
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 3, JULY-SEPTEMBER 1997 201

Dynamic Free-Form Deformations
for Animation Synthesis

Petros Faloutsos, Michiel van de Panne, Member, IEEE,
and Demetri Terzopoulos, Member, IEEE

Abstract—Free-form deformations (FFDs) are a popular tool for modeling and keyframe animation. This paper extends the use of
FFDs to a dynamic setting. Our goal is to enable normally inanimate graphics objects, such as teapots and tables, to become
animated, and learn to move about in a charming, cartoon-like manner. To achieve this goal, we implement a system that can
transform a wide class of objects into dynamic characters. Our formulation is based on parameterized hierarchical FFDs
augmented with Lagrangian dynamics, and provides an efficient way to animate and control the simulated characters. Objects are
assigned mass distributions and elastic deformation properties, which allow them to translate, rotate, and deform according to
internal and external forces. In addition, we implement an automated optimization process that searches for suitable control
strategies. The primary contributions of the work are threefold. First, we formulate a dynamic generalization of conventional,
geometric FFDs. The formulation employs deformation modes which are tailored by the user and are expressed in terms of FFDs.
Second, the formulation accommodates a hierarchy of dynamic FFDs that can be used to model local as well as global
deformations. Third, the deformation modes can be active, thereby producing locomotion.

Index Terms—Physically based animation, free-form deformations, control synthesis, deformation models, Lagrangian
dynamics.

—————————— ✦ ——————————

1 INTRODUCTION
EFORMATIONS play an important role in computer
graphics, allowing mundane objects to assume inter-

esting, new shapes. Commercial animated films often de-
pict inanimate objects that come to life and need a way to
move as living creatures do. The dinner scene in Disney’s
animated feature film The Beauty and the Beast is a prime
example. The cutlery, pots, and other household objects
dance, sing, and perform like human actors. Their motions
are a result of smooth deformations of their original shapes.
Computer graphics can provide helpful tools for modeling
and animating such characters [1].

The free-form deformation (FFD) [2], essentially a
geometric spline deformation that is manipulable
through a lattice of control points, is a popular tool for
modeling and animating nonrigid objects [3]. Typically,
an object of interest is embedded within the spatial do-
main of the FFD and the object undergoes deformations
as the FFD control points are manipulated. Such anima-
tions can be tedious to create, however, because, typi-
cally, a large number of control points must be specified
manually at keyframes.

This paper generalizes conventional geometric FFDs
within a dynamic setting. We introduce the dynamic FFD
whose control points evolve automatically through time in
accordance with mechanical principles. In its basic form,
our formulation associates inertial and elastic properties
to an embedded solid object to simulate its passive nonrigid

motion. Our dynamic FFD representation employs defor-
mation modes which restrict the deformations of an object
to those expressible by a set of modal basis functions. The
animator can tailor the modes, thereby exercising control
over the range of shapes that occur during simulation.
Deformation modes yield an efficient dynamics simula-
tion, as each modal amplitude contributes a single degree
of freedom. We formulate hierarchical dynamic FFDs,
which support properly interacting local and global de-
formations. Finally, our dynamic FFDs can be active, ena-
bling a normally rigid, static object to locomote under its
own motivation.

Dynamic FFDs offer animators the opportunity to apply
physical dynamics to the creation of expressive, cartoon-
like animations. Fig. 12 shows an example of how to use
dynamic FFDs to make static objects become animate. The
apple in this figure is embedded in a global FFD lattice and
is equipped with a local FFD lattice around the leaf. The
teapot in Fig. 12 is also equipped with both global and local
lattices. Fig. 15 shows snapshots from a dynamic animation
of the teapot, depicting the motion resulting from a lifting
force applied to the top of the lid handle.1 The force van-
ishes after the 12th frame and the deformable teapot falls to
the ground and bounces.

As a second example, Fig. 1 shows a cartoon car driving
on a bumpy road. The car has a global deformation mode,
as well as a local deformation mode for each wheel. The car
rolls on the terrain as a result of a constant, horizontal,
driving force.

1. Note that, in figures illustrating animations, the order of images is in-
dicated by an arrowhead.

1077-2626/97/$10.00 © 1997 IEEE

————————————————

• The authors are with the Department of Computer Science, University of
Toronto, 10 King’s College Rd., Toronto, Ontario, Canada M5S 3G4.

 E-mail: {pfal, van, dt}@dgp.toronto.edu.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 105392.

D

202 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 3, JULY-SEPTEMBER 1997

A third example illustrates how a cartoon table can ani-
mate itself in a spirited fashion using active FFD deforma-
tion modes. Fig. 2 shows the table performing a periodic
bounding motion which has been synthesized automati-
cally using a set of user-supplied deformation modes. The
deformation space was searched for deformations that
maximize the distance traveled with each bound.

Fig. 2. A cartoon table performing a bounding motion.

The remainder of the paper is organized as follows.
Section 2 presents previous work done in the area. Sec-
tion 3 discusses the relation between our work and prior
work. Section 4 describes our dynamics formulation.
Section 5 presents the animation system we have devel-
oped based on dynamic free-from deformations and ex-
plores its capabilities. Section 6 investigates how active
deformations can be used to achieve cartoon-like ani-
mations, such as walking tables or hopping teapots, through
the automated search for optimal locomotion control
strategies. Last, Section 7 presents conclusions and dis-
cusses future work.

2 PRIOR WORK
The geometry and dynamics of deformable objects have been
modeled using a variety of different methods. In general,
there are several basic requirements. First, the model must
associate a mass density with the geometry. Second, it must
have a restricted number of degrees of freedom to permit
efficient simulation. Third, the model must incorporate
equations of motion that evolve the degrees of freedom in
accordance with internal and external forces. In general, we
can distinguish between two main approaches toward the
modeling of deformable objects, implicit2 and parametric.
Parametric formulations define deformations explicitly on
geometric models. Models are discretized with respect to
their material coordinates by using finite differences or finite
elements. The use of elastic models in the context of graphics
was first presented by Terzopoulos et al. [4]. These physics-
based deformable models have been generalized to include
visco-elastic properties and inelastic behavior, such as frac-
ture [5]. A deformable model is formulated by Metaxas and
Terzopoulos [6], which includes global superquadric defor-
mations and local spline deformations. The most straight-
forward deformable model consists of a network of springs
and point masses. Haumann et al. [7] animate deformable
objects using spring-mass models and wind fields.

An advantage of the second major approach, implicit
deformations, is that they can deform simple or complex

2. Implicit deformations are often referred to as global deformations in
the literature. We use the term implicit because we need to distinguish
between local and global implicit deformations in our formulation.

Fig. 1. A cartoon car simulation using dynamic FFDs.

FALOUTSOS ET AL.: DYNAMIC FREE-FORM DEFORMATIONS FOR ANIMATION SYNTHESIS 203

objects with equal ease. Implicit deformations work by em-
bedding an object in a space. When the space is warped, the
embedded object deforms. The deformation is defined by a
function that maps a point of the undeformed space onto
the deformed space. Free-form deformations (FFDs) [2] are
a primary example of implicit geometric deformations in
which the space is defined by a multidimensional spline.
Kinematically animating the control points which define
the spline will animate the deformation imposed on the
object. The animator is typically responsible for designing
the necessary deformations. The technique described by
Coquillart and Jancène [3] provides useful generalizations
for creating keyframed FFD animations.

Several techniques using implicit geometric deforma-
tions have been proposed for modeling dynamic deforma-
tions. Chadwick et al. [8] use implicit deformations in the
animation of articulated characters. FFD lattices are at-
tached appropriately on the skeleton, whose dynamic mo-
tion deforms the lattices, thereby modeling soft tissue de-
formations. Pentland and Williams [9] employ the principal
deformation modes of an elastic isoparametric hexahedral
finite element to animate deforming embedded objects.
Witkin and Welch [10] use polynomial global deformations
in a physics-based model. Baraff and Witkin [11] use global
implicit deformations in conjunction with physics-based
simulation to animate polygonal and parametric objects.
This formulation is similar to the one presented in [10],
which uses deformations that are linear with respect to the
state of the object, and is restricted to passive objects. Ter-
zopoulos and Qin [12] model deformable surfaces using
NURBS which are given dynamic properties. They also de-
scribe a physics-based deformation technique using dy-
namic NURBS FFDs, although the formulation and applica-
tion differs from the one we propose.

3 FEATURES OF OUR APPROACH
Existing dynamic models are capable of representing many
types of animated objects. However, most are designed to
model articulated figures [8], [13], [14], realistic creatures
[15], or objects not capable of autonomous motion [11], [6],
[9], [4], [12], [10]. They are not suitable for cartoon-style
character animation, such as a teapot that comes to life. In
this paper, we introduce an approach particularly well
suited to characters of this type.

Of particular interest to us are techniques that integrate
cleanly with standard tools. For this reason, we have sought to
develop a dynamic formulation of deformable models based
upon standard free-form deformations. Several features of our
dynamic FFDs are unique with respect to previous work on
implicit deformation methods. Our approach provides the
user with an intuitive method to design deformation modes
which can be imposed on different objects and used to pro-
duce a compact, limited set of allowable deformations. As a
point of departure, this strategy is similar to Witkin and
Welch’s [10], and Baraff and Witkin’s [11], who restrict the
class of deformations to those expressible as a linear transfor-
mation of the state parameters. However, our formulation
accommodates a hierarchy of deformations which are ap-
plied to objects in a nonlinear fashion with respect to the

state parameters. Although some matrices are no longer
constant, the different levels of deformations provide the
animator with more flexibility and enable the creation of a
variety of interesting effects, such as the car with a flexible
body and flexible wheels, illustrated in Fig. 1.

With regard to the problem of controlling deformations
to produce animation, we make the deformation modes
active and implement a complete motion control and
motion synthesis system for flexible characters. By con-
trast, the control method used in [10] is based on follow-
ing motion paths. Independently of our work, but in the
same spirit, Christensen et al. [16] describe a method for
automatically synthesizing controllers for simple creatures
using global implicit deformations and stochastic search.
They model objects using spring-mass lattices that can un-
dergo a set of canonical global implicit deformations; i.e., this
work uses implicit deformations to describe the motion of
spring-mass systems. Their deformation lattices follow
closely the spring-mass approximations of the animated
characters, thus deformations cannot be easily reused for
different objects. By contrast, our formulation facilitates reus-
ability. We furthermore introduce the use of stochastic
methods to automatically synthesize motions for flexible
characters based on FFDs.

4 FORMULATION OF DYNAMIC FFDS
In the first step of our approach, the user designs the defor-
mation modes to apply to an object. For example, Fig. 3 shows
two deformation modes created for a 2D table and how they
interact. When the dynamic motion of this table is simulated,
the shape of the table is restricted to shapes expressible as a
linear combination of the two modes, as is shown in the figure.
Deformation modes provide a way of actuating characters
which normally have no moving parts. Deformation modes

Fig. 3. FFD deformation modes designed for a table.

204 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 3, JULY-SEPTEMBER 1997

also provide a way for an animator to directly specify the range
of allowable shapes of a character, which simplifies both the
simulation and control of the character.

4.1 Deformation Modes
A deformation mode is defined using a single instance
of an FFD deformation, specified by a user-supplied ma-
trix d d d d= x y z which determines the maximum dis-
placement of the lattice points along each dimension. As
shown in Fig. 3, multiple deformations are combined in
a linear fashion by adding the relative displacements of
the control points. The amount of deformation for each
mode is controlled by an amplitude parameter
g i Œ -1 1, that operates as a scalar multiplier or weight
for the deformation matrix d. Our implementation uses
a 4 4 4 control point lattice for the FFD and Bernstein
polynomials as the basis functions. The 2D example in
Fig. 3 shows two deformation modes, bend and shear,
and their linear combinations.

4.2 Hierarchical Deformations
To implement hierarchical deformations, we also allow lo-
cal FFD lattices to be imposed on parts of an object. The
points affected by a local lattice are also affected by the
global lattice, as shown in Fig. 12.

Currently, it is the user’s responsibility to ensure that
local deformations do not destroy the continuity of the
object’s surface. This can be done by using local defor-
mations which do not affect specific points on the
boundary of the local lattices. For example, in Fig. 12,
this is done by ensuring that the deformation modes
designed for the local lattice do not affect the bottom
two rows of control points, which are affected only by
the global deformation.

4.3 Geometric Representation
Our objects are able to deform and also undergo rigid
body motion. Deformations are considered with respect
to a noninertial coordinate system attached to the object
as shown in Fig. 4. This coordinate system follows the
rigid body motion of the object, translating and rotating
with respect to the inertial, world coordinate system.
Transformations are applied to the object in the follow-
ing order:

1) local deformations,
2) global deformations,
3) rotation,
4) translation.

Assuming DG global deformation modes, Dl deformation
modes associated with the lth local lattice, and assuming L
local lattices, the degrees of freedom for the object are given
by the vector

q =
L

N
MMM

O

Q
PPPt t tx y z

translation

x y z

rotation

global motion

G GD

global lattice

D

local lattice

L LD

local lattice L

deformation amplitudes

G L

678 678
6 744 844

K
6 74 84

K
6 74 84

K K
6 74 84

6 74444444 84444444

q q q g g g g g g1 11 1

1

11

, (1)

where the ti are translation parameters, the q i are Euler

angles,3 and the g ij are deformation amplitudes.
The components of q are a set of generalized coordinates

(degrees of freedom) which determine the position of all
points on a deformed object. The world coordinates of an
object point P, in terms of its local lattice coordinates (sl, tl, ul)
and the generalized coordinates in q are given by

P t R= +

L

N

MMMMM

O

Q

PPPPP
+

L

N

MMMM

O

Q

PPPP

F

H

GGGG

I

K

JJJJ====
ÂÂÂÂ g n

G
Gijk s
n

Gijk t
n

Gijk u
n

Gijk
s

Gijk
t

Gijk
un

D

kji
G G G

d

d

d

L

L

L

B s i B t j B u k
G

G

G

G

G

G

G
,

,

,

, , , ,
10

3

0

3

0

3

c h c h c h

(2)
where t is the vector of translation parameters, R is the com-
pound rotation matrix, and, with index G indicating quanti-
ties associated with the global lattice, D is the number of
animator-specified deformation modes for the lattice, g n is
the amplitude of the nth deformation mode, dijk

n are constants
which define the nth deformation mode of the i, j, k-control
point of the lattice, Lijk are undeformed lattice coordinates,
and B s i s si

i i,a f e ja f= - -3 31 is the Bernstein polynomial. For
those points that are affected by local deformations, their
parameter space coordinates (sG, tG, uG) with respect to the
global lattice are in turn given by

s
t
u

a

d

d

d

L

L

L

B s i B t j B u k
G

G

G

n
l

n

D lijk s
n

lijk t
n

lijk u
n

lijk
s

lijk
t

lijk
u

l l l
kji

l
l

l

l

l

l

l

L

N
MMM

O

Q
PPP

=

L

N

MMMMM

O

Q

PPPPP
+

L

N

MMMM

O

Q

PPPP

F

H

GGGG

I

K

JJJJ====
ÂÂÂÂ g

10

3

0

3

0

3
,

,

,

, , , ,c h c h c h (3)

where index l indicates quantities with respect to the lth
local lattice, a is a constant matrix that transforms the local

3. Euler angles as a means to parameterize rotation have two well-known
disadvantages: The order in which they are applied can change the resulting
rotation and certain rotation sequences may lead to singularities such as the
Gimbal lock [17]. For this reason interpolation between Euler angles is gener-
ally avoided in favor of interpolation of quaternions [18]. In our formulation,
the order in which Euler angles are applied is dictated unambiguously by the
equations of motion. During simulation, the Euler angles are updated as part
of the numerical integration of the equations of motion, without interpola-
tion, and the updates are much less than 90 degrees, thus precluding the
possibility of Gimbal lock. Consequently, we may employ Euler angles with-
out danger, and have chosen to use them for their simplicity.

Fig. 4. The table moving in space using a bend deformation mode.

FALOUTSOS ET AL.: DYNAMIC FREE-FORM DEFORMATIONS FOR ANIMATION SYNTHESIS 205

lattice coordinates (sl, tl, ul) to global lattice coordinates (sG,
tG, uG), and the remaining quantities have similar interpre-
tations to their counterparts in (2).

Equations (2) and (3) are the starting point for the
simulation of the dynamics of a deformable object. They
prescribe that we apply local deformations using (3) be-
fore global deformations using (2).4 The dynamics for-
mulation presented next will ensure that a force which
produces a local deformation appropriately affects the
global deformations.

4.4 Equations of Motion
We use a Lagrangian formulation [19] to make our flexi-
ble models dynamic. A mass distribution is associated
with the object by discretizing it in material coordinates
using mass points. For example, a 2D-table could be as-
signed a discrete mass distribution, as shown in Fig. 5. In
practice, approximating an object’s distribution using 4
10 mass points is sufficient to yield convincing motions.
The mass points are embedded in the same space as the
object geometry and are thus also affected by local and
global deformations. The kinetic energy of the M point
masses is

E
mi

i

M

i
T

i=
=
Â 2

1
& &x x , (4)

where mk is the kth mass and xk its position with respect to
the world coordinate system.

Fig. 5. Mass distribution for a 2D-table.

As an object deforms, it builds up internal strain energy
that resists further deformation. These energies are defined
by the user and are a function of the deformation ampli-
tudes g i . Typically, we associate with deformations a po-
tential energy of the form

V
ki

i i
i

D
= -

=
Â 2 0

2

1
g gc h , (5)

where ki is the elasticity constant associated with deforma-
tion mode i and g i0 is the rest state of the mode. The rest

4. We have implemented only two levels of deformations for demonstra-
tion purposes. However, the formulation presented above can easily be
generalized to an arbitrarily deeply nested hierarchy of local lattices by
expressing (sl, tl, ul) as a function of another level of lattices in a fashion
similar to (3).

states may be functions of time g i t0a f and they may be var-
ied actively to control the modes, in effect forming an ob-
ject’s “muscle” actuators.

The equations of motion can be derived by applying the
Lagrangian formulation of the equations of motion with
respect to the generalized coordinates q. The Lagrangian
formulation is based on the following equation:

d
dt q Q

k
k

∂
∂ -

∂
∂ - =

&
,qk

0 (6)

where is the Lagrangian, qk is the kth generalized coor-
dinate (k = 1, ..., D), Qk is the total generalized force acting
on the object along the qk generalized coordinate, and the
dot indicates a time derivative. We define the Lagrangian
to be the kinetic energy (4) minus the potential energy (5):

 = E V. According to the derivation in Appendix A, the
equations of motion assume the form

Mq Kq Q q
M
q q

M
q&& & & & ,+ = + -

F
HG

I
KJ

1
2

T
t

∂
∂

∂
∂ (7)

where M is the mass matrix, K is a diagonal stiffness ma-
trix, and Q is the vector of generalized external forces.
Equation (7) is a system of dim(q) coupled second-order
ordinary differential equations in dim(q) unknowns.

The system is numerically integrated forward through
time, as follows: At each time step of the simulation, the
linear system (7), whose form is Mq b&& = , is solved for &&q
using the Choleski factorization of M. Finally, we obtain the
new values for the generalized velocities &q and the gener-
alized positions q by integrating twice as follows:

& & &&q q qt t t t t+ = +D Da f a f a f ,
q q q qt t t t t

t
t+ = + +D D

Da f a f a f a f& && .
2

2

4.5 External Forces
Collision detection and resolution are not a research issue
in our work. We have implemented simple existing meth-
ods for demonstration purposes. In particular, the system
automatically samples the object at a set of collision points
on the surface such that the relative distances between col-
lision points are sufficiently small.5 For example, we used
300 collision points for the teapot shown in Fig. 13. At each
timestep, all the collision points are checked against the
ground. For each collision point penetrating the ground, a
collision force is activated as follows.

Ground contact is modeled using a penalty method
which simulates the ground collision force using a spring
and damper unit, as shown in Fig. 6a. When a point on the
object penetrates the ground, a spring and damper unit is
attached between the point of entry and the object point.
The absolute value of the ratio between the friction force
and the vertical force is not allowed to exceed tan qa f , thus
implementing a Coulomb friction model. The constants
defining the stiffness of the unit are chosen such that the
interpenetrations caused by collisions are small.

5. There is no need to associate mass with the collision points by virtue
of the implicit deformations and the Lagrangian dynamics formulation.

206 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 3, JULY-SEPTEMBER 1997

Ground contact and gravity are treated as independent
external forces in the dynamics formulation. All external
forces must be transformed from their Cartesian representa-
tion to the generalized one. After transformation, the exter-
nal forces appear in the equations of motion as a set of gen-
eralized forces Q. This is done by computing QF = JTF,
where J is the Jacobian matrix derived in Appendix A.

5 A DYNAMIC FFD ANIMATION SYSTEM
We have implemented an interactive animation system
using the dynamic FFD formulation. Fig. 7 illustrates the
conceptual components of our system. In general, our
system can automatically turn any geometric object into
a dynamic deformable model by automatically comput-
ing mass distributions, attaching FFD-lattices, and as-
signing default values to all the dynamic parameters
such that the object can support its own weight. Cur-
rently, only a global lattice is attached automatically,
since the system cannot identify suitable parts on the
object (local lattices are attached by the user). The system
automatically computes a discrete representation of the
object’s mass distribution using a set of point masses,
unless the user prefers to supply his or her own. Our
algorithm ensures that all the FFD lattices contain a suit-
able number of mass points and that the actual geometric
center of the object is near the center of mass of the com-
puted mass distribution. The dynamic behavior of the
object is determined by the deformation modes, each of
which has its own stiffness and damping properties. The
parameters defining the deformation modes, namely, the
lattice displacements matrices, the stiffness parameters,
and the damping parameters, can be loaded and set in-
teractively. With the deformation modes loaded, the
animator can produce either key-framed or physics-
based motion, or alternate between them according to
the characteristics desired of the motion. Fig. 8 illustrates
an animation produced using four deformation modes
and a mix of keyframing and dynamic simulation. The
system allows the user to change the deformation modes
at any point during a key-framed or physics-based ani-
mation in order to change the functionality of the object.

5.1 Key-Framing
Once an object and a set of deformation modes is loaded,
the user can specify a deformation mode and the desired

amplitude to interactively deform the object. To prevent the
object from losing contact with the ground when deforming
during key-framing, the system allows a point of the object
to be constrained to a fixed position. As in a typical key-
framing system, the user can set key-frames and the system
automatically interpolates between them to produce a
complete sequence.6 In Fig. 8, the first part of the motion is
key-framed.

5.2 Physics-Based Simulation
The physics-based simulator of our system implements the
numerical integrator for the Lagrangian equations of mo-
tion described in Section 4.4. The user can interactively
modify a number of parameters, such as the ground stiff-
ness, flags that enable or disable effects such as gravity, and
parameters that control the stiffness and the damping of the
deformation modes, in order to provide the object with the
desired elasticity and the appropriate environment.

An example of the kind of animations that can be produced
with our physics-based simulator is presented in Fig. 15. In
this case, the teapot is equipped with both local and global
deformations. The lattices are attached to the teapot as
shown in Fig. 12. A spring is attached to the lid and it lifts

6. We interpolate rotations using quaternions, since the difference in ro-
tations between keyframes can be large.

Fig. 6. Ground force model.

Fig. 7. Overview of the system.

Fig. 8. Cartoon table jumping off a cliff.

FALOUTSOS ET AL.: DYNAMIC FREE-FORM DEFORMATIONS FOR ANIMATION SYNTHESIS 207

the teapot. The spring vanishes after the 12th frame and the
teapot rebounds elastically, vibrating as it drops to the
ground, and bouncing several times before coming to rest.
Both the global and the local lattice are associated with the
same stretch deformation. However, the global deformation
is stiffer than the local one.

The simulation runs at interactive speeds for a variety of
2D and 3D objects. Table 1 shows the CPU time that each
simulation iteration takes for different numbers of deforma-
tion modes. All experiments were performed on a Silicon
Graphics R4000 Indigo2 running at 100 MHz and involved
graphics objects such as the teapot of Fig. 9, apples, and
wine glasses, each discretized with six mass points and
equipped with 300–500 collision points. The motions pro-
duced were pleasing and convincing. The complexity of the
simulation is linear with respect to the number of point
masses and the number of lattice points. The total number
of deformation modes D determines the dimension of the
linear system that is solved in each simulation iteration,
thus the complexity of the simulation process is O(D3). To
further improve the efficiency of the simulation, we include
a mechanism that deactivates (eliminates) deformation de-
grees of freedom if the magnitudes of the associated ampli-
tude and velocity are below a threshold. This makes practi-
cal the use of many local lattices, which are only incorpo-
rated into the equations of motion in an on-demand basis.
The deactivated degrees of freedom are reactivated as soon
as external forces appear. We have performed two experi-
ments to test the effectiveness of this feature. In the first
experiment, the cartoon car shown in Fig. 1 rolls down a
bumpy steep hill. It was equipped with one global defor-
mation and one local deformation on each of the wheels.
The simulation consumed 133 seconds of CPU time with
the aforementioned efficiency feature disabled, while it
consumed 121 seconds with the feature enabled. In the sec-
ond experiment, the teapot shown in Fig. 12, which was
equipped with one global deformation and six local deforma-
tions (three on the handle and three on the spout), performed
a free-fall. The simulation time without the efficiency
mechanism was 12 seconds; it was seven seconds with the
mechanism.

Stability is an important issue for numerical simulation.
The main factors affecting the stability of our system are
the time step, the stiffness introduced by the collision pen-
alty method, the mass distribution, the chosen set of defor-
mations, and elasticities ki. The mass distribution of an

object must have a natural connection with the associated
deformation modes. For example, a squash deformation
defined along the x-axis for a one-dimensional rod aligned
with the y-axis has no meaning, and it yields an unstable
system. The generalized coordinates of an object should be
independent from each other as required by the Lagrangian
dynamics formulation. For instance, the system will be ill-
conditioned if the same deformation mode is defined twice.
The more similar two deformation modes are, the less nu-
merically stable the system will be.

6 MOTION SYNTHESIS FOR ACTIVE DEFORMATIONS
The dynamic models described in a previous section incor-
porate physics into a geometric model, and are useful for
both passive and active characters. It is desirable to simu-
late active characters realistically and incorporate into the
model the ability to produce autonomous motion. For real-
istic locomotion, the movement should arise from con-
trolled actuation. Many different methods have been devel-
oped to deal with the control of dynamic graphics objects
[13], [15], [20], [21], [22], [23]. A simple yet effective tech-
nique based on cyclic pose control graphs, which is suitable
for articulated figures, is presented by van de Panne et al.
[24]. The technique has been extended to acyclic graphs in
order to achieve nonperiodic motions [14].

The control problem is often formulated as an optimiza-
tion problem. The object is required to perform a task while
minimizing a cost or maximizing an objective function. It
has been shown that optimized control can be used to
automatically synthesize controllers capable of making ac-
tive simulated creatures locomote [13], [16], [23], [25], [26].
Motion and controller synthesis are often addressed using
probabilistic optimization methods because they are easy to
implement, are suitable for searching large spaces, and can
avoid local suboptima. Controllers are repeatedly gener-
ated and subsequently evaluated using forward simulation.
The motion synthesis problem is thus tackled by searching
the space of possible controllers for those that produce
suitable motions. Common search methods for the stochas-
tic motion synthesis problem are genetic algorithms [25], [26]
and simulated annealing [13], [23]. To our knowledge, previ-
ous work on controlling active deformable models has al-
ways used spring-mass models [22], [15], [23], whereas we
use dynamic FFDs.

Fig. 9. A 3D teapot and an associated mass distribution.

TABLE 1
RUN TIMES

GLOBAL DEF.
MODES

LOCAL DEF.
MODES

TIMES (SEC)

1 0 0.154324192
2 0 0.157693698
4 0 0.167255900
8 0 0.199321312
10 0 0.228473064
1 1 0.160967480
1 2 0.166869388
1 4 0.179693202
1 8 0.209430214
8 8 0.400348746

208 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 3, JULY-SEPTEMBER 1997

6.1 Dynamic Control Model
The control of our dynamically deformable characters is
based on open-loop7 pose controllers which determine the
high level control. The pose controller structure operates as a
finite state machine. Each state defines a pose and specifies
the desired shape of a character. “Shape” here refers to a
character’s internal degrees of freedom. Thus, a pose $q is
defined in terms of the amplitudes of the deformation
modes, $, ,q = g g1 K Dc h , where D is the total number of
global and local deformation modes. In the following, u
indicates the desired poses. The pose controller structure is
shown in Fig. 10. Each state (pose) has an associated transi-
tion time that specifies the time period for which the associ-
ated pose remains active. In the current version of our sys-
tem, we have implemented only cyclic pose graphs, which
result in periodic motions. The controller cycles continu-
ously through the pose graph. The active pose drives low-
level PD-controllers which make the object deform into the
desired shape. Note that the desired shape is not necessar-
ily achieved because of the presence of external forces. The
deformation of the object into the desired pose can be done
either by using potential energy terms in the Lagrangian, or
by adding deformation forces to the vector of generalized
forces. We have chosen to use the latter method. Hence, we
associate PD-controller with each deformation mode and it
produces a generalized control force along the associated
generalized coordinate. The generalized control forces are
defined as

7. The controller has no external feedback, i.e., it does not have an indi-
cation of how well it operates.

Q C q u Dqu = - - +$ $&b ge j,
where C is a diagonal stiffness matrix, D is a diagonal
damping matrix, and u are the desired pose parameters.

An animator can interactively specify a deformation mode
to be active or passive. Active deformation modes are subject
to control forces and they contribute to actuated motions,
while passive modes appear only as a result of external
forces. In general, the active deformation modes should be
stiffer and more damped than the passive ones. Active de-
formations should not produce oscillations because most fa-
miliar muscle-based motions are nonoscillatory. Passive de-
formations should typically produce oscillations because they
represent the effect of elastic strain energy being dissipated
over time. However, the animator has complete control over
the deformation parameters and can change them interac-
tively at any point according to the desired result.

6.2 Motion Synthesis
Given an object and a set of deformation modes, it is con-
venient, and, for complex characters, necessary, to have a
procedure that automatically produces controllers capable
of making the object perform interesting modes of locomo-
tion. Previous work in this area addresses the case of ar-
ticulated figures with some notable exceptions [16], [23]. In
our system, we use simulated annealing [27] because it can
avoid local optima and it has proven to be suitable for our
purposes. The process begins with an initial pose controller
supplied by the user. Using forward simulation, the con-
troller is evaluated according to a cost function. A new con-
troller is then produced by stochastically modifying the
initial one. The new controller is evaluated in the same way
and the two controllers are compared. The better controller
is selected and the procedure is repeated until a stopping
criterion is met. Sometimes the process selects a new con-
troller which performs worse than the previous one as a
means to avoid local optima. The simulated annealing
algorithm that we use is summarized in Fig. 11. The value
of r controls the number of iterations that the algorithm
performs. A fixed number of iterations can also be used. All
our experiments converged to a solution in less that 100
annealing iterations.

Fig. 10. The control structure.

1. Specify an initial configuration P
2. Specify an initial temperature T > 0
3. Pick a cooling rate 0 < r < 1
4. Do forward simulation for time tf and calculate the cost

Cost (P)
5. While T > Tfrozen

(a) Pick a random neighbor ¢P of P
(b) Do forward simulation for time tf and calculate the cost

Cost P¢a f
(c) Let D = ¢ -Cost P Cost Pa f a f
(d) If D £ 0 set P P= ¢
(e) If D > 0 set with P P= ¢ probability e T-D

(f) Set T = r ´ T
6. Return P

Fig. 11. Using simulated annealing to find a suitable active controller.

FALOUTSOS ET AL.: DYNAMIC FREE-FORM DEFORMATIONS FOR ANIMATION SYNTHESIS 209

In the controller synthesis procedure, the poses are
snapshots of the character’s deformations during a motion
that the animator would like the character to perform. The
choice of an initial pose controller is important because it
can significantly affect the final motion. The most impor-
tant choice in defining an optimization process is the
choice of the cost function, which is minimized by the
simulated annealing process. The function quantifies the
desirability of motions. There are many parameters which
serve to define such a function, such as the speed, accel-
eration, work, and orientation of the object during the
motion, and the desired trajectory that the object must
follow. Realistic motions should also consume a reason-
able amount of control energy. The difficulty of designing
the cost function depends on the complexity of the charac-
ter and the desired motion. Typical cost functions do exist
for simple motions such as walking, hopping, and shuf-
fling. Our system provides the user with a number of
typical functions, such as those given in Table 2. For more
complex motions, if none of the functions provided by the
system yield good results, the user may need to resort to
his or her own intuition.

We formulate our experiments as minimization prob-
lems. In order to prevent the synthesis of unrealistic high-
energy motions, the cost function that we used in all cases
grows linearly with the control energy consumed. Specific
functions are presented in the next section as we discuss the
results of the motion synthesis experiments.

6.3 Results
One of our experiments involved the synthesis of a con-
troller that would make a 2D table perform a bounding
motion. The table is equipped with a set of four deforma-
tions modes: vertical shear, horizontal bend, vertical
squash, and horizontal squash. The first two are active
deformation modes, and the remaining two allow for addi-
tional passive motion. Our most successful experiment
performed optimization on all the parameters defining the
pose graph. After 60 simulation trials, the table was able
to perform a stable periodic mode of locomotion, shown
in Fig. 2. The cost function that we used rewards the
distance traveled and penalizes the energy expended.
Table 2 presents the cost functions and the associated re-
sult; E q i Q ic ui

D
= *

=Â $
1

, where Qu are the control forces,

is a simplified expression of the energy consumed, tx is the
distance traveled along the x-direction, and &tx is the veloc-
ity along the x-direction. If t tx x

& < 0, the cost is set to a
high value.

The following experiment shows how different optimi-
zation functions can produce different motions. We con-
struct a cost function consisting of two terms

f K E K tt c xcos ,= - *1 2 (8)

where Ec, tx are as defined above and K1, K2 are constants.
The choice of these constants guides the optimization to-
wards different goals. We use this optimization function to
produce different hopping motions for the teapot, as shown
in Fig. 16. The motion produced by the initial, handcrafted

controller is shown in the left panel of Fig. 16. For K1 = 0
and K2 = 1, the optimization process produces a controller
resulting in larger hops and therefore consuming more con-
trol energy. The motion is shown in the right panel of Fig. 16.
An intermediate case attempts to strike a compromise be-
tween the control energy and the distance traveled using K1
= 1 and K2 = 1. The resulting motion is shown in the center
panel of Fig. 16. The case where K1 = 1 and K2 = 0 produces
a trivial solution, namely a controller that keeps the teapot
in place.

The design of an appropriate optimization function to
produce a desired motion is potentially a difficult task, and
is especially difficult for unstable motions. We had to per-
form several trial-and-error experiments in order to choose
the appropriate constants in the optimization function to
obtain variations of an initial hopping motion. The shuf-
fling motion is more stable and was therefore much easier
to produce.

The optimization can be performed with respect to
different subsets of the control parameters. Some ex-
periments with the cartoon table optimize the transition
times between different poses, some optimize the poses,
and some optimize both poses and transition times. The
more parameters that are used in the optimization proc-
ess, the larger the space of admissible control functions,
and, consequently, the more likely it is to arrive at an
efficient solution. Naturally, the larger the control space,
the slower the optimization process is at finding an op-
timal solution.

A second example is a 3D teapot which learns to loco-
mote using two active deformation modes. Fig. 13 shows
the teapot shuffling. The same motion has been reused
and applied to the wine glass that appears in Fig. 14. In this
example, the teapot is performing an automatically syn-
thesized hopping motion using two deformation modes,
the glass is making use of the shuffling motion produced
for the teapot, and the apple is key-framed to fly above
them using a local shear deformation on the leaf.

7 CONCLUSIONS
We have proposed and implemented a framework for
the animation of deformable characters. Our approach
generalizes standard free-form deformations to include
physical dynamics. The formulation accommodates both
local and global dynamic FFDs and ensures their proper

TABLE 2
COST FUNCTIONS

COST FUNCTION COMMENTS
1 t x Hopping motion with unrealistic jumps

E tc x Hopping motion, normal jumps

E t tc x x1 0 107. &¥e j Bounding motion

E t tc x x5 0 107. &¥e j Faster bounding motion (Fig. 2)

E tc x5 0 107. ¥e j Shuffling-like motion (Fig. 13)

210 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 3, JULY-SEPTEMBER 1997

interaction. User-tailored deformations provide predict-
ability of results and yield efficient dynamic simula-
tions. The dynamic deformations can be made active;
thus, the technique is particularly amenable to trans-
forming inanimate objects, such as teapots, into animate
characters. Existing motion-synthesis techniques can be
applied to the active deformations to automate the proc-
ess of answering questions such as: How should a
squash-and-stretch teapot move?

Free-form deformations are a standard tool that anima-
tors use to make inanimate objects come to life in a key-
framed animation. The approach proposed here can take
the FFD lattices defined for keyframing and make them
active and dynamic. Because squash-and-stretch deforma-
tions are typical of cartoon animation, libraries of deforma-
tion modes and standardized motions could be provided to
animators. Different characters can reuse stored libraries of
deformation modes, deformations can be loaded or
changed, and key-framed and physics-based motion can be
exchanged as needed.

Our work can be extended in various ways. With re-
spect to modeling, we could combine deformation modes
nonlinearly. Dynamic constraints could be implemented
in order to allow the construction of compound objects,
such as articulated figures with deformable parts. We
would also like to experiment with different FFD lattices.
It would be interesting to use a formulation based on
higher order Bernstein polynomials that will provide
more flexibility with respect to the design of deformation
modes. Similarly, we would like to try FFD formulations
with B-spline basis functions. B-spline functions will al-
low the user to define lattices with different numbers of
control points, and will provide local control. We would

also like to experiment with hierarchies of lattices that
share control points. Finally, to improve the quality of the
dynamics, a more refined and efficient method for de-
tecting and resolving collisions should be implemented.

APPENDIX A
DERIVATION OF THE EQUATIONS OF MOTION

This appendix derives the terms of (6) and shows how to
calculate the equations of motion (7). As discussed in
Section 4.4, the Lagrangian is = E V where E is the
kinetic energy of the object defined by (4), and V is its
deformation potential energy defined by (5). The object
is discretized in material coordinates using point masses.
The kinetic energy of the k-th point mass is Ek

m
k
T

k
k= 2 & &x x ,

where mk is the mass and xk is the position of the point in
world coordinates. Using (2) and (3), we write Ek with
respect to the generalized coordinates. To that end, we
first note that & &x qi

x
qj j

i

j
= Â ∂

∂ . Defining the Jacobian matrix J

as J x qij i j= ∂ ∂ , we can write & &x Jq= . Assume an object

with DG global deformation modes and L local lattices,

Fig. 12. Local and global deformations using dynamic FFDs.

Fig. 13. 3D teapot performing a bounding motion.

Fig. 14. A cartoon race.

FALOUTSOS ET AL.: DYNAMIC FREE-FORM DEFORMATIONS FOR ANIMATION SYNTHESIS 211

each equipped with Dl deformation modes. The vector of
generalized coordinates as defined in (1) is

q t= T
x y z G GD D L LDL

q q q g g g g g g1 11 1 11
L L L L .(9)

Denoting global quantities with index G and local quanti-
ties with index l, the expression for the Jacobian matrix

evaluated at point P is

J I A B C C= 3 1 L L , (10)

where

A
R

P
R

P
R

P=
L
NMM

O
QPP

∂
∂q

∂
∂q

∂
∂qx y z

,

Fig. 15. A deformable teapot is lifted from the lid.

Fig. 16. Teapot performing various hopping motions.

212 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 3, JULY-SEPTEMBER 1997

B R d

C R d L

= =
L
N
MM

O
Q
PP =

= = +
F
HG

I
KJ

L
N
MM

O
QP

=

===

====

ÂÂÂ

ÂÂÂÂ

b B s i B t j B u k n D

c

B s i B t j B u k

m D

n G ij
n

G G G
kji

G

l lm G ij
n

G ijk
n

D

kji

lm
G G G

l

G

,

, ,

, , , , ,

, , , ,

.

c h c h c h

c h c h c hd i

0

3

0

3

0

3

10

3

0

3

0

3

1

1

K

K

∂
∂g

Recall that the global lattice coordinates (sg, tG, uG) are a
function of the local ones as shown in (3). The kinetic en-
ergy of mass point k with respect to the generalized coordi-
nates is

E
m m m

k
k

k
T

k
k

k
T

k
k T

k
T

k= = =2 2 2& & & & & &.x x J q J q q J J qc h
The total kinetic energy of the object is

E E
m

k
k T

kk k
T

k
T= = =ÂÂ 2

1
2& & & &q J J q q Mq ,

where M J J= Â mk k
T

k k is a symmetric generalized mass
matrix. We can calculate the required derivatives of the
Lagrangian in (6) as follows

∂
∂ d d

&
& & & &

& & ,

q M q q M M q q M

M q M q M

k
ki ij j i ij kj

ij
kj j i

i
ik

j

kj j
j

kj j jk
j

= +
F
HGG

I
KJJ

= +
F
HGG

I
KJJ

= +
F
HGG

I
KJJ

ÂÂ ÂÂ

Â Â

1
2

1
2

1
2

where d ki is the Kronecker -function. Since M is symmet-
ric, Mkj = Mjk, thus M q q Mkj j j jk& &= , and

∂
∂

∂
∂

∂
∂

&
&

&
&& &

&& & & .

= fi = +

= +
F
HG

I
KJ

Â ÂÂ

ÂÂÂ

M q
d
dt M q

dM
dt q

M q
M
q q q

kj j
j

kj j
kj

jj
j

kj j
kj

l
l

ljj
j

qk
(11)

The second term that involves the Lagrangian in (6) is cal-
culated as follows:

∂
∂

∂
∂q q q q

k
k

k
k= -

1
2 & & ,

M
Kq (12)

where Kij = ki for i = j and Kij = 0 for i j.
The derivatives of M required in (11), (12) can be calcu-

lated as follows:

∂
∂

∂
∂

∂
∂

∂
∂

M
J J J

J
J

J
q q m m q qj j

k k
T

k
k

k
k

k
T k

j

T

k
T k

j
= =

F
HG

I
KJ +

L
N
MM

O
Q
PPÂ Â . (13)

Determining the partial derivatives of J with respect to
the generalized coordinates q, as required by (13), is a
rather lengthy, but mechanical process. We present them
below for completeness. To follow the notation, the
reader is referred to the definition of the vector of gen-

eralized coordinates given by (1). In addition, we de-
note On an n n zero matrix, 0 is a zero column vector,
JI the Jacobian matrix defined in (10) evaluated with R
being the identity matrix, JI[qk] the column of JI that
corresponds to the qth component of vector q, and we
define BBB B s i B t j B u kG G G∫ ¢ ¢ ¢, , ,c h c h c h. The primes are used
to distinguish between the i, j’s that appear in (14)-(17).
Overbraces are used to compress a number of similar
columns into one. The partial derivatives of the Jacobian
are

∂
∂

J
O Jt i x y z

i
= =dim() , , , (14)

∂
∂q ∂

∂q ∂q
∂
∂q g

∂
∂q g

∂
∂q g

J
O

R
P

R
J

R
J

R
Jj

i j

i x y z

j
I Gi

i D

j
I i

i D

j
I Li

i DG L

=
L

N
MMM

O

Q
PPP

= = = =

3

2
1

1

1 11
, ,

,
6 74 84 6 74 84 6 74 84

L

6 74 84K K K

(15)

∂
∂g

∂
∂q

∂
∂g

∂
∂g

g g

g

J
O

R
R

R

Gj
i kji

i x y z
i D

ikji

i D

Likji

i D

d BBB d
BBB

d
BBB

Gj

G

Gj

Gj

L

=
L

N
MMM

O

Q

PPPP

¢=¢=¢=

=
=

¢=¢=¢=

=

¢=¢=¢=

=

ÂÂÂ ÂÂÂ

ÂÂÂ

3
0

3

0

3

0

3 1

10

3

0

3

0

3

1

0

3

0

3

0

3

1

1

16

, ,

, ()

6 74444 84444
}

6 74444 84444

L

6 74444 84444

K

K

K

0

∂
∂g

∂
∂q g

∂
∂g

∂
∂g ∂g

g
J

O
R

J R 0 0

R 0 0

lj i
lj

i x y z

kji lj

i D
i D i D

n

n

D

ijk
G

k lj liji

i D

i D i D

d
BBB

d L
BBB

Gi

G

l

G

l

l L

=

L

N

MMMM

+
F
HG

I
KJ

O

Q

=

¢=¢=¢=

=
= =

=¢=¢=¢=

=

= =

ÂÂÂ

ÂÂÂÂ

-

+

3
0

3

0

3

0

3

1
1 1

10

3 2

0

3

0

3

1

1 1

1 1

1

, ,6 74 84 6 74444 84444
}

L
}

6 7444444 8444444
}

L
}

K

K K

K

K K PPP
. ()17

Finally, we calculate the derivatives of BBB that appear in
the above equations. To distinguish between the three poly-
nomials, we denote B B B BBBi j k¢ ¢ ¢ ∫ . Applying the chain rule,

∂
∂g

∂
∂g

∂
∂g

∂
∂g

BBB B
B B B

B
B B B

B
li

i

li
j k i

j

li
k i j

k

li
= + +¢

¢ ¢ ¢
¢

¢ ¢ ¢
¢ , (18)

∂
∂g ∂g

∂
∂g ∂g

∂
∂g

∂
∂g

∂
∂g

∂
∂g

∂
∂g

∂
∂g

2 2

19

BBB B
B B

B B
B

B
B

B

B B
B

li lj

i

li lj
j k

i

li

j

lj
k

i

li
j

k

lj

i

lj

j

li
k

= + + +

+

¢
¢ ¢

¢ ¢
¢

¢
¢

¢

¢ ¢
¢ ()

B
B

B B
B B B

B
B

B
B B

i
j

li lj
k i

j

li

k

lj

i

lj
j

k

li

i
j

lj

k

li

¢
¢

¢ ¢
¢ ¢ ¢

¢
¢

¢
¢ ¢

+ + +

+

∂
∂g ∂g

∂
∂g

∂
∂g

∂
∂g

∂
∂g

∂
∂g

∂
∂g

2

20()

FALOUTSOS ET AL.: DYNAMIC FREE-FORM DEFORMATIONS FOR ANIMATION SYNTHESIS 213

B B
B

i j
k

li lj
¢ ¢

¢∂
∂g ∂g

2

 (21)

Showing the partial derivatives of one of the polynomials
B B Bi j k¢ ¢ ¢, , is sufficient to complete the derivation of the Jaco-
bian matrix (note that in relation with (10), B B s ii G¢ ∫ ,c h):

∂
∂g

∂
∂

∂
∂g

∂
∂g g

∂
∂

∂
∂g

∂
∂g

B B
s

s B B
s

s si

li

i

G

G

li

i

li lj

i

G

G

lj

G

li

¢ ¢ ¢ ¢= =, ,
2 2

2 (22)

with
∂
∂g

s
d B s i B t j B u kG

li
li j k s
n

l
k

l l
ji

l
= ¢ ¢ ¢¢ ¢ ¢

¢=¢=¢=
ÂÂÂa , , , ,c h c h c h

0

3

0

3

0

3
 (23)

∂
∂g ∂g

2

0
sG

lj li
= . (24)

ACKNOWLEDGMENTS
The authors would like to acknowledge the financial sup-
port of the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Information Technology
Research Center (ITRC) of Ontario, and the University of
Toronto.

Authors’ Note: Animations demonstrating the principles of our
techniques can be found at the following web site:
http://www.dgp.toronto.edu/people/pfal/anima
tions.html.

While these animations are not essential to understanding the
techniques, they do convey qualities of the motions which cannot
easily be described. In order to limit file size, the image quality of
the above animations is modest.

REFERENCES
[1] J. Lasseter, “Principles of Traditional Animation Applied to 3D

Computer Animation,” Proc. ACM SIGGRAPH: Computer Graph-
ics, vol. 21, no. 4, pp. 35–44, 1987.

[2] T.W. Sederberg and S.R. Parry, “Free-Form Deformations of Solid
Geometric Models,” Proc. ACM SIGGRAPH: Computer Graphics,
vol. 20, no. 4, pp. 151–160, Aug. 1986.

[3] S. Coquillart and P. Jancène, “Animated Free-form Deformation:
An Interactive Animation Technique,” Proc. ACM SIGGRAPH:
Computer Graphics, vol. 25, no. 4, pp. 23–26, July 1991.

[4] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically
Deformable Models,” Proc. ACM SIGGRAPH: Computer Graphics,
vol. 21, no. 4, pp. 205–214, July 1987.

[5] D. Terzopoulos and K. Fleischer, “Modeling Inelastic Deforma-
tion: Viscoelasticity, Plasticity, Fracture,” Proc. ACM SIGGRAPH:
Computer Graphics, vol. 22, no. 4, pp. 269–278, Aug. 1988.

[6] D. Metaxas and D. Terzopoulos, “Dynamic Deformation of Solid
Primitives with Constraints,” Proc. ACM SIGGRAPH: Computer
Graphics, vol. 26, pp. 309–312, July 1992.

[7] D.R. Haumann, J. Wejchert, K. Arya, and B. Bacon, “An Applica-
tion of Motion Design and Control in Physically-Based Anima-
tion,” Proc. Graphics Interface ‘91, pp. 279–286, 1991.

[8] J.E. Chadwick, D.R. Haumann, and R.E. Parent, “Layered Con-
struction of Deformable Animated Characters,” Proc. ACM
SIGGRAPH: Computer Graphics, vol. 23, no. 3, pp. 243–252, July
1989.

[9] A. Pentland and J. Williams, “Good Vibrations: Modal Dynamics
for Graphics and Animation,” Proc. ACM SIGGRAPH: Computer
Graphics, vol. 23, no. 3, pp. 215–222, July 1989.

[10] A. Witkin and W. Welch, “Fast Animation and Control of Nonrigid
Structures,” Proc. ACM SIGGRAPH: Computer Graphics, vol. 24, no. 4,
pp. 243–252, Aug. 1990.

[11] D. Baraff and A. Witkin, “Dynamic Simulation of Nonpenetrating
Flexible Bodies,” Proc. ACM SIGGRAPH: Computer Graphics, vol. 26,
no. 2, pp. 303–308, July 1992.

[12] D. Terzopoulos and H. Qin, “Dynamic NURBS with Geometric
Constraints for Interactive Sculpting,” ACM Trans. Graphics, vol. 13,
no. 2, pp. 103–136, Apr. 1994.

[13] M. van de Panne and E. Fiume, “Sensor-Actuator Networks,” Proc.
ACM SIGGRAPH: Computer Graphics, pp. 335–342, Aug. 1993.

[14] M. van de Panne, R. Kim, and E. Fiume, “Synthesizing Parame-
terized Motions,” Proc. Fifth Eurographics Workshop Animation and
Simulation, Oslo, Sept. 1994.

[15] X. Tu and D. Terzopoulos, “Artificial Fishes: Physics, Locomo-
tion, Perception and Behavior,” Proc. ACM SIGGRAPH: Computer
Graphics, pp. 43–50, July 1994.

[16] J. Christensen, J. Marks, and J.T. Ngo, “Automatic Motion Syn-
thesis for 3D Mass-spring Models,” Technical Report MERL
TR95-01, 1995, to appear in Visual Computer.

[17] A. Watt and M. Watt, Advanced Animation and Rendering Tech-
niques. Addison-Wesley, 1992.

[18] P.E. Nikravesh, “Spatial Kinematic and Dynamic Analysis with Euler
Parameters,” Computer Aided Analysis and Optimization Mechanical Sys-
tem Dynamics, E.J. Haug, ed., vol. 9 NATO ASI, F, pp. 261–281.
Springer-Verlang, 1984.

[19] J.B. Marion and S.T. Thornton, Classical Dynamics of Particles and
Systems, third edition. Harcourt Brace Jovanovich, 1988.

[20] D. Zeltzer, “Motor Control Techniques for Figure Animation,”
IEEE Computer Graphics and Applications, pp. 53–59, Nov. 1992.

[21] J.K. Hodgins and M.H. Raibert, “Biped Gymnastics,” Int’l J. Ro-
botics Research, vol. 9, no. 2, pp. 115–132, Apr. 1990.

[22] G.S.P. Miller, “The Motion Dynamics of Snakes and Worms,”
Proc. SIGGRAPH ‘88, vol. 22, no. 4, pp. 169–178, Aug. 1988.

[23] R. Grzeszczuk and D. Terzopoulos, “Automated Learning of
Muscle-based Locomotion Through Control Abstraction,” Proc.
ACM SIGGRAPH: Computer Graphics, pp. 63–70, Aug. 1995.

[24] M. van de Panne, R. Kim, and E. Fiume, “Virtual Wind-up Toys
for Animation,” Graphics Interface, pp. 208–315, 1994.

[25] J.T. Ngo and J. Marks, “Spacetime Constraints Revisited,” Proc.
ACM SIGGRAPH: Computer Graphics, pp. 343–350, Aug. 1993.

[26] K. Sims, “Evolving Virtual Creatures,” Proc. Siggraph ‘94, ACM
Computer Graphics, pp. 15–22, 1994.

[27] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, pp. 671–680, May 1983.

Petros Faloutsos is a PhD candidate in the De-
partment of Computer Science at the University of
Toronto, where he is currently working on com-
puter animation, control, and dynamic modeling.
He received his BSc in electrical engineering from
the National Technical University of Athens,
Greece, in 1993, and his MSc in computer sci-
ence from the University of Toronto in 1995.

Michiel van de Panne received his BSc in elec-
trical engineering from the University of Calgary in
1987, and his MASc and PhD in electrical and
computer engineering from the University of To-
ronto in 1989 and 1994, respectively. He is an
assistant professor in the Department of Com-
puter Science at the University of Toronto, where
he is an active member of the Dynamic Graphics
Project. His interests include computer animation,
control and simulation techniques, robotics, and
selected topics in modeling and rendering.

214 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 3, JULY-SEPTEMBER 1997

Demetri Terzopoulos (S’78, M’85) received the
BEng. degree with distinction in honors electrical
engineering and the MEng. degree in electrical
engineering from McGill University, Montreal,
Canada, in 1978 and 1980, respectively, and the
PhD degree in artificial intelligence from the
Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, in 1984.

He is a professor of computer science and
electrical and computer engineering at the Univer-
sity of Toronto, where he leads the Visual Model-

ing Group, and is a fellow of the Canadian Institute for Advanced Re-
search. From 1985-92, he was affiliated with Schlumberger, Inc., serving
as program leader at research labs in Palo Alto, California, and Austin,
Texas. During 1984-85, he was a research scientist at the MIT Artificial
Intelligence Lab, Cambridge, Massachusetts. He has been a consultant
to Intel, Digital, Hughes, NEC, Ontario Hydro, and Schlumberger.

His published works include more than 180 scientific articles, pri-
marily in computer vision and graphics, and also in computer-aided
design, medical imaging, artificial intelligence, and artificial life, in-
cluding the recent edited volumes Real-Time Computer Vision
(Cambridge University Press, 1994), and Animation and Simulation
(Springer-Verlag, 1995). His contributions have been recognized with
several awards. In 1996, the Natural Sciences and Engineering Re-
search Council of Canada awarded him the E.W.R. Steacie Memorial
Fellowship. His other prizes include three University of Toronto Excel-
lence Awards, an award from the American Association for Artificial
Intelligence in 1987 for his work on deformable models in vision, an
award from the IEEE in 1987 for introducing active contours
(“snakes”), an award from NICOGRAPH in 1996 for his work on hu-
man facial modeling and animation, and awards from the International
Digital Media Foundation in 1994 and from Ars Electronica in 1995
citing his work on artificial animals. He currently serves on the editorial
boards of the journals Videre, Medical Image Analysis, Graphical
Models and Image Processing, and the Journal of Visualization and
Computer Animation. He has served on ARPA, NIH, and NSF advisory
committees and is a member of the New York Academy of Sciences
and Sigma Xi.

