
Resource Hints in HTML5:
A New Pandora’s Box of Security Nightmares

 N. Vlajic, X. Y. Shi, H. Roumani, P. Madani
Department of Electrical Engineering and Computer Science

York University, Toronto, Canada
vlajic@cse.yorku.ca, xueshi@my.yorku.ca, roumani@cse.yorku.ca, madani@cse.yorku.ca

ABSTRACT
1 To date, much of the development in Web-related

technologies has been driven by the users’ quest for ever faster
and more intuitive WWW. One of the most recent trends in this
development is built around the idea that a user’s WWW
experience can further be improved by predicting and/or
preloading Web resources most likely sought by this user,
ahead of time. Resource hints is a set of features introduced in
HTML5 and intended to support the idea of predictive
preloading in the WWW. Unfortunately, as the very
actualization and the present use of the resource hints have
been almost exclusively driven by the speed and end-user
experience in mind, the opportunities for their misuse in terms
of other user-related metrics (user privacy and reputation, as
well as business analytics) appear to be considerable.

In this article, we outline four different scenarios (i.e., attacks)
in which the resource hints end up turning the browser into a
dangerous tool that acts without the knowledge of and/or
against its very own user. What makes these attacks
particularly concerning is the fact that they are extremely easy
to execute, and they do not require that any form of client-side
malware be implanted on the user machine. While one of the
attacks is (just) a new form of the well-known cross-site request
forgery attacks, the other attacks have not been addressed
much or at all in the literature. Through this work, we ultimate
hope to make the wider Internet community critically rethink
the way the resource hints are implemented and used in today’s
WWW.

CCS CONCEPTS
• Security and privacy → System security; Browser security
• Security and privacy → Software and application security;
→ Web application security

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

KEYWORDS
resource hints, unsolicited Web requests, user privacy, user
reputation, browser forensics, Web attacks, HTML5, Chrome

1 INTRODUCTION
With the ever-growing importance and prevalence of

WWW-based services and applications, we are becoming
increasing reliant on the use and performance of Web browsers
– software applications that allow users to access, traverse and
retrieve the WWW resources. And, while in the past Web
browsers were almost exclusively built for and used on desktop
and laptop computers, nowadays any device capable of
connecting to the Internet (e.g., mobile phones, smart watches,
wearable tracking devices) are likely to host one or multiple
Web browsers. In fact, the modern-day dilemma is not so much
whether a Web browser should be available on an Internet-
enabled device (regardless of it size and capability), but what
can be done to make the performance of that browser faster
and more user friendly.

Users’ quest for ever faster and more intuitive WWW has
been the driving force behind the evolution of Web-browser
technology as well as numerous Web-related protocols. One of
the most recent stages in this evolution is driven by the idea
that a user’s WWW experience can further be improved by
predicting and/or preloading Web resources most likely
sought by that particular user.

One speci�ic mechanism that was recently introduced in
order to make this idea of ‘predictive preloading’ possible is the
so-called resource hints feature in HTML5. In particular,
resource hints is a term that covers four different types of
resource (pre)loading: preconnect, dns-prefetch, prefetch and
prerender – all four being implemented as a relation (rel)
type/attribute of HTML5’s Link Element <link> [1]. When
found in a Web-page (i.e., HTML5 document) resource hints are
intended to instruct the browser to get hold of resources that
are related to or are part of the most likely next-page

ARES '17, August 29-September 01, 2017, Reggio Calabria, Italy
© 2017 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-5257-4/17/08…$15.00
http://dx.doi.org/10.1145/3098954.3104046

mailto:vlajic@cse.yorku.ca
mailto:xueshi@my.yorku.ca
mailto:roumani@cse.yorku.ca
mailto:madani@cse.yorku.ca

ARES’17, August 2017, Reggio Calabria, Italy N. Vlajic et al.

2

navigation, ahead of time. Thus, if/when the user actually
decides to request the given page, the respective resources will
be simply pulled out from the ‘background’, giving an illusion
of instantaneous (near zero-delay) retrieval.

Now, an average Web user is likely to consider the
resource hints features useful, as they undoubtedly have the
potential to facilitate faster browsing experience. As a result, in
many browser types resource hints are enabled ‘by default’.
This - combined with the fact that users generally tend to keep
the default settings of their applications unchanged [3] - further
implies that the execution of resource hints is likely to be
enabled in a signi�icant number, if not the majority, of browser
instances currently used in the Internet.

While we do not intend to question the practical
usefulness of resource hints from the performance/speed point
of view, the work presented in this paper seeks to address the
potential negative implications of their use. Namely, the
resource hints are generally designed to be executed without
the user’s direct involvement (i.e., knowledge or approval) and
in an obscure ‘behind the scenes’ manner. And even though this
un-intrusiveness has its obvious advantages when it comes to
speed and convenience, it can also be easily misused - both
intentionally and unintentionally - by turning a browser into a
dangerous tool that acts without the knowledge of and/or
against its very own user. The goal of our work is to bring
awareness to these possibilities, and to make the wider
Internet community rethink the way resource hints are
implemented and used in today’s WWW.

The reminder of this article is organized as follows. First,
we discuss the signi�icance and implications of using IP
addresses as a means of identifying and tracking WWW users –
a common Internet practice that is a precursor to the problem
discussed in this article. Then, we provide a detailed overview
of the four resource hints features/tags and present some of
our experimental results concerning the execution of these tags
in Google Chrome. Subsequently, we outline four different
scenarios in which resource hints have the potential to
negatively impact the user’s security, reputation, and business
operation. Finally, we close the article with conclusions and
recommendations for future research.

2 BACKGROUND AND MOTIVATION

2.1 Relation Between a User and His
Computer/Browser

As today’s world grows ever more reliant on the WWW,
the boundaries between humans and their respective Internet-
enabled devices and browsers are becoming increasingly
blurred. Namely, in many disciplines it has become a common
practice to assume that a user’s device and browser are nothing
but a mere extension of the user, and their only mission is to
carry out the tasks explicitly requested by the user.
Consequently - in all but cases of a verifiable device/browser
infection by a computer malware - the user may be considered
fully accountable for actions or requests executed by their
device/browser.

The concepts of user tracking and Web-related forensics
are perhaps the best illustration of how tight the ‘coupling’
between users as persons and their device/browser is. For
example:

• In user tracking, the IP address and cookies
associated with a user’s device (i.e., browser) are used to
identify that particular user in the ‘on-line world’.
Subsequently, all observed Web requests that happen to carry
those particular IP address and/or cookies are assumed to be
generated with the full knowledge and intent of the given user
and, as such, are used to track the user’s online behavior as well
as gauge their interest in different product and services [4].
User tracking mechanisms put relatively little (if any) effort in
distinguishing between genuine user requests and those that
were automatically generated by the user’s browser.

• The goal of Web-related forensics is to gather
information about which Web sites and files a user has
accessed while browsing the WWW, in order to prove or
disprove a claim of misconduct. The places where forensics-
related artifacts are typically collected include: a) the browser
history and cache on the user’s device (if accessible), and/or b)
the log files of the edge gateway that connects the user to the
Internet, and/or c) the log files of the Web server(s) hosting the
disputed files. If any evidence of the disputed files being
accessed through the user’s device/browser (while in the
user’s possession) is found in either a) or b) or c), the user
himself could be held responsible – even without an explicit
proof that the user, not the browser, was the one who actually
initiated those requests.

The study presented in this article is motivated by the fact
that the resource hints features outlined in the preceding
section, when combined with our tendency to assume that
devices and browsers are nothing but innocuous and
trustworthy ‘extensions’ of their owners/users, can lead to a
number of potential misuses. To lay a foundation for further
discussion of this issue, we proceed by providing an outline of
a typical WWW client-server architecture and its most
significant elements and interactions as pertaining to our
study.

2.2 Typical WWW Client-Server Architecture
The below figure outlines the most significant elements of

a typical WWW client-server architecture, and those include:
a) The client, which in the case of the WWW is a Web

browser running on the user’ device. The device could be either
‘fixed’ (e.g., a desktop computer) or ‘mobile’ (e.g., a laptop,
tablet or smartphone), and is uniquely identified either with a
static IP address (common scenario in fixed enterprise
networks) or a dynamic IP address (common scenario in
cellular and public WiFi networks).

Resource Hints in HTML5 ARES’17, August 2017, Reggio Calabria, Italy

 3

Figure 1: Typical WWW Client-Server Architecture

b) The edge network, which provides physical

connectivity between the user device and the rest of the
Internet. This could be either an enterprise edge network (e.g.,
when the device is used at work), or an ISP edge network (e.g.,
when the device is used at home). In either case, the edge
network typically contains one or multitude of specialized
devices which engage in monitoring and/or logging of the
passing traffic (e.g., gateway routers, firewalls, proxies, …).

c) The Internet core, which is responsible for routing
packets, including those that carry client-server HTTP requests
and responses, from their source to the intended destination.

d) The server, which in the case of the WWW is a machine
capable of hosting and sharing Web-pages (i.e., files) over the
Internet, and typically performs continuous and detailed
logging of all incoming traffic.

Now, whenever a particular client requests a Web-page
from a particular server (by means of a GET HTTP request),
various types of ‘artifacts’ related to this event get recorded at
various points along the communication path between the two
entities. For example:

i) On the client side, the URL of the requested page gets
recorded in the browser history, while the resources that the
requested page is made of get stored in the browser cache
(once they actually arrive from the server). As earlier indicated,
browser history and cache are of great significance from the
perspective of Web forensics, since they can help prove that a
particular Web request has taken place. Nevertheless, the main
challenge of relying on browser history and cache as forensics
evidence is that they are owned by and directly accessible to
the user, and as such could be easily modified or deleted
(intentionally or unintentionally) or simply rendered
unavailable if the user decides to deny access (in which case a
search warrant is required to be able to access these
resources).

ii) The given HTTP request is likely recorded, together
with the traffic of other users, in the logs of the specialized
devices in the edge network (gateway, firewall or proxy). It
should be noted, however, that edge networks are not always
mandated to record these logs, hence from the forensics point
they may have limited practical relevance.

iii) The intermediate routers in the Internet core could
also keep a record of the given HTTP request in their own traffic
logs. However, due to the high volumes of passing/recorded
traffic, these logs are generally kept for a very short interval of
time. Consequently, their practical use as forensics evidence is
rather limited, similar to ii).

iv) The server logs is the final place where the given HTTP
request gets recorded. In general, server logs have particularly
important significance from the forensics point of view, for two
main reasons. Firstly, most organization tend to retain their
Web server logs over long periods of time. Secondly, in most
organizations Web server logs are well protected and could
only be altered by the site administrator. Hence, when a record
of a Web request arriving from a particular client/host (i.e., IP
address) is found in these logs, it is impossible to deny the
authenticity of the given event - unless one can prove that the
logs were altered (e.g.) by a malicious site administrator or
some form of malware implanted on the server system.

With the above facts in mind, we further focus on the
following fundamental question: for an HTTP request
generated by the client/browser (e.g., while responding to a
resource hint tag/command found in a rendered Web-page), is
there a way of determining whether the given request was
generated a result of an intentional action by the user, or
perhaps it was generated without the user’s knowledge and
approval? Put another way, we are set to examine whether the
artifacts collected along the given communication path provide
enough information to tell these two different types of requests
apart.

3 RESOURCE HINTS EXECUTION IN CHROME
In this section we provide a more detailed look at the four

different types of resource hints mechanisms that can prompt
a browser to perform various forms of resource preloading,
without the user’s explicit knowledge and intervention.

3.1 Resource Hints in HTML5
Hypertext Markup Language (HTML) is a well-known and

widely used interpreted tagged markup language that enables
creation of Web-pages (hypertext documents). In the most
recent version of the protocol (HTML5) a special new set of
features have been introduced in order to support the idea of
‘instant’ (zero-delay) Web-page load. Namely, as pointed in [6]
and [7], a browser that starts downloading a Web-page only
after the page has been explicitly requested by the user will
inevitably result in substandard browsing experience that is
riddled with various types of network delays. (These delays
include: DNS lookup delay, TCP handshake delay, SSL
negotiation delay, delay to obtain base HTML page … [5], [6].)
The only way to spare the user from experiencing the
browsing/network delays is by trying to anticipate their
requests ahead of time, and then preload the most critical
resources associated with those requests even before the
actual ‘click on the link’ action occurs. That way, the resources

ARES’17, August 2017, Reggio Calabria, Italy N. Vlajic et al.

4

will be readily available when the user actually requests them,
giving an illusion of an instantaneous (zero-delay) download.

Now, the idea of ‘instant’ browsing is not entirely new.
This concept was originally supported through the
implementation of Web-cache – a memory location where the
resources of previously visited Web-pages are stored, allowing
that these resources be instantaneously retrieved whenever
the user decides to subsequently revisit them. Unfortunately,
as such, Web-cache is of no use when it comes to retrieving new
pages that have not been previously requested. To enable zero-
delay browsing of pages that are to be visited for the first time,
or pages that have been purged or expired from the cache,
HTML5 has come up with a set of features commonly referred
to as resource hints.

According to [1], there are four different type of resource
hints provisions in HTML5.

a) dns-prefetch is a resource hint that can be used to

suggest a browser to perform a DNS prefetch (i.e., IP lookup)
for a particular hostname. The following is a situation where
this feature might be useful in practice. Imagine the user is
currently visiting page_A.html hosted on server_1.com, and
there is a high likelihood that the Web-page the user is going to
visit next is page_B.html located on another server
(server_2.com) – as illustrated in Figure 2. To expedite the
loading of page_B.html (if and when the user requests it), the
below tag could be placed in the <head> section of page_A.html:

<link rel=”dns-prefetch” href=”//server_2.com”>

That way, the browser would start performing the DNS
lookup for sever_2.com right away (while the user is still
viewing page_A.html), making sure that the IP address of
server_2 is obtained even before the user actually clicks on
http://server_2.com/page_B.html.

Figure 2: Linked pages hosted by different servers

b) preconnect is a resource hint option that can be used to

initiate an early connection with a Web server, which includes
the DNS lookup, TCP handshake, as well as optional TLS
negotiation. As such, preconnect clearly goes step further in

minimizing/masking networking delays relative to dns-
prefetch.

In the example of Figure 2, the following tag placed in the
<head> section of page_A.html would prompt the user’s
browser to establish an early (pre)connection with
server_2.com.

<link rel=”preconnect” href=”//server_2.com”>

Also, in the given example, the decision whether to use
preconnect or just dns-prefetch for server_2.com should be
closely tied to the actual probability that the user navigates to
page_B.html from page_A.html. Clearly, the higher this
probability, the more reasonable it would be to use the
preconnect resource hints option.

c) prefetch is a resource hint option that further builds on

the functionality of a) and b). Namely, in addition to performing
the DNS resolution and establishing a connection with a
particular server, prefetch also allows that some resources
(e.g., the base HTML file of a Web-page, images, JavaScript-s,
CSS-s, etc.) be downloaded from this server ahead of time and
stored in the browser cache. For example, in the scenario of
Figure 2, the following tag placed in the <head> section of
page_A.html would prompt the user’s browser to download
and cache the base HTML file of page_B.html – the key Web
resource (and the first one to be retrieved) during the
rendering of this page.

<link rel=”prefetch” href=”//server_2.com/page_B.html”>

Clearly, by allowing that whole parts of a page be obtained
by the browser - even before the page gets actually requested -
prefetch enables even further reduction in
networking/browsing delays. However, given the
communication and storage overhead associated with prefetch,
it is recommended that this resource hints option be used only
in cases when the probability that the user actually navigates
to a specific page is greater than in the case of a) or b).

d) prerender is the most encompassing resource hints

option - it allows not only that the base HTML file and all other
components of a page get preloaded ahead of time, but also that
the page itself gets fully laid out, its respective CSS-s applied
and JavaScript-s executed. Put another way, it is as if the page
is open in a hidden tab, and the moment the user navigates to
the page’s URL, the hidden tab is immediately swapped into
view [5]. As such, prerender is the only resource hints option
that can truly cut the browsing delay down to zero, giving an
illusion of truly instantaneous browsing.

In the scenario of Figure 2, the following tag placed in the
<head> section of page_A.html would prompt the user’s
browser to prerender (i.e., preload and preassemble) the entire
page_B.html.

<link rel=”prerender” href=”//server_2.com/page_B.html”>

Resource Hints in HTML5 ARES’17, August 2017, Reggio Calabria, Italy

 5

Now, it should be pretty clear that out of all four resource
hints options, the use of prerender is associated with the most
significant communication, storage and processing overhead.
Consequently, the use of this option should be reserved only for
cases when the navigation to a specific page is highly probable
if not absolutely certain.

The above suggestions are merely recommendations
pertaining to the resource hints options in HTML5 as outlined
by World Wide Web Consortium (W3C) [1]. Unfortunately, the
actual implementation of the resource hints options in real-
world browsers has neither been standardized nor mandated.
As a result, there has been a significant variation in the number
and actual implementation of different resource hints options
by different browser types. (For more see [6], [7], [8]). Given
that for the majority of Internet users Google Chrome happens
to be the browser of choice [2], our discussion focuses on this
particular browser type. Specifically, in the proceeding section,
we present some of our experimental results pertaining to the
behavior of Google Chrome when encountering different
resource hints options in the browsed pages.

4 EXPERIMENTAL SET-UP AND RESULTS
In order to gain a better understanding of how Google

Chrome deals with different HTML5 resource hints options
when encountering them in a browsed page, we have built an
experimental client-servers framework as outlined in Figure 3.
The ‘client’ in this framework is the latest version of Google
Chrome (Chrome v.57) running on a laptop PC. The ‘server’ is
set up on the Amazon Cloud (http://ec2-54-186-72-100.us-
west-2.compute.amazonaws.com) and hosts a repository of
test Web-pages. We have chosen to code the pages of this
repository in php instead of plain html in order to be able to
prevent their caching on the client side, as well as to be able to
implement and examine the general impact of cookies on pages
referenced in resource hints tags.

The test pages of our framework are grouped into two sets. The
pages of the first set are designed to be directly
visible/accessible to the user, and each of them hides one
resource hints option in its respective php/html code (A.php,
B.php, C.php, D.php). The other set is comprised of pages
referenced in the resource hints tags of the first set, and is not
intended to be directly visible/accessible to the user
(A_hidden.php, B_hidden.php, C_hidden.php, D_hidden.php).
With this structure, if the pages of the second set - or their
respective resources - ever get requested, that is a clear
indication that the browser itself (not the user) has triggered
those requests while processing the resource hints tags in the
pages of the first set. (Note that, because of the way resource
hints are intended to work as well as the way our framework is
designed, requests for the pages of the second set not only get
generated without the user’s direct knowledge and
involvement, but the user also never gets to know when those
resources actually arrive at their browser.)

Figure 3: Experimental framework for evaluation of
Chrome behavior when browsing pages with resource
hints options

Table 1: Artifacts collected on client and server side when resource hint options found in a Web-page

 browser-side
artifacts

server-side
artifacts

resource
hints

option

effect on
Chrome
history

effect on
Chrome

cache

effect on Chrome
DNS cache

effect on
cookies server side log

DNS-prefetch no effect no effect no effect no effect no GET request
received at the server

preconnect no effect no effect no effect no effect no GET request
received at the server

prefetch no effect
prefetched

page/resource
showed up in cache

showed up as a
subresource of the

calling web-site

cookies
created

a GET request for
prefetched resource/page

received at the server

(unless page/resource found in cache)

prerender no effect prerendered page
showed up in cache

showed up as a
standalone record

(same as a user
initiated visit)

cookies
created

a GET request for
prerendered page

received at the server

(unless page found in cache)

ARES’17, August 2017, Reggio Calabria, Italy N. Vlajic et al.

6

In our experimentation, we first performed intentional
requesting/retrieval of pages A.php to D.php (Figure 3)
through the client - Chrome v.57 browser operating on a
machine in our departmental network. Subsequently, we
examined the collected artifacts pertaining to these requests
both on the client and on the server side. The most significant
of our observations are presented in Table 1, and can be
summarized as follows:

1) The requesting of pages A.php and B.php (i.e., pages
that contain DNS-prefetch and preconnect resource hint
options in their respective HTML5 code) did not leave any
permanent artifacts related to A_hidden.php and B_hidden.php
- either on the client or on the server side. Such a result could
have been expected, as these two particular resource hints
options do not ‘trigger’ application-level preloading of
resources referenced in their <link> tags. Instead, DNS-
prefetch and preconnect facilitate only ‘lower level’ (DNS and
TCP) domain-name resolution and connection set-up.

2) On the other hand, the requesting of pages C.php and
D.php (i.e., pages that contain prefetch and prerender resource
hint options in their respective HTML5 code), did leave a
number of artifact related to C_hidden.php and D_hidden.php
on the client and on the server side. In particular:

2.a) On the client side, both (prefetched) C_hidden.php
and (prerendered) D_hidden.php were not only retrieved but
also ended up being stored in the browser cache. Furthermore,
a cookie associated with each of these pages was created and
placed in the browser’s cookie cache. Finally, a DNS record
pertaining to both pages was stored in the browser’s DNS
cache. All in all, the way the browsers went about retreiving
C_hidden.php and D_hidden.php was not much different from
the way A.php to D.php were retrieved – even though the latter
group of pages was explicitly requested by the user, while the
user had no way of knowing that the former group of pages was
ever requested and/or retrieved. (The only noticeable
difference between the two groups is that the retrieval of A.php
to D.php was recorded in the browser history, which was not
the case for C_hidden.php and D_hidden.php.)

2.b) On the server side, HTTP GET requests for both
C_hidden.php and D_hidden.php appeared in the server logs.
More importantly, these two requests looked identical to the
requests for pages A.php to D.php, in terms of their (HTTP)
content. In other words, based on what was recorded in the
sever logs, it was impossible to distinguish between the user’s
intentional requests - for A.php to D.php - and the requests that
were issued automatically by the browser without the user’s
knowledge and approval (for C_hidden.php and D_hidden.php).

Following the experimentation with the framework
outlined in Figure 3, we conducted another experimental study,
where the Web objects referenced in A.php to D.php were
pages hosted on another server. The observations concerning
the recorded artifacts in this experiment were identical to the
ones presented hereinabove (i.e., in Table 1).

Our experimentation also looked at the use of multiple
prerender and prefetch tags inside the same Web-page. Our
observation is that in case of multiple prerender tags in a Web-
page, only one of these tags is executed at the time, while the
respective (prerendered) page gets placed in the browser’s
RAM. (The likely reason why Chrome and other browser do not
allow simultaneous prerendering of multiple pages is to
prevent potential overloading of the browser’s RAM, which
would degrade the overall browser performance.) On the other
hand, there seem to be no limit on the number of prefetch tags
that get executed in a Web-page. Once retrieved, each of the
prefetched resources ends up being stored in the browser’s
cache.

4 RESOURCE HINTS IMPLICATIONS ON USER
PRIVACY, REPUTATION AND BUSINESS
PERFORMANCE

In this section, we present four different scenarios in
which resource hints are used as the main attack vector against
a targeted Web user. The key characteristics of all four attacks
is the fact they are extremely easy to execute, as they do not
require that any form of client-side malware be implanted on
the victim machine. The only precondition for their successful
execution is to be able to lure the targeted user (victim) into
visiting a specially crafted decoy Web-page. As indicated in
[10], there are numerous well-known and very effective
techniques which the attacker could deploy to lure a victim into
visiting a decoy Web-page – ranging from various site-
promotion techniques (e.g., in blogs and social media sites) to
the use of targeted phishing emails.

Scenario 1: Framing attack.
The term ‘framing attack’ was introduced in [10], and it

refers to a scenario in which false (digital) evidence is planted
on the victim’s computer, without requiring physical or remote
access to their machine and without involving any form of
client-side malware. The sole goal of this attack is to
incriminate or discredit the victim in the context of their social,
workplace, business or political life.

To provide an illustration of how a framing attack could be
accomplished by means of HTML5 resource hints, imagine a
situation where Trudy is a disgruntled employee working at a
research company. Trudy holds a special grudge towards Bob –
a manager that she directly reports to. As a form of revenge
against Bob, Trudy decides to format one of her upcoming
reports as an HTML5 document. Inside this document, she
‘hides’ several dozens (or more) of resource hint tags – each
prefetching a highly inappropriate (e.g., child pornography or
terrorism-related) Web-page. By means of JavaScript, Trudy
also ensures that the execution of each prefetch tag occurs at a
different point in time, thus mimicking the way a human user
would go about retrieving a sequence of such Web-pages.

The ‘reporting’ day has come, and Bob opens the
document that Trudy has referred him to. The (visible) content

Resource Hints in HTML5 ARES’17, August 2017, Reggio Calabria, Italy

 7

of the document seems very relevant, and Bob spends quite
some time viewing the document in his browser. Clearly, while
Bob is reading the visible content, his browser (in the
background) retrieves/prefetches the inappropriate pages
(i.e., hidden resource hints) one-by-one, as illustrated in Figure
4. Bob, obviously, remains completely unaware that these
downloads are taking place.

At the same or later point in time, the company’s Web-
content firewall generates an alert pointing to Bob’s machine
(i.e., his machine’s IP) as the source of requests for
inappropriate content. The company’s authentication system
verifies that the requests were generated while Bob was logged
in and using the machine. From the forensics point of view,
these pieces of evidence are often enough to ‘points fingers’ to
Bob, and hold him accountable.

Figure 4: Framing attack

Now, depending on how severe the company’s policy

pertaining to inappropriate use of resources is, Bob could
experience a whole range of possible outcomes – from
receiving a simple warning to facing serious disciplinary
actions and possibly termination. The only way Bob could avoid
these repercussions and clear his name is by providing
aggregate browsing-related artifacts from his computer
(spanning over a period of time before and after the actual
incident) to relevant authorities. While an adequate expert
analysis of these artifacts could potentially succeed in putting
‘all the pieces of the puzzle together’ and identify the actual
cause of the inappropriate requests, the implications on Bob’s
privacy could be significant - especially if Bob had used his own
personal device (as in the case of BYOD) to view Trudy’s page.
In addition, by the very virtue of being linked with actions that
are considered ethically and/or legally unacceptable, Bob is
likely to experience unnecessary scrutiny with all the
accompanying negative implications on his professional and
personal life. (The best illustration of this are the cases of Julie
Amero [12] and Michael Fiola [13]. These two people, in two
different instances, were wrongly charged with downloading of
child pornography. In both cases it was ultimately proven that
the downloading of the inappropriate material was caused by
malicious software and their respective names were cleared.

Still, as stated by both people, the conducted trials have had
lasting negative effect on their lives as well as the lives of their
families.)

According to our knowledge, [10] is the only other
research work that, in addition to introducing, has also studied
the actual mechanisms of executing a framing attack. The idea
specifically suggested in [10] is similar to the one outlined in
Figure 4, except that the obscure/decoy requests are not
generated via resource hint tags (prefetch of prerender) but
instead by means of two better known and more widely used
HTML tags - <iframe> and . However, as indicated in [10],
for these framing attacks to actually be successful, the attacker
needs to take extra measures towards ‘obscuring’ the
objects/Web-pages referenced in the decoy <iframe> and
 tags (i.e., make sure that they go unnoticed by the victim
once they are retrieved/rendered by the browser). Possible
approaches to ensuring that the decoy <iframe> and
objects remain ‘invisible’ include:1) minimizing their size to
0x0 pixels, 2) hide them under another overlaid iframe/image,
3) make them invisible through CSS (e.g., by setting their
display attribute to none). It should be noted, though, that the
same object obfuscation techniques are required and deployed
by many other types of browser-based attacks, such as
clickjacking and cross-site request forgery. These specific
attacks have been around for more than a decade, and as a
result, the majority of today’s Web-vulnerability scanning tools
(e.g., Burp [14]) are programmed to spot and block Web-pages
suspected of object obfuscation. Consequently, a framing attack
based on the use of <iframe> and decoy tags (as
proposed in [10]) could potentially be detected and prevented
by these tools. On the other hand, a framing attack based on the
use of HTML5 resource hints (as suggested in this work) would
virtually go unnoticed by these same scanning tools. Namely,
while a ‘malicious’ <iframe> and could be detected (i.e,.
labeled as such) by looking for signs of obfuscation, there are
no clear mechanisms or indicators which could help in
distinguishing between a benign and a malicious <prerender>
or <prefetch> tag. (Recall, the very purpose of these tags is to
facilitate ‘invisible’ preloading of Web object. Furthermore, the
objects are supposed to remain hidden until explicitly
requested by the user.)

Scenario 2: Targeted DoS Attacks.
Now, imagine that in the previously depicted story, instead

of tarnishing Bob’s reputation within their organization, Trudy
decides to execute her revenge by affecting the ‘outside’
reputation of Bob’s machine (i.e., IP address), with the ultimate
goal of having Bob’s IP address blacklisted and denied service.

In particular, imagine that Trudy knows of a Web-site that
Bob likes to frequently visit, such as the Web-site of his bank or
a specific news-agency Web-site. In that case, Trudy could hide
a very large number of prefetch references targeting this
particular Web-site (its various pages/resources) inside her
‘malicious’ Web-page, as illustrated in Figure 5. As many other

ARES’17, August 2017, Reggio Calabria, Italy N. Vlajic et al.

8

similar organizations, Bob’s bank is likely to perform
comprehensive intrusion detection monitoring of the incoming
Web traffic, in order to spot and blacklist all misbehaving users.
Given that the avalanche of requests coming from Bob’s
machine is very reminiscent of a denial of service (DoS) attack,
it is quite possible that Bob’s IP would end up on the bank’s
blacklist, at least for a period of time. Consequently, during that
period of time, even Bob’s legitimate requests would be
rejected (since coming from the same IP), and Bob would be cut
off from the online services of his bank. (We refer to this attack
as ‘targeted DoS’, as it ensures that one specific user is denied
service by one particular Web-site.)

Figure 5: Targeted DoS attack

Scenario 3: Cross-Site Request Forgery Attack.
Cross-site request forgery (CSRF) is a well-known type of

attack that occurs when a malicious Web-site causes a user’s
browser to perform an unwanted action on a trusted site for
which the user is currently authenticated [15]. More
specifically, CSRF attack requires that the user first gets
successfully authenticated to a legitimate Web-site (e.g., by
means of cookies), as illustrated in Figure 6. If following that
the user visits a malicious Web-page (shown in Figure 7), the
malicious page can force the user’s browser to make
unsolicited request towards the site for which the user is
currently authenticated. By default, the browser will attach the
legitimate previously set cookie(s) to each of the
unsolicited/malicious requests, which will make the server’s
job of distinguishing between genuine user requests and those
that were triggered by the malicious Web-page hard if not
impossible.

CSRF attack have been traditionally accomplished by
‘hiding’ the unsolicited HTTP requests of the malicious page
inside and <iframe> HTML tags, as in the case of the
framing attack described in [10]. However, we have already
explained that many of today’s Web-vulnerability scanning
tools are capable of detecting such ‘basic’ variants of CSRF
attacks, simply by looking for signs of or <iframe>
obfuscation. Consequently, from the attacker’s point of view,
hiding the unsolicited CSRF HTTP requests inside <prefetch>

and <prerender> tags is a viable and far more lucrative
alternative, as today’s Web-vulnerability scanning tools
generally do not look for signs of misuse in any of the four
resource hints options.

Figure 6: User authentication by means of cookies

Figure 7: CSRF attack following user authentication

(According to our knowledge, no previous work has

looked at the use of resource hints options in the context of
CSRF attacks. Our group has recently conducted a study on the
feasibility of CSRF attacks on amazon.ca and ebay.ca by means
of resource hints, which resulted in the discovery of open
vulnerabilities in both sites. The findings of this study are
currently under submission to [16].)

Scenario 4: Data-Analytics Pollution Attack.
(This particular type of attack has also not been previously

discussed in the literature. Its main aim is to impact the
performance of an on-line business by distorting its Web-site
based data analytics.)

As the premise for this attack, we imagine Trudy to be the
owner of a small business, and Alice to be her direct business
competitor. Both businesses have online presence which is
critical for the success of their operation. Namely, not only that
the two businesses advertise and sell their products through
their respective Web-sites, but they also heavily rely on the
Web (server-log) analytics to better understand where their
customers come from and what they are looking for.

In order to ‘pollute’ the logs of Alice’s Web server, and thus
negatively impact Alice’s business intelligence, Trudy has come
up with the following plan: In the Web-page(s) of her own Web-
site, Trudy has hidden numerous prerender and prefetch tags

Resource Hints in HTML5 ARES’17, August 2017, Reggio Calabria, Italy

9

referencing various (strategically chosen) pages from Alice’s
Web-site. Thus, whenever Trudy’s customers visit her Web-
site, their respective browsers end up generating a slew of
‘polluting’ requests towards Alice’s Web server – see Figure 8.
Obviously, because of the way the resource hints are intended
to work, Trudy’s customers will be completely unaware that
their browser has participated in a ‘data polluting’ attack. At the
same time, the performance of Trudy’s Web-site will remain
entirely unimpacted by the attack, as the retrievals of
prerender/prefetch resources from Alice’s Web-site will
always take a lower priority and occur only during the
browser’s idle times.

Figure 8:Data polluting attack

As for Alice’s ability to detect this attack and identify all the
polluting requests – the only piece of information that she
possibly could rely on is the referer field in the incoming HTTP
requests. (Referer field identifies the address of the Web-page
from which the user/browser has accessed, or moved to, the
current Web-page.) In the case of Trudy’s attack, this field
would be referring to the pages of her Web-site, thus indirectly
reviling the true origin of the ‘polluting’ requests. Though, if
Trudy wanted to make her attack particularly stealthy, she
could implement the following meta tag in the <head> section
of her Web-pages used to refer to resources in Alice’s Web-site:

<meta name=”referrer” content=”none”>

That way, HTTP requests arriving to Alice’s Web-site by
means of Trudy’s Web-pages would not contain any referral
data. Consequently, Trudy’s attack would remain virtually
undetectable.

6 CONCLUSIONS AND FUTURE WORK
The goal of this article is to bring awareness to a slew of

vulnerabilities that have been created with the introduction of
HTML5 resource hints. We have provided examples of specific
threats and attacks that are easy to mount and can have serious
implications.

In order to mitigate these risks, further work is warranted
and it can be structured within the general framework of
handling threats; namely, to deter and block, and failing that, to

be able to recover from an attack. These can be achieved by a
combination of one or more of the following measures:
1. Browsers should have an option to disable resource hints so
users can block potential attacks. Chrome provides such an
option but is set to "allow" by default.
2. Browsers should make resource hints transparent, so that
users are aware of them, without impacting the user
experience.
3. Discriminating browser-initiated loads from user-initiated
ones is currently done through the HTTP Purpose header,
which is not logged by most servers. We propose that this be
elevated to a request parameter (i.e., ?purpose=prefetch) so
that it can be readily available during forensics investigations.
4. Increase awareness, particularly amongst expert witnesses
and analysts, of the footprint left by resource hints. For
example, if a page appears in a browser's cache but not in its
history is a telltale sign that this was not a deliberate user-
initiated retrieval.

We plan to pursue some of these directions in future
works.

REFERENCES
[1] Resource Hints. W3C Working Draft, 27 May 2016. DOI=

https://www.w3.org/TR/resource-hints/
[2] StatCounter Global Stats. Top 5 Desktop, Tablet & Console Browsers

from Aug 2015 to Aug 2016. DOI=
http://gs.statcounter.com/?PHPSESSID=oc1i9oue7por39rmhqq2eou
oh0

[3] C. Arthur. Why the default settings on your device should be right �irst
time. theguardian.com, December 2013. DOI=
https://www.theguardian.com/technology/2013/dec/01/default-
settings-change-phones-computers

[4] M. Bichler. The Future of eMarkets: Multi-Dimensional Market
Mechanisms. Cambridge University Press, 2001.

[5] February 2016 Web Server Survey. Netcraft, February 2016. DOI=
https://news.netcraft.com/archives/2016/02/22/february-2016-
web-server-survey.html

[6] Ilya Grigorik. High Performance Networking in Google Chrome. January
2013. DOI= https://www.igvita.com/posa/high-performance-
networking-in-google-chrome/

[7] Ilya Grigorik. High Performance Browser Networking. O’Reilly, 2013.
[8] B. Jackson. Resource Hints – What is Preload, Prefetch and Preconnect?.

KeyCDN Blog. July 2016. DOI=
https://www.keycdn.com/blog/resource-hints/

[9] W3Tech Web Technology Surveys. Usage of Cookies for Websites.
September 2016. DOI= https://w3techs.com/technologies/details/ce-
cookies/all/all

[10] N. Gelernter, Y. Grinstein, A. Herzberg. Cross-Site Framing Attacks. 31st
Annual Computer Security Applications Conference (ACSAC’15). Los
Angeles, CA, USA. December 2015.

[11] G. Rydstedt, E. Bursztein, D. Boneh, C. Jackson. Busting Frame Busting:
a Study of Clickjacking Vulnerabilities on Popular Sites. IEEE
Symposium on Security and Privacy (S&P’10). Oakland, California, May
2010.

[12] PCWorld. The Julie Amero Case: A Dangerous Farce. Dec 2008. DOI=
http://www.pcworld.com/article/154768/julie_amero.html

[13] The Register. How malware frames the innocent for child abuse. Nov
2009. DOI=
https://www.theregister.co.uk/2009/11/09/malware_child_abuse_i
mages_frame_up/

[14] Burp. DOI=https://portswigger.net/vulnerability-scanner/
[15] Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet. OWASP,

March 2017. DOI= https://www.owasp.org/index.php/Cross-
Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

[16] A. Basit, N. Vlajic. CSRF Attack Using HTML5 Resource Hints: A New
Face of an Old Enemy. Submitted to 2017 IEEE Cyber Science and
Technology Congress.

