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A Dynamic Controller Toolkit
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Figure 1: A simple controller demonstrates the use of inverse kinematics, dynamic attachments and simple logic to earn the skeletal team two
points.

Abstract

We introduce a toolkit for creating dynamic controllers for articu-
lated characters under physical simulation. Our toolkit allows users
to create dynamic controllers for interactive or offline use through
a combination of both visual and scripting tools. Users can de-
sign controllers by specifying keyframe poses, using a high-level
scripting language, or by manipulating the rules of physics through
a group of helper functions that can temporarily modify the en-
vironment in order to make the desired animation more feasible
under physical simulation. The goal of the toolkit is to integrate
dynamic control methods into a usable interactive system for non-
computer scientists and non-roboticists, and provide the means to
quickly generate physically based motion.
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1 Motivation

Motion capture techniques effectively animate humanoid characters
by recording and reproducing live performances. However, they
present several limitations, most notably, an inability to adjust to
new environments and different virtual characters. Motion editing
is often non-trivial and prone to problems such as constraint viola-
tion (e.g. footskating).

Physical simulation offers an alternative approach to generating
motion for animated characters. Synthesizing motion by numeri-
cally simulating the laws of physics offers the most general con-
straint over the resulting motion and ensures realistic results. The

dynamic nature of such approaches makes them especially suitable
for interactive applications where characters may interact in ways
that cannot be predicted or pre-computed. For this reason, physical
simulation is becoming increasingly popular in interactive applica-
tions such as computer games.

Although physical simulation is well-understood, controlling a
physically simulated character in order to make her perform desired
actions is not. The difficulty in developing dynamic controllers is
partly due to the complexity of control algorithms and partly due
to a lack of tools for animators to use to easily create dynamically-
based motion. While it is unlikely that the members of the graph-
ics community without robotics or biomechanical knowledge will
develop better control algorithms than those in the robotics com-
munity, the ability to change the virtual environments to suit the
desired behavior of the animated characters is an advantage for
graphics and animation developers. For example, motion capture
can be combined with dynamics, characters can be constrained to
maintain balance, and different collision geometries can be added
and removed during simulation runtime. This is the focus of our
work.

1.1 Contributions

We present a toolkit for use in the development of dynamic con-
trollers. The toolkit allows animators to develop dynamics-based
controllers through a combination of:

• key-framed based control,
• reduced dimensionality physics,
• scripting controllers via a controller language,
• interactive control of dynamic characters.

Although researchers have identified various control algorithms for
specific scenarios, the barrier to entry for developing dynamic con-
trollers is due to a very sparse toolset. We present a set of tools that
will allow animators with little or no skill in dynamics to create dy-
namic controllers for use in physical simulation. We demonstrate
that such tools can be effectively used for the development of char-
acter animation.

Our paper is organized as follows: Section 2 discusses related work.
Section 3 gives details of our pose-based control method. Section
4 discusses the use of modified physical environments. Section 5
details our scripting environment. Section 6 discusses our use of
interactive control for physical simulation. Finally, Section 7 dis-
cusses the problems facing the development of dynamic control and
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concludes.

2 Related Work

The focus of this paper is dynamic control of humanoid characters.
We review work related to this topic.

Dynamic controllers have been developed for athletic maneuvers,
such as running, bicycling, vaulting and balancing in [Hodgins
et al., 1995]. Control schemes using limit cycles were developed in
[Laszlo et al., 1996]. [Faloutsos et al., 2001] described a priority-
based control scheme and used support vector machines to automat-
ically determine the appropriate dynamic controller for the charac-
ter’s state. [Yang et al., 2004] layered different levels of controllers
to achieve dynamics-based swimming. [Zordan et al., 2004] used
simple controllers for breathing. [Pollard and Zordan, 2005] used
passive controllers for grasping and gripping. [Smith, 2003] used a
neural net to generate a stable walking cycle. Dynamic controllers
that use proportional derivative (PD) control strategies tend to pro-
duce motion that appears robotic. [Neff and Fiume, 2002; Neff
and Fiume, 2003; Neff and Fiume, 2004] used dynamic control
algorithms in order to achieve natural-looking motion and create
expressive animation with human-like fluidity.

Our work integrates many techniques developed for dynamic con-
trol into a usable, interactive system.

Another set of methods leverage well known motion constraints,
such as those from motion capture or keyframing, to modify or
guide dynamic motion. [Komura et al., 2004] and [Zordan and
Hodgins, 2002] enabled reactive motions by tracking motion cap-
ture and responding to physical disturbances. [Yin et al., 2003]
tracks motion capture by fixing the root of the character then ap-
plying dynamic effects on the rest of the body through physical
simulation. [Oore et al., 2002] presented localized dynamic models
in combination with kinematics.

Hybrid strategies combine the use of motion capture or other data-
driven kinematic motion with physical simulation, depending on
which method is more likely to generate the desired effect. [Shapiro
et al., 2003] applied kinematic controllers for ordinary motion then
switched to dynamic controllers under physical disturbances, and
also specified a criteria for determining when such a switch is ap-
propriate. [Mandel, 2004] used the same control strategy under
physical contact and emphasized reactive motions, such as falling
and recovering. [Zordan et al., 2005] switched from motion capture
to physical simulation, tracked the projected path using a simple
pose-based controller, then blended the motion to match the begin-
ning of another motion capture sequence. [Wrotek et al., 2006]
tracked motion capture data using global-space instead of local-
space under an environment with modified physics.

Other research handles the problem of interaction with humanoid
characters during simulation. [Laszlo et al., 2000] interactively
controlled 2-D characters with the keyboard and mouse. A
physically-based skier was controlled through basic input of the
mouse or keyboard causing a 2-D character to crouch, lean or jump
in the Ski Stunt Simulator [van de Panne and Lee, 2003]. [Zhao
and van de Panne, 2005] used a control pad and interactive con-
trols to control a 3-D humanoid character during diving and skiing.
Most recently, [Joe Laszlo, 2005] used predictive feedback to de-
termine the best control strategy for a 2-D character. Our toolkit
allows the interactive control of 3-D characters through a combi-
nation of pose-based control, reactive controllers and script-based
controllers.

Kinematic motion can also be parameterized in order to approx-
imate impacts from external forces. [Arikan et al., 2005] syn-

thesized new motion from a set of motion data of people being
push as a reaction to external forces in an interactive environment.
[KangKang Yin and van de Panne, 2005] created a data-driven
model to simulate the effects of external forces.

[Liu et al., 2005] synthesized motion that adheres to dynamic con-
straints by using optimization and enforcing linear and angular mo-
mentum constraints. Ballistic motion is handled through optimiza-
tion in [Liu and Popović, 2002] and [Fang and Pollard, 2003].

Many commercial dynamics-based systems have been developed
that simulate passive rigid bodies, such as [Kačić-Alesić et al.,
2003]. Of relation to our work are those that focus on dynamics and
the usage of control mechanism for humanoid animation. A limited
number of commercial systems support the creation of physically
animated motion. Havok Behaviors [Havok Inc., 2007] and Mas-
sive Prime [Regelous, 2005] provide support for physically tracking
existing animation (such as from motion capture) and using simple
passive control (”rag-doll”) when the motion diverges sufficiently
from the target trajectory. NaturalMotion’s Endorphin [NaturalMo-
tion Ltd., 2007] goes further by providing a variety of parameter-
ized controllers to perform simple actions such as standing, jump-
ing and tackling. While none of these commercial products allow
the user to design new controllers, DANCE [Shapiro et al., 2005], a
research system, does support the creation of dynamic controllers,
but by providing a low-level C++ interface. Our work differs from
these in that we are providing a toolset and interface for creating
entirely new dynamic controllers.

Several commercial and research systems are available to assist the
development of controllers for physical and physically simulated
robots, for example, the Webots platform [Michel, 2004] and the
Microsoft Robotics Studio [Microsoft Corp., 2007]. Both provide
physical simulation and support legged mechanisms. Our work
differs in that we focus on the development of controllers for an-
imated characters, not robots. In this respect, we have the freedom
to change various aspects of the virtual environment. For example,
we can change the presence or effect of gravity, allocate different
collision geometry during the simulation, and so forth. In addition,
our sensors provide unrestricted knowledge of the state of the sys-
tem, and are not limited to information gathered by sensors that
could be realistically implemented (e.g., range finders, touch sen-
sors, incremental encoders for wheels, etc.).

3 Pose-Based Control

Keyframing is a popular kinematic technique that can automatically
generate sequences of animation from a small set of user-described
poses. Physically simulated characters can also use keyframed
poses by treating the keyframe as the desired pose and using propor-
tional derivative (PD) control to drive the character to the desired
position. Our dynamic poses are defined as a 3-tuple as:

Φ = (ψ, σ, δ) (1)

where ψ is the set of desired pose orientations for all the character’s
joints (except for the root joint which is not actuated), σ is the set
of gain values, and δ is the set of damping values.

We obtain the amount of force, τp applied to each connected body
of our character as derived from the pose as:

τp = ks(θ − θd) − kd(θ̇) (2)

where τp is the torque to be applied to the body. θ represents the
current angle between joints, θd is the desired angle, ks is the gain

16



constant, kd is the damping constant and θ̇ is the rate of change of
the joint angle. The gain constant is determined by:

ks = ksjksgksp (3)

where ksj is the gain of the joint, ksg is a global gain term and ksp

is the gain of the desired pose. The ksp term is used to describe
how quickly and how strongly the character should attain the pose.

In order to maintain joint limits, we also apply exponential spring
forces, τe to the bodies if the joints have passed their limits:

τe = ksee
(kse(θ−θlimit)−1)

− kdeθ̇ (4)

where kse is the gain constant for the exponential springs, θlimit is
the joint limit, kde is the damping term for the exponential springs.

3.1 Pose Interface

The interface for keyframed pose creation is straightforward. Ani-
mators can set the position of the joints through inverse kinematics
(IK) or by explicitly specifying joint angles. In addition to spec-
ifying individual poses, animators can specify sequences of poses
that automatically transition based on particular events, as shown in
Figure 2. Events that can trigger transitions between poses include
timer-based events, collision-based events, or sensor-based events.
In addition, the user can use the controller scripting language de-
scribed in Section 5 to test and implement transitions as well.

4 Modified Physics Environments

One of the most difficult goals to achieve for dynamic characters
is balance. A number of different balancing strategies exist for hu-
manoid characters [Kudoh, 2004]. For example, a character can
attempt to balance by keeping its feet on the ground and moving
the rest of the body to adjust the center of mass (CM). Alterna-
tively, a character can maintain balance by ensuring that the zero
moment point (ZMP) trajectory stays within a subset of the convex
hull of the support polygon [Tak et al., 2000]. In addition, there
are other strategies that allow balance by stepping [Vukobratovic
et al., 1990]. For large perturbations, however, many of these bal-
ancing strategies fail. Since we are not always able to model the
impressive balancing ability of the human body, it can be desirable
to modify the constraints of our animation system in order to better
accommodate our target animation.

4.1 Reduced Physical Dimensions and Forces

We allow the animator to change the virtual environment in order to
make the design of controllers easier. For example, we can immedi-
ately constrain the forces affecting the character to a particular axis,
as well as reduce or eliminate accelerations (and thus velocities) in
other directions.

In Figure 3, we use a pose controller to raise the hands of a char-
acter to block an oncoming object. Without the use of a balancing
controller, the character falls down due to the momentum created
from both the movement of the character’s arms and the impact of
the object. In the same figure, we eliminate forces that impact the
root body of the character, thus keeping the character upright during
contact. Such changes can reduce the realism of the final animation.
However, it is often desirable to achieve a particular effect during
animation, more so than it is to achieve full physical validity.

Figure 3: Physical forces can be modulated on a character based
on certain events. The left character uses a pose controller blocks
the ball, causing the character to fall. For the character on the
right, forces on the hip are disabled for a short period of time after
contact, allowing the character to remain upright. However, forces
are still applied to the remainder of the character and the impact
can be seen on the upper body.

The effect of reducing physical forces on a simulated character can
change dramatically the ability of an animator to create effective
dynamic controllers. For example, walking in 2D is much easier to
do than in 3D and can even be accomplished for limited steps by
interactively selecting the proper pose as shown by [Laszlo et al.,
1996] and in our accompanying video. A 2D character is statically
balanced and cannot fall sideways. By constraining the forces or-
thogonal to the facing direction of our simulated character, we can
greatly simplify the development robust walking controller. In ad-
dition, the constraint forces that keep the character balanced can be
disabled when a different task that requires 3D movement is needed,
freeing the character to move in 3D again.

4.2 Modified Collision Environment

In addition to changing the forces on the character, the character’s
collision geometry can be changed during particular times of the
simulation. For example, in Figure 4 we give our character long
skis in place of normal sized feet. This makes the process of bal-
ancing easier due to an enlarged support polygon. At the same time,
this change would make movement more unrealistic and physically
invalid. However, the animator can retain control over the anima-
tion by restoring the normal-sized feet during the simulation via
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Figure 2: An animator can keyframe poses and place them in sequence. Transitions between poses are handled through simple event based
transitions or through script code.

Figure 4: The toolkit allows the user to change the physical charac-
teristics in order to make complex tasks more easy. Here, a charac-
ter uses ski-like feet in order to promote balance.

controller scripts.

5 Controller Scripting

Dynamic controllers can be designed through a combination of
pose-based sketching as well as through scripting with a controller-
centric scripting language.

We use scripting functions that allow the designer to access vari-
ous aspects of the sensors. Sensor-based information includes the
location of the character’s limbs, presence of other objects in the
environment, whether or not the character has been impacted by
another character or object, and so forth.

The presence of a scripting language, as opposed to writing the
controllers in a compiled language such as C++, means that users of
the system do not have to know low-level programming constructs.
Scripts can be readily written, changed, tested, and then modified
according to the performance of the animation.

Although not novel to this work, the presence of a scripting lan-

guage allows much of the complicated balancing and movement
strategies to be abstracted for the end user. Experts can write pa-
rameterized functions that accomplish simple tasks to be used by
animators. For example, a controller that handles graceful falling
might require that the upper body of a character is facing towards
(or directly away from the ground). In order to orient the upper
body of a character, the script writer must know which way the
character is facing, how quickly the body can turn, which direction
to turn and so forth. By abstracting this logic, an animator can use
this functionality without needing to understand how this is accom-
plished.

An example controller, provided in Appendix A, illustrates that the
toolkit allows useful behaviors to be obtained from relatively simple
scripts.

6 Interactive and Reactive Control
Interactively controlling physically-based characters is also diffi-
cult. The difficulty stems from both the high number of parameters
needed to control an interactive character as well as the difficulty
in specifying proper parameters to accomplish meaningful move-
ments.

In our system, a user may instruct the character to perform specific
tasks by selecting a pose-based controller from our interface. These
pose-based controllers can be simple keyframed poses, as described
in Section 3, script-based controllers as described in Section 5, or
other autonomous controllers written using C++. Script-based con-
trollers can include modified physics instructions, such as disabling
or enabling lateral forces, which can assist the user in controlling
the character. With a 2D character or a constrained 3D character,
keyframed poses can be used in sequence to achieve a walk cycle,
throw punches or kicks, hop, lean backwards, pick up objects and
so forth.

Users can toggle between interactive and autonomous control. We
achieve this flexibility by allowing the user to combine controllers
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that perform simple, posture-oriented movements and those that
perform complex control strategies such as balance. For example,
we have developed a set of falling, balancing and protective strate-
gies for 2D and 3D characters which can be activated interactively
at any time. This incorporation of autonomous control gives the
character reactive skills that allow it to recover gracefully from var-
ious undesirable positions and situations, such as being prone or
supine on the ground, or under attack from another character.

This division of control layers also allows users from different areas
to contribute towards a more robust, interactive character. Anima-
tors and lay users can specify keyframed poses and interactively
control the characters, while more technical users can contribute
reactive controllers and better control algorithms.

Thus, we can control our interactive character with three different
layers of control: 1) a keyframed pose control, 2) a scripting layer
that combines keyframes with sensor information, and 3) a layer of
reactive control that can be activated during physical interaction or
imbalanced states.

Figure 5 demonstrates the use of interactive control of a 3D char-
acter. Please refer to our accompanying video to see our system in
use for this character, as well as for walking and recovering with a
2D character.

7 Discussion and Conclusion
Developing plausible motion for animated characters is difficult.
There are a variety of different techniques that are used to control
interactive characters including the use of motion capture, dynam-
ics and optimization. However, no currently known technique can
perform a complete range of motions while interacting dynamically
with the environment.

Developing dynamic controllers for autonomous behavior is also
a very difficult task. Techniques range from hand-coding con-
trollers based on intuition, to borrowing techniques from robotics
and biomechanics, to tracking motion capture. Most dynamic con-
trollers for animated characters are either simple or brittle. The
simple controllers can only perform basic tasks, while the brittle
controllers can only succeed under specific environments.

Our application seeks to fill a void in the capabilities of anima-
tors and researchers to create character animation. This gap in
capability can be seen in the amount and quality of tools avail-
able for kinematically-driven character animation versus that for
dynamically-driven character animation. Consider that keyfram-
ing is a popular technique for animating kinematic characters. It
is powerful because it allows the animator to express a nearly un-
limited variety of movement and behavior given enough time and
effort on the part of the animator. In addition, the barrier to entry
for designing keyframed animation is relatively low. Thus, a large
number of animators can develop a wide range of motion and be-
havior. On the other hand, no such tool or technique yet exists for
the development of dynamic control and interactive physical con-
trol. Therefore, the barrier to entry for the development of dynamic
controllers is high and left in the hands of the experts in robotics,
graphics, artificial intelligence and similar technical fields. This is
a major obstacle in the adoption and development of dynamic con-
trol in character animation, a field often populated with artistically-
oriented rather than technically-oriented people.
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Appendix A: Example Control Script

A simple script is provided to illustrate building a controller using
the described toolkit. As shown in Figure 1, (and the supplemental
video) inverse kinematics is used to position the ball toward the
rim. This script is applied after the character has jumped toward
the basketball goal. setIKTarget() both solves the inverse-
kinematics problem and updates the target pose using the computed
joint angles.

Overall pose control is managed via the setTargetPose()
command. Simple sensory information is provided by the functions
getPosition() and isColliding().

The character’s simulated hand is not modeled accurately enough
to grip the ball, so dynamic attachments (attachLink() and
detachLink()) are used to simulate “palming” the ball.
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The controller is implemented as a Python [van Rossum and Drake,
2006] class:

class DunkController:
def start(self):

skeleton.setTargetPose("PrepareDunk")
skeleton.attachLink("RightArm", "Ball")

def step(self):
# As long as we have the ball,
# continue to attempt the basket.
if skeleton.isLinkAttached("RightArm", "Ball") :

rimPos = getPosition("Rim")
skeleton.setIKTarget(rimPos)

# When the ball or the arm touches the rim,
# the dunk attempt is finished,
# so release ball and try to land.
if isColliding("Ball", "Rim") \

or isColliding(skeleton, "Rim") :
skeleton.detachLink("RightArm", "Ball")
skeleton.setTargetPose("Landing")

Two methods are required by the toolkit. start() is called once
to initialize the controller when it is first applied to a character dur-
ing a simulation. step() is subsequently called with each simu-
lation time-step and provides the main control functionality.
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