
Hash Functions

EECS3481/HR 1

APPLIED CRYPTOGRAPHY

PROF H ROUMANI
Dept. of Electrical Engineering and Computer Science, York University

1

Some figures from Cryptography and Network Security, W. Stallings, Prentice-Hall

2

3

Function h: x → y=h(x) maps a message of an
arbitrary size to a fixed-size (n) bit sequence.

§ Manifestly Many-to-One
|domain| = ∞, |range| = 2n

§ Fast to compute (by S/W and H/W)
Often used on large inputs

§ Digests the message
A single bit flip will likely not lead to a collision

Explore the md5sum and sh1sum Linux commands.

h

3

Hash Functions

EECS3481/HR 2

4

ALGORITHM GROUP DIGEST BLOCK

MD5 MD 128 512

SHA-1 SHA-1 160 512

SHA-224 SHA-2 224 512

SHA-256 SHA-2 256 512

SHA-512 SHA-2 512 1024

SHA3-256 SHA-3 256 1088

SHA3-512 SHA-3 512 576

MessageDigest md = MessageDigest.getInstance("<algo>");
byte[] hash = md.digest(message expressed as byte[]);

4

5

It is a hash function with one or more of these properties:

1. Pre-image Resistance (one-way-ness)
Given y, infeasible to find any x: h(x) = y

2. 2nd Pre-image [Weak Collision] Resistance
Given any x1, infeasible to find x2≠x1: h(x1) = h(x2)

3. Strong Collision Resistance
Infeasible to find any x1, x2 pair (x2≠x1): h(x1) = h(x2)

hx1

x2

5

6

W

S
O

6

Hash Functions

EECS3481/HR 3

7

Confidentiality✅
How about the integrity of

§ Content?
§ Sender?

(aka AUTH)

§ Sending?
(aka Non-Repudiation)

§ Time of Sending?
(aka Freshness)

8

Can symmetric or
asymmetric Crypto
(as-is / augmented)
come to the rescue?

No, encryption does not automatically provide integrity.
The third building block is needed.

8

9

9

Hash Functions

EECS3481/HR 4

10

§ Digest = the Hash
AKA tag, checksum, or PRF (Pseudo-Random Function)

§ MAC (Message Authenticated Code)
Encrypt digest with a secret key: MAC = E[K, h(m)]

§ HMAC
Combine digest with a secret key
h[K1 || h(K2 || m] where K1 and K2 are derived from K

§ Signature
Encrypt digest with a private key.
For RSA = [h(m)]d mod n

10

11

§ Symmetric Crypto
Ensures auth but can repudiate and no freshness

§ Challenge-Response
Alice sends nonce n to Bob; he returns E(k, n) or HMAC(k, n).
For mutual auth, she returns E(k, f(n)) or HMAC(k, f(n)). Can
still repudiate but ensures freshness.

§ Asymmetric Crypto
Alice signs a nonce (encrypts its hash with her private key
and sends it. This yields auth. + freshness + non-repudiation.

11

§ Sequence Numbers
Adds session overhead: a counter per party.

§ Timestamps
Requires frequent clock synchronization and tolerance to
network delays (by providing time windows).

§ Request-Response Nonce
Ensures "freshness" with an unpredictable, random nonce.
See Challenge-Response in previous slide.

12

12

Hash Functions

EECS3481/HR 5

13

§ Software Download
Provide a link to S/W and post its hash on a read-only site.

§ Password Storage Best-Practice
Rather than storing the password, store only its hash.

§ Blob Indexing, Fingerprinting, and Caching
Use the blob’s hash as a key.

§ Online Bidding (Zero-Knowledge)
Blind/Salt your bid then hash it.

§ Blockchain Immutability and Mining
Each block has the hash of its predecessor. Proof of work
thru hash constraints, e.g. < 2254.

13

14

For each of the applications shown, what is the key property of
the hashing function (Oneway/Weak/Strong)?

§ Software downloads
§ Password storage
§ Bidding
§ Blob indexing

For each of the three use cases in Slide #9, critique the security
of the case in terms of:

§ Confidentiality
§ Content Integrity
§ Sender Integrity
§ Source Repudiation

14

15

Hash Functions

EECS3481/HR 6

§ x people in a room. What is the probability W of at
least one sharing your birthday?

§ x people in a room. What is the probability S of at
least two sharing a birthday?

§ S ≈ 1 – exp(-x2/2N) where N=365
§ To achieve a probability of more than 50-50, we need

x >≈ 1.177*sqrt(N)

16

>> Only 2n/2 evals to find collisions in an n-bit hash ! <<
Example: to fabricate a message, make 2n/2 variations in the
real message and 2n/2 of the fraudulent. Prob(match) > 50%

16

17
F igu re fro m C ryp to gra p h y a n d N e tw o rk Se cu rity , W . Sta llin gs, P re n tice -H a ll

17

18

Hash Functions

EECS3481/HR 7

19

19

20

§ FORMULA-BASED
Examples: y = Σx mod n or Σx2 mod n

§ ITERATIVE BLOCK COMPRESSION
Examples: Merkle–Damgard (SHA1/2)

§ SPONGE
Examples: Keccak (SHA3)

20

21

For example, you can use any symmetric cipher in the
CBC mode. IV1 seeds the CBC while IV2 seeds the keys.

The ciphertext of each block is the key for the next.

f f f f f f

Used in MD5, SHA1, and SHA2

21

Hash Functions

EECS3481/HR 8

22

Used in SHA3 (224-512)

f f f f f

22

23

23

24

Ch(e,f,g) = (e AND f) XOR (NOT e AND g)

Maj(a,b,c) = (a AND b) XOR (a AND c) XOR (b AND c)

∑(a) = ROTR(a,28) XOR ROTR(a,34) XOR ROTR(a,39)

∑(e) = ROTR(e,14) XOR ROTR(e,18) XOR ROTR(e,41)

+ = addition modulo 2^64

Kt = a 64-bit additive constant

Wt = a 64-bit word from the current 512-bit input block

Wt = σ0(Wt-2) + Wt-7 + σ1(Wt-15) + Wt-16 (t = 16…79)

σ0 = ROTR(1) xor ROTR(8) xor SHR(7), σ1 = ROTR(19) xor ROTR(60) xor SHR(6)

24

