

1

THE IDEA

Alice and Bob never need to meet!

- Bob chooses two keys: a public and a private one.
- Everyone knows the public key (critical).
- Only Bob knows the private key (*critical*).
- Alice encrypts with Bob's public key and sends.
- Upon receipt, Bob decrypts with his private key.
- Most popular: RSA

2

USE CASE

- I know Amazon's public key

- I use it to encrypt my credit card and send the ciphertext
- Only Amazon can decrypt

Inefficient but you get confidentiality w/o a prior meeting. Vital for eCommerce.

USE CASE, CONTINUED

Q

But how does Amazon encrypt the response (I don't have a public/private pair)?

Α

Augment with symmetric crypto: generate a random secret key (e.g. AES) for session and send it to Amazon encrypted with its public key. Afterwards, the entire session is secure.

By-Product: Efficiency!

4

Algorithms

- 1. RSA (Factorization)
- 2. Diffie Hellman (Discrete Log)
- 3. El-Gamal (Discrete Log)
- 4. ECC (Elliptic Curve)
- 5. NTRUE, Paillier, Cramer-Shoup

Classification: Information-Theoretic, Computationally, Provably, or Practically Secure Algorithms

5

RSA IS COMPUTATIONALLY SECURE

Deriving the private from the public amounts to factoring

What are the factors of: [100 digits]

 $15226050279225333605356183781326374297180681149613\\80688657908494580122963258952897654000350692006139$

They are: [50 digits]

37975227936943673922808872755445627854565536638199

and: [50 digits]

40094690950920881030683735292761468389214899724061

See http://en.wikipedia.org/wiki/RSA_numbers#RSA-10

7

RSA – WHAT

- Terminology modulus: n (public), public exponent: e, private exponent: d
- The Plaintext
 Express as a (big) integer m < n (use mode of op if m >= n)
- Algorithm
 Encryption function E: c = m^e mod n
 Decryption function D: m = c^d mod n

8

RSA EXAMPLE

```
e = 7, d = 103, n = 143

m ∈ {PT}, c ∈ {CT},

c = E(m) = m<sup>7</sup> % 143

m = D(c) = c<sup>103</sup> % 143

For example,

if m = 2 → c = E(2) = 128

if c = 128 → m = D(128) = 2
```

RSA – How

- 1. Pick two large primes p and q. n = pq
- 2. Compute phi = (p-1)(q-1)
- 3. Pick phi > e > 1 such that GCD(e, phi) = 1
- 4. Compute d = inverse of e mod phi
- 5. Destroy p, q, and phi
- 6. Make n,e public; keep d private

10

11

MATHEMATICAL PRELUDE

- What is a prime number?
- How many primes less than x? \cong x/lnx
- How to Add, Subtract, and Multiply mod n?
- How to Divide mod n?
- Exponentiate mod n: direct, recursive, squaring
- Exponentiate Faster: Fermat and Euler

12

13

PREA – WHY • nove the algorithm if m does not divide n $c = m^e$ and GCD(m, n) = 1 $c^d = m$ **•** notation of the proof if m [n] No that this case is very unlikely, why? Notation of the proof is m is a multiple of p or q but not both to the solution.

14

SELECTED RSA ATTACKS

- Leaked Key Spec For example, if we know q, we can compute p, phi, hence d.
- Very Low m and e Take the e'th root if mod hasn't kicked in → must pad
- Chosen Ciphertext Given c, we can find m as follows: choose c' = c * 2^e and ask the engine to decrypt. This yields 2m and thus m.
- Short Plaintext
 Given a short m such as a 56b DES key, finding it given c and e
 requires 10¹⁷ trials. But if we assume m=xy then we can sit in
 the middle in between cx^e and y^e (x,y in 1...10⁹)

15

PRIMALITY (COMPOSITENESS) TESTING I

The Fermat Test

Simply compute $a^{r-1} \pmod{1}$. If not 1 then r is not prime, else the test fails (and we say r is pseudoprime for base a).r=35 is pseudoprime with base 29, but not with base 2. Carmichael numbers (561, 1105, ...) are pseudoprimes with every base. When Fermat succeeds, it doesn't tell us how yo factor.

The "Square-Root" Test

If $x^2 \equiv_r y^2$ and $x \models_r \pm y$ then r is composite; factor=GCD(x-y, r). If this factor is 1 then x=-y and if it is r then x=y and both are contrary to assumption. Hence, it is a non-trivial factor of r. This shows compositeness and provide the factors. $12^2 = {}_{35}2^2$ proves that 35 is composite with factor GCD(10,35)=5.

16

PRIMALITY TESTING II

Miller-Rabin Test

Start with Fermat. If it fails, recast it as a square root test with e=(r-1)/2 since r is odd. If a^e is not ∓ 1 then composite; if = 1 then repeat; and if = -1 then inconclusive. Try Carmichael 561 with base 2, and you can show it composite and find factors. $2^{560}=1$, $2^{280}=1$, $2^{140}=67 \Rightarrow GCD(2^{140}-1,561)=GCD(66,561)=11$. If inconclusive, it is a strong pseudoprime for that base.

Monte Carlo Prime Generation

Start with a random with the desired size and increment by 2. Test each by generating s random bases and do M-R on each. Probability of a false positive is % per base. Certainty = $1-(\%)^{s}$.