Hash Functions

EECS
APPLIED CRYPTOGRAPHY

CRYPTOGRAPHIC
HASH FUNCTIONS

PrROF H ROUMANI

/
Dept. of Electrical Engineering and Computer Science, York University hssonDE

WHAT IS A HASH FUNCTION?

Function h: x = y=h(x) maps a message of an
arbitrary size to a fixed-size (n) bit sequence.
h

= Manifestly Many-to-One

|domain| = oo, |range| = 2" /\
= Fast to compute (by /W and H/W)

Often used on large inputs

= Digests the message
A single bit flip will likely not lead to a collision

Explore the md5sum and sh1sum Linux commands.

EECS3481/HR

Hash Functions

HASH viIA JCE

MessageDigest md = MessageDigest.getinstance("<algo>");
byte[] hash = md.digest(message expressed as byte[]);

ALGORITHM | _GROUP | _DIGEST | _BLOCK

MD5 MD 128 512
SHA-1 SHA-1 160 512
SHA-224 SHA-2 224 512
SHA-256 SHA-2 256 512
SHA-512 SHA-2 512
SHA3-256 SHA-3 256
SHA3-512 SHA-3 512

WHAT IS A CRYPTOGRAPHIC HASH FUNCTION?

It is a hash function with one or more of these properties:
. Pre-image Resistance (one-way-ness)
Given y, infeasible to find any x: h(x) =y

. 2" Pre-image [Weak Collision] Resistance
Given any x1, infeasible to find x2#x1: h(x1) = h(x2)

. Strong Collision Resistance
Infeasible to find any x1, x2 pair (x2#x1): h(x1) = h(x2)

ONE-WAY / WEAK / STRONG VENN DIAGRAM

EECS3481/HR

Hash Functions

THE | IN CIA

Confidentiality v

How about the integrity of

Content?

Sender? Can symmetric or
(aka AUTH) asymmetric Crypto
(as-is / augmented)

ing?
Sending: come to the rescue?

(aka Non-Repudiation)

Time of Sending?
(aka Freshness)

No, encryption does not automatically provide integrity.
The third building block is needed.

CONTENT INTEGRITY |

Source A -« Destination B——»|

e Compare
r K ERMIHOD) K/
® 00

@

Compare

7/
E(PR, HOD)

EECS3481/HR

Hash Functions

CONTENT INTEGRITY Il

= Digest = the Hash

AKA tag, checksum, or PRF (Pseudo-Random Function)

® MAC (Message Authenticated Code)
Encrypt digest with a secret key: MAC = E[K, h(m)]

= HMAC

Combine digest with a secret key
h[K1 |1 h(K2 ;1 m] where K1 and K2 are derived from K

= Signature
Encrypt digest with a private key.
For RSA =[h(m)]9modn

SENDER INTEGRITY (aka AUTHENTICATION)

= Symmetric Crypto

Ensures auth but can repudiate and no freshness

Challenge-Response

Alice sends nonce n to Bob; he returns E(k, n) or HMAC(k, n).
For mutual auth, she returns E(k, f(n)) or HMAC(k, f(n)). Can
still repudiate but ensures freshness.

Asymmetric Crypto
Alice signs a nonce (encrypts its hash with her private key
and sends it. This yields auth. + freshness + non-repudiation.

TIME INTEGRITY [DONE AT THE MESSAGE OR PROTOCOL LEVEL]

Sequence Numbers
Adds session overhead: a counter per party.

Timestamps
Requires frequent clock synchronization and tolerance to
network delays (by providing time windows).

Request-Response Nonce
Ensures "freshness" with an unpredictable, random nonce.
See Challenge-Response in previous slide.

EECS3481/HR

Hash Functions

HASHING APPLICATIONS (gevonD MESsAGING)

= Software Download
Provide a link to S/W and post its hash on a read-only site.

Password Storage Best-Practice
Rather than storing the password, store only its hash.

Blob Indexing, Fingerprinting, and Caching

Use the blob’s hash as a key.

Online Bidding (Zero-Knowledge)
Blind/Salt your bid then hash it.

Blockchain Immutability and Mining
Each block has the hash of its predecessor. Proof of work
thru hash constraints, e.g. < 2254,

EXERCISES

For each of the applications shown, what is the key property of
the hashing function (Oneway/Weak/Strong)?

Software downloads
Password storage
Bidding

Blob indexing

For each of the three use cases in Slide #9, critique the security
of the case in terms of:

Confidentiality

Content Integrity

Sender Integrity

Source Repudiation

ATTACKS

EECS3481/HR

Hash Functions

BIRTHDAY ATTACK

X people in a room. What is the probability W of at
least one sharing your birthday?

X people in a room. What is the probability S of at
least two sharing a birthday?

S = 1—exp(-x?/2N) where N=365

To achieve a probability of more than 50-50, we need
x >= 1.177*sqrt(N)

>> Only 272 evals to find collisions in an n-bit hash ! <<

Example: to fabricate a message, make 272 variations in the
real message and 2" of the fraudulent. Prob(match) > 50%

MESSAGE FABRICATION EXAMPLE

Dear Anthony.

[PLIIEEE <o sntromce {3%,50) [mitrea)

chief our)

Barton. the [outy Miointea) [SB5} devellery buyer for (22

sorthern (FEEZEE") (oe3fiter] - meffAL D) over ()
responeibitisy for (e Sha o onr snterests sn (ESHE I JovETY)

i the (2555} - mrense (DY mam (TR nere ne ("LETY

to 55 the most {709 | lines for the (B} end of tne

market. me ix to xeceive on our benair [[ZZEIT) of the

(oo
) o,
(oSt (RS 2RUE) prosmess. (i) o » (A0

cazzy)

} = sionea copy ot wnis [,

appended
as proof of identity. An order with his signature, which is (JPPSRded)

{57322 you to charge the cost to this company at the o, S0T5:00}

ssaress. we {117) expect that cur {LS7SL} of orers will incresse in

the {©USH9) year ana (S35 tnat the new apposntment will 25}

Iy to both our comantes.

EECS3481/HR

Hash Functions

Toy EXAMPLE

Z
[Esssssssssssnnnn] [usssssssEssnnns}]

XOR with 1-bit rotation o the right XOR of every 16-bit block

APPROACHES

= FORMULA-BASED
Examples: y = x mod n or 2x2 mod n

= |TERATIVE BLOCK COMPRESSION
Examples: Merkle—-Damgard (SHA1/2)

= SPONGE
Examples: Keccak (SHA3)

MERKLE-DAMGARD COMPRESSION

Used in MD5, SHA1, and SHA2

Padding(MESSAGE)

| Block1 |Blcd<2 |Block3 | Block4 | Block5 | Blocksl

final hash

For example, you can use any symmetric cipher in the
CBC mode. IV1 seeds the CBC while IV2 seeds the keys.
The ciphertext of each block is the key for the next.

EECS3481/HR

Hash Functions

Used in SHA3 (224-512)

TYPICAL KECCAK F FUNCTION

How: TYPICAL f OPERATIONS

Ch(e,f,g) = (e AND f) XOR (NOT e AND g)

Maj(a,b,c) = (a AND b) XOR (a AND c) XOR (b AND c)
5(a) = ROTR(a,28) XOR ROTR(a,34) XOR ROTR(a,39)
3(e) = ROTR(e,14) XOR ROTR(e,18) XOR ROTR(e,41)

+ = addition modulo 2264

K; = a 64-bit additive constant

W, = a 64-bit word from the current 512-bit input block
W = 0g(Wt2) + Wiy + 01(Wegs) + W16 (t = 16...79)

oo = ROTR(1) xor ROTR(8) xor SHR(7), o1 = ROTR(19) xor ROTR(60) xor SHR(6)

EECS3481/HR

