comment on this in terms of availability.

- Is KDC a Vulnerability? Comment on this in terms of security.

Can federated trust (a hierarchical scheme) mitigate some of the KDC risks pointed out above? \qquad
\qquad

7

8

- A and B gets their public keys signed by the CA. Done once.
- To communicate they exchange their certificates.
\qquad
- To scale, create a CA hierarchy to establish federated trust. \qquad

10

11

12

DIfFIE-HELLMAN KEY EXCHANGE

\qquad
Public: a large prime \mathbf{p} and a primitive root \mathbf{g} :

- Alice picks $\mathbf{a X}$ in $[2, \mathrm{p}-2] \quad$ ($a X=$ her $D H$ private) She sends $\mathrm{aY}=\mathrm{gax}^{\mathrm{ax}}(\bmod \mathrm{p}) \quad(a Y=$ her $D H$ public)
- Bob picks bX in [2,p-2] (bX = his DH public) He sends $\mathrm{bY}=\mathrm{g}^{\mathrm{bX}}(\bmod \mathrm{p}) \quad(b Y=$ his $D H$ public)
- Both compute the received raised to their private A shared session key K emerges => Key-Agreement \qquad
- Pick a subset of K's bits for DES, AES, OTP, or any other symmetric cipher. \qquad
No keys to lose or leak + Forward Secrecy. \qquad
13

DISCRETE LOGS MATH

Given a prime p and some base g in 2..p-1: \qquad

- $\mathrm{X}=\mathrm{g}^{\mathrm{x}}(\bmod \mathrm{p}) . \mathrm{x}$ the discrete \log of X in base g . \qquad
- The multiplicative subgroup generated by g has an order that divides $\mathrm{p}-1$.
- If g is chosen as a primitive root of p then its \qquad subgroup's order will be p-1.
- See the posted spreadsheet to get a feel.
\qquad
\qquad
14

MAN IN THE MIDDLE ATTACK

- Beat a Chess Grandmaster!

\qquad
You can easily be the world second best !

- Person in the middle \qquad
Eve injects herself in between Alice and Bob,
She talks to Alice masquerading as Bob, and \qquad talks to Bob masquerading as Alice.
\qquad
The attack exploits the lack of authentication (sender integrity) in the protocol. Hence, we should augment it with integrity countermeasures.
\qquad
\qquad

16

Secret Splitting

Split a secret M into W shares:

$\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots \mathrm{~S}_{\mathrm{w}}$
such that:

1. All shares have the same security strength
2. All W shares are needed to reconstruct M .
3. If $B=$ union of all but one share: $H(M \mid B)=H(M)$ \qquad
$H(E)$ is the entropy of event E. It is a measure of what we don't know about it. Its unit is bits.

17

18

Splitting ExAMPLE

\qquad

Split the secret $\mathrm{M}=90$ to $\mathrm{W}=2$ shares. We choose $n=8$. Hence $M=01011010$

Share \#1
s1 $=$ random $=235=11101011$
Share \#2
$s 2=s 1$ xor $M=177=10110001$
Combine
Find the secret
$\mathrm{M}=\mathrm{s} 1$ xor s2
\qquad
\qquad
19

20

SHARING EXAMPLE
Threshold Scheme [3,4] with $p=19$
$\mathrm{W}=4, \mathrm{~T}=3$. Let the secret M be 12
Prep
s1 $=14$, s2 $=3$
$y=f(x)=12+14 x+3 x^{2}(\bmod 19)$
Deal
$x 1=1, x 2=2, x 3=3, x 4=4$
$\rightarrow[1,10],[2,14],[3,5],[4,2]$
Combine
Pick any three and plug in $f(x)=M+a x+b x^{2}$
Solve 3 equations in 3 unknowns $\rightarrow M$

\qquad
\qquad

22

The CLAssical World: Three Pillars

\qquad
They inform our intuition. Our math formalizes them: \qquad

1. Realism [Ontology vs Epistemology]

Properties exist even if we don't measure. \qquad
The moon is there even if no one is looking.
2. Determinism [No intrinsic randomness] We can predict the future given the present (modulo infinite precision and computing power).
\qquad
3. Locality [Local Causality] \qquad No instantaneous (spooky) action at a distance.

ENTERS THE QUANTUM REALM

\qquad

- At nm length scales and mK temperatures, Nature exhibits phenomena that challenge all three pillars
\qquad of the classical worldview. The Q World.
- Quantum mechanics describes these phenomena.
- At higher length or temperature scales, these pheno- \qquad mena get blurred, and the Q World reduces to ours.
- After a century of testing, quantum mechanics is our most successful theory of how the universe works.
- A qubit is the smallest unit of information in Q. It can be realized via electrons, photons, etc.

The Quantum Phenomena

\qquad

- SUPERPOSITION

A qubit can exist in 2 different states at the same
\qquad time. For example, |0> + |1>

- Collapse

Once measured, the qubit collapses to a bit (comes to our world) by randomly choosing 0 or 1.
\qquad

- Entanglement $100>+\mid 11>$

A two-qubit state in which collapsing one collapses
\qquad the other instantly regardless of separation.

- No Cloning

The state of a qubit cannot be copied. \qquad

25

26

The two outputs are entangled. If you measure the upper and found it, say, $x=5$, then the lower would be f(5). Not useful like this because the collapse gives us only one function evaluation. \qquad

SHOR'S ALGORITHM

\qquad

- Pick $f(x)=a^{x} \% N$
- Select a base a that is is coprime with N
- Feed m wires $\mid x>$ to the function gate $\left(2^{m}>N\right)$
\qquad
\qquad
- Measure the lower output. Say you found it = F
- The upper output will collapse to a superposition of all x values whose $f(x)=F$
- The quantum circuit determines the period r of f.
- $f(r)=1 \Rightarrow\left(a^{r / 2}-1\right)\left(a^{r / 2}+1\right)=0$ \qquad => we factored N and broke RSA*! "May need to pick a different a if r is odd or if $a^{r / 2}=-1$. \qquad
28

SHOR'S ALGORITHM EXAMPLE

- Example: $N=21, a=2$, and $F=16$
- We start with $|0>+| 1\rangle+|2\rangle+$.. \qquad
- And end with $|4\rangle+|10\rangle+|16\rangle+|22\rangle+$ \qquad
- From this we conclude the period $r=6$
- Since 6 is even and $2^{6 / 2}=8 \neq 20$, we continue \qquad
- $\operatorname{GCD}(8-1,21)=7$ and $\operatorname{GCD}(8+1,21)=3$ \qquad
- The factors of 21 are 3 and 7 .
\qquad
29

OTHER QUANTUM Algorithms

- Many problems can be reduced to a computation of a function f.
- The ability to compute f at all values of x in $\mathrm{O}(1)$ allows Q algorithms to extract global features and patterns in f (such as its period) quickly. \qquad
- This breaks all cryptosystems that rely on hiding these features behind long computations.
- It also speeds up the process of exhaustively trying all keys for symmetric cryptosystems. \qquad
- And fo finding pre-images of hash functions.
\qquad

31

32

