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Figure 1: A sneaky style component is added to a normal walk (left image, left character) to synthesize a sneaky walk (left image, right
character). The style component transfer is reversed, applying an upright and casual walking style to a sneaking motion (right image, left
character) to produce a walk-like sneak, which appears as a tiptoeing motion (right image, right character).

ABSTRACT

We propose a novel method for interactive editing of motion data
based on motion decomposition. Our method employs Independent
Component Analysis (ICA) to separate motion data into visually
meaningful components called style components. The user then
interactively identifies suitable style components and manipulates
them based on a proposed set of operations. In particular, the user
can transfer style components from one motion to another in order
to create new motions that retain desirable aspects of the style and
expressiveness of the original motion. For example, a clumsy walk-
ing motion can be decomposed so as to separate the clumsy nature
of the motion from the underlying walking pattern. The clumsy
style component can then be applied to a running motion, which
will then yield a clumsy-looking running motion. Our approach is
simple, efficient and intuitive since the components are themselves
motion data. We demonstrate that the proposed method can serve
as an effective tool for interactive motion analysis and editing.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation.

Keywords: motion capture, motion editing, animation

1 INTRODUCTION

Motion capture data is commonly used to animate interactive char-
acters. It produces realistic and high quality synthetic motion.
However, producing variations of the motion to satisfy new situ-
ations and constraints is not intuitive, and often results in unnatural
motion.

A great amount of research work aims to provide the animators
with tools to manipulate motion. The proposed techniques range
from simple key-framing and signal processing to different forms of
space time optimization and statistical modeling. Such techniques
are often computationally expensive or not intuitive for animators
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that are not technically oriented. In any case, most of these tech-
niques either adjust motion based on a set of constraints or they
abstract recorded motion through statistical modeling. There are
few techniques that allow the animator to edit directly the style of a
motion in intuitive ways. This is the focus of our work.

We introduce a novel method for decomposing motion into var-
ious components which can represent the style and expressiveness
of a motion without the need to key-frame animation or to analyze
frequency bands. The resulting components can, in turn, be applied
to other motions through a variety of editing operations, generat-
ing new motions that retain the basic content of the original motion
while adding the style of the component motion. Thus, motion rep-
resenting a person walking in a sneaky manner can be decomposed
so as to extract the sneakiness of the motion. This sneakiness style
component can then be applied to a normal walk in order to create
a sneaky-looking walk. Conversely, our method allows the recip-
rocal application of style to the above example. The characteristics
of a walking motion can be extracted as a separate style component
and in turn added to a sneaky motion, yielding a walk-like sneaking
motion. In addition, the amount of the style component can be in-
terpolated so as to create a continuum of different motions between
the original motion and the new stylized motion. Thus, the origi-
nal walk from the example above could be combined with a sneaky
style component in order to create a motion that is halfway between
sneaking and walking. Thus, we can create transitions between the
original motion and the new, stylized motion.

Motion decomposition is performed automatically through In-
dependent Component Analysis (ICA). A user then interactively
selects one or more of the resulting style components that best rep-
resent the style of the desired motion. The components resulting
from the decomposition are displayed visually for the user. These
components can be combined together with a variety of visual edit-
ing functions to better represent the expressiveness and nuances of
the motion. The chosen style components are then applied to the
original motion yielding a new, stylized motion. Unlike previous
methods for stylizing motions, our method is completely visual and
requires no knowledge of key framing, frequency bands or statis-
tical analysis. Our approach is the basis of a simple and intuitive
interactive tool for analyzing and editing motion data.

The remainder of the paper is organized as follows. Section 2
provides an overview of related work and background information.
Section 3 describes our motion decomposition method. Section 4
explains how we interactively edit motions. Section 5 presents our
results and discusses the limitations of our approach. Lastly, Sec-
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tion 6 concludes the paper.

2 RELATED WORK

Motion capture systems and recorded data are readily available.
Applying recorded motion to virtual characters produces high qual-
ity motion efficiently and easily. However, it not practical or even
possible to capture the entire range of motions that an interactive
character might need to perform.

In order to remedy this shortcoming, motion synthesis applica-
tions [2, 19, 18, 16, 15] use a finite database of motion segments
which can be synthesized into longer motions. The focus of these
algorithms is efficient searching of the motion database for motion
segments that satisfy the control parameters, such as a user-defined
path or annotations, and a range of physical constraints. Note, that
Li et al [19] use a Linear Dynamic System (LDS) to abstract the
motion database and provide a search algorithm that works in the
LDS space.

Retargeting transfers motions generated for one character onto
another. Gleicher [8] and Shin et al [27] mainly solve the problem
of motion retargeting by applying motions to characters with differ-
ent body proportions. While the process of retargeting effectively
changes some aspects of the original motion, its goal is to transfer
movement content, not movement style.

Vasilescu and Terzopoulos [31] use multilinear analysis to ex-
tract stylistic aspects of facial motion from three different actors
and reapply the style to each other. This method was not performed
on full-body animation. Pullen and Bregler [23] create statistically
similar variations of an original motion using a multi-level sampling
technique. The animator can key frame a subset of the DOF of a
character and automatically provide key frames for the remaining
DOFs.

Motion editing, which is the focus of our work, is a challenging
problem that has received a lot of attention. Earlier work exploits
mostly ideas from signal processing. Bruderlin and Williams [5]
apply signal processing operations to provide stylistic variations of
the original motion. Using a small number of key frames, Witkin
and Popović [33] warp motion to satisfy new constraints. Gle-
icher [9] also proposes an interesting warping technique.

Of closest relation to our method are those works that seek to
transfer the style of one motion to another. Thus, our goals are very
similar to those outlined by Unuma et al [29], which uses Fourier
techniques to change the style of human gaits through extrapolation
and interpolation of different motions. Our method differs in that
it is entirely visual and relies upon a user’s decision to determine
which stylistic aspects to retain.

Urtasun et al [30] use PCA to decompose sets of motion data,
such as walking and running at different speeds, and use PCA co-
efficients to synthesize motions with different cadences and styles.
Stylistic variations can be synthesized by relating a new motion to
the coefficients that are stored from the decomposed motion sets.
Our work differs in that we do not need to generate examples of
motion data first; we are able to transfer style using only one exam-
ple motion. Also, our method is not able to synthesize movement
at different speeds.

Amaya et al [1] extract emotion by comparing neutral and non-
neutral motions. The difference between the motions is then added
to another neutral motion to give that third motion the style of the
non-neutral motion. Our method differs in that we do not require
one motion to be neutral while the other represents the non-neutral
emotion. Rather, our method allows you to use any two motions
with varying amounts of emotional or stylistic content and transfer
visually selected stylistic aspects between them.

Rose et al [24] borrow the verb-adverb paradigm from speech to
annotate motions into basic, verbs, and modifications, adverbs. In-
terpolation between motions yields a convex set of variations. Our

method differs in that we do not interpolate between two motions,
but extract specific stylistic markers related to one motion and apply
it to another.

Brand and Hertzmann [4] and Tanco and Hilton [28] both use
Hidden Markov Models to capture the style of recorded motions.
These styles can then be reapplied to novel motions. However, be-
cause the motion primitives are related to the hidden states of the
models they cannot be edited explicitly.

Most recently, Hsu et al [12] performed style translation between
motions by learning a translation between input and output models.
Their method uses Iterative Motion Warping to compute correspon-
dences between motions. Unlike their method which keeps degrees
of freedom (DOF) separate in order to extract stylistic aspects of
motion, the ICA decomposition described in this paper groups DOF
together in order to find correlations between them.

Physically-based methods have also been used in order to ap-
ply style from one motion to another. The method from Liu et
al [20] constructs a physical model and uses optimization to syn-
thesize a new motion using physical parameters from a different
motion. These physical parameters encode the stylistic variations.
Although physically-based methods are able to handle constraints
that are otherwise inaccessible to kinematic motions, an extremely
detailed physical model would be needed to extract subtle nuanced
gestures that are part of an in-depth stylistic transfer. For example,
our method can extract the shaking hands of an old man (see Sec-
tion 5.4). This shaking would be difficult to achieve with only a
coarse physical model.

Of particular relation to our work within the domain of statis-
tical modeling are the techniques that provide editing parameters
through motion decomposition. Chuang et al [7] propose a factor-
ization method that separates visual speech into style and content
components. Wang et al [32] separate facial expressions from facial
content using dimensionality reduction. Cao et al [6] use Indepen-
dent Component Analysis to capture the emotional content of vi-
sual speech for editing purposes. The authors extract facial emotion
components by automatically examining the regions of the face that
they affect. In contrast, we allow the user to interactively choose as-
pects of the motion that represent style or emotion from any part of
the body. The idea of using ICA for editing and synthesizing hu-
man walking has been proposed by Mori and Hoshino [22]. Saisan
and Bissacco [25] show that ICA can be used to model subtleties of
cyclic motion data for human bodies. Also, Bissacco et al [3] use
a modified version of ICA to generate dynamic models of human
walking.

2.1 Independent Component Analysis

Independent Component Analysis is an unsupervised learning tech-
nique [14] that separates a set of observed random variables into a
linear mixture of hidden random variables that are statistically in-
dependent. We call these new random variables independent com-
ponents. Cao et al [6] provides a good description of ICA and
a comparison with the more well-known decomposition method,
Principal Component Analysis (PCA). In this work, we follow their
notation.

The mathematics of ICA are straightforward. Given a set of n
random variables x1, . . . ,xn each of them can be written as a linear
mixture of n latent or hidden variables u1, . . . ,un, such that

x j =
n

∑
i=1

a jiui,

or in matrix notation
x = Au. (1)

A number of ICA algorithms exist to estimate the mixing matrix A.
Estimating A is sufficient, because if the matrix is known, inverting
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Equation 1 yields the independent components u = Wx. We use the
publicly available Matlab [21] implementation of the FastICA [13]
algorithm.

Applying ICA involves a two stage pre-processing. First, the
data is centered around its statistical mean E[x]. Then the centered
data is decomposed into a set of uncorrelated variables, typically
using PCA. The complete model is as follows:

x = E{x}+PAu, (2)

where E{x} is the expectation of x and P is the n×m PCA matrix.
The number of principal components determines the number of

independent components. We can decide to keep m < n indepen-
dent components, effectively reducing the dimension of our data.

3 MOTION DECOMPOSITION

We can specify motion capture data in terms of Euclidean coordi-
nates or using joint angles. The Euclidean coordinate representation
specifies the location of the markers in Euclidean space for each
captured frame. Hierarchical angle representation models the char-
acter as a set of hierarchical joints. Data is typically represented
by a set of Euler angles and offsets from the parent joints. The re-
sults of the ICA decomposition vary according to the format of the
motion capture data.

3.1 ICA Performance With Different Representations

The ICA algorithm works on a matrix whose rows represent the
individual frames of a motion, and whose columns represent the
different channels or degrees of freedom of the motion. Thus, the
ICA decomposition can be performed on either the 1) Euclidean
coordinate point representation of the motion, the 2) Euler angles
representing the rotation of the joints, 3) quaternions that represent
the rotation of the joints, or 4) an exponential map representing the
rotation of the joints. Similarly, a transformation matrix could be
derived from the Euler angles and, in turn, submitted to the ICA
decomposer.

However, since the ICA algorithm results in a linear decompo-
sition of the input data, it will produce visually unintuitive results
when the input consists of a series of Euler angles. This is likely
related to the problem of Gimbal lock, where a linear combination
of Euler angles does not always result in a smooth interpolation of
the desired angle. Thus, the synthesized component motion shows
sporadic twists and turns that greatly disrupt the appearance of the
motion. This makes Euler angles a poor choice for the ICA decom-
position. Quaternions can be used by submitting the four values of a
quaternion to the ICA decomposer. The motions decomposed from
quaternions do not suffer from the extreme rotations that we see
with the Euler angles. However, the quaternion representation re-
sults in subtle rotations that differ slightly from the original motion,
since the process of linear combination does not properly separate
the quaternion in a meaningful way, either. The results of quater-
nion decomposition are more visually intuitive than those of Euler
angle decomposition. Grassia [10] shows that exponential maps are
a good representations for rotations, but are not well suited for pa-
rameterizations across continuous frames and thus are not used.

The Euclidean coordinate representation, since it does not in-
volve rotations, does not suffer from the same problem as the ro-
tational representations indicated above. Since the input to the
ICA decomposer consists of points in Euclidean space, the ICA
decomposition and motion synthesis gives visually meaningful re-
sults. Euclidean space can be linearly interpolated without strange
side effects. The synthesized motion does, however, result in slight
changes in the length of our animated character’s limbs, since the
point representation does not preserve the distance between joints.
This problem is caused by the ICA decomposition which also does

not preserve bone lengths. In addition, editing the independent
components can result in exaggerated motions that violate bone
length constraints. By replacing one style component u1 of mo-
tion m1 with style component u1 of motion m2, we potentially alter
the implicit fixed distances between joints.

We used the Euclidean coordinate representation for most of our
experiments. Since we are concerned only with kinematic anima-
tion and the visual quality of the final animation, we are not con-
cerned with slight changes in the lengths of the bones of our char-
acter. Although, the change of limb length impacts foot plants and
also creates occasional foot skating or violation of floor constraints,
bone lengths can be easily made globally consistent among frames.
In addition, an inverse kinematics solver can be used to satisfy foot
plant constraints. Note that altering bone lengths has been used by
Kovar et al [17] on kinematic motion for the purpose of correcting
foot skating. Also, Harrison et al [11] makes an argument for re-
taining length changes and measures to what extent these changes
can be made without being noticed by the observer.

4 INTERACTIVE EDITING

Our editing system allows the user to sequence two motions to-
gether and identify the independent components that best represent
the style differences between them. Once the style components are
found, the motions are split again and the individual style compo-
nents can be subject to a number of editing operations. Figure 2
summarizes our interactive motion editing approach. The remain-
der of this section explains the steps depicted in the figure and enu-
merated here:

1. Motion Combination. Two motions are combined together.

2. Style Component Generation. The combined motion is de-
composed into components.

3. Style Component Selection. The user selects components of
interest to them.

4. Style Component Merging. The user combines components
together to better represent the desired characteristics of mo-
tion.

5. Transferring Style Components. The selected components are
transferred in order to create a newly synthesized motion.

6. Post Processing. The newly synthesized motion undergoes a
motion clean-up phase.

Note that the interface to the system is entirely visual. The user
chooses and transfers components by observing a visual represen-
tation of those components, and not a frequency-based one.

Each of the steps listed above is explained in greater detail below.

4.1 Motion Combination

Given two motions, xa and xb, motion xab is produced by joining
the frames of xa and xb. Thus, xab will have f = f1 + f2 frames,
where fi is the number of frames for motion xi. It is essential to
combine the motions together in order for the ICA algorithm to
find synchronized differences between the two motions.

4.2 Style Component Generation

Once xab is formed, the user selects the number of style compo-
nents k in which to decompose xab as well as a representation for
the decomposition. The representation can be points, quaternions or
Euler angles, see Section 3. Applying the ICA algorithm results in
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Figure 2: Overview of the ICA-based interactive editing system.

k independent components u1
ab..uk

ab for the combined motion xab.
It is usually sufficient to keep enough components to cover 95%
of the variance in the data. However, experimenting with arbitrary
numbers of style components often produces interesting results. We
typically experiment with 3-5 components. Since the decomposi-
tion takes only a few seconds, it is trivial to adjust the number of
components, view the results, then try a different number of com-
ponents if needed.

Note that the global translation should be removed from the mo-
tion before we apply ICA. This is explained in more detail under
Post Processing, Section 4.6.

Each style component u1
ab is used to reconstruct part of the orig-

inal motion as follows:

xi
ab = E{xab}+PA(ui

abei), i = 1, ...,k (3)

and the result is displayed in a separate window, shown in the mid-
dle of Figure 2.

Combining these motion reconstructs an approximation, m′
ab of

the original motion, mab, which is shown at the bottom right of the
screen captured window in Figure 2.

4.3 Style Component Selection

The user visually analyzes the reconstructed motions, mi
ab, and

identifies potentially interesting stylistic components. Good can-
didates for selection are style components that capture differences
in posture, cadence as well as defining nuances that appear in one
motion but not the other. In Figure 2, the user identifies the middle
style component on the top row as a style component for use in a
style transfer.

For example, in one of our experiments we apply this approach
to a joint running+walking motion and we are able to extract a sin-
gle style component that captures the forward lean and raising of
the elbows during the running motion. The same style component

captures the upright stance and dropped arms during the walking
motion.

The user can experiment with different decompositions of the
same motions by either choosing a different number of style compo-
nents or by rerunning the decomposition algorithm with a different
initial guess.

4.4 Component Merging

Our ICA decomposition produces a set of independent components
which can be linearly combined to form the original data. It is
therefore straightforward to linearly mix components together and
produce combined components. Merging style components allows
the animator to create a smaller set of style components that may
be more representative or easier to work with. More importantly
merged style components may provide a more suitable basis for
aligning motions, which is often a necessary step for more com-
plex operations.

Mathematically, merging two components u1 and u2 results in a
combined motion u12 as follows:

x12 = E{x}+PA(u1e1 +u2e2), (4)

where ei is a vector in the canonical basis of A that corresponds to
the ith-component.

4.5 Transferring Style

Perhaps the most interesting operation we can perform using our
decomposition approach is to transfer style between motions.

Once a style component us
ab has been selected, it is split into two

segments that represent the style components of the original two
motions, ms

a and ms
b. We can then align (time-warp) either xa to

xb or vice versa depending on which motion’s timing we wish to
preserve. We align the motions by applying dynamic time warping
as described by Sankoff and Kruskal [26] on one of the degrees of
freedom (DOFs) of the character. The user interactively selects the
appropriate DOF based on her knowledge of the motion and the de-
sired effect. For example, if the resulting motion needs to preserve
foot contacts, a good choice is the hip swing degree of freedom.
The user can experiment with different degrees of freedom and se-
lect the one that produces the desired result.

Once the motions are aligned, the user can generate new motions
by replacing us

a with us
b. Following the notation of Cao et al [6],

transferring a style component from one motion to another can be
mathematically expressed as follows:

x = E{x}+PA(ua +((us
b −us

a)
T es), (5)

where es is a unit vector in the canonical basis of A that corresponds
to the selected style component.

4.6 Post Processing

The global translation DOF are removed before the ICA decom-
position since the decomposition has no intrinsic knowledge of the
correlation between foot plants and changes in position. Our tests
show that ICA decomposition with the global translation DOF re-
sults in a distracting amount of foot skating. Once the final motion
has been generated, the global translation from xa, which was re-
moved before applying the decomposition, is re-added to the mo-
tion. Assuming that the style component does not contain much
lower body movement, then the process of recombining the origi-
nal global translation along with time warping generally preserves
the leg movements and thus indirectly preserves the foot plants in
the newly synthesized motion. The global translation for the base
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Figure 3: Running (left) and a sneak-like run (right).

motion, and not the style motion, is added to the synthesized motion
since the main movement corresponds to the base motion.

If the data represents marker positions instead of joint angles,
the limb lengths of the character may lengthen or shorten between
frames. To correct this, the system automatically employs a filter
to restore the correct limb lengths according to the original data by
preserving joint angles. In addition, low-pass filtering is automat-
ically done to eliminate high-frequency motions. High-frequency
motion is typically caused by the time-warping technique as a re-
sult of matching a high-speed motion, such as running, with a low-
speed one, such as a very slow walk. Style component transfers
in the opposite direction, from a low-speed motion to a high-speed
motion, result in stiff movements, such as limbs that remain in the
same place for an unnaturally long amount of time.

5 RESULTS

Our system is able to decompose motion capture data regardless
of the hierarchical structure of the character. We use two different
skeleton hierarchies for our examples; a thirty-one joint, sixty-two
DOF skeleton and a twenty-six joint, eighty-four DOF skeleton.
All motions are displayed in real-time and decomposed with the
ICA algorithm in less than 5 seconds. For most of our experiments
we use five independent components. Once a style component is
selected, the motion reconstruction takes less than two seconds.

5.1 Walking and Sneaking

In this example, we transfer a style component between a walking
motion and a sneaking motion. Joining motions and decomposing
them into five style components allowed us to successfully iden-
tify one of the components that models the difference between the
hunched posture of the sneaking motion and the upright stance of
the walking motion. Applying this style component to both original
motions produces two new stylized variations. Figure 1(left) shows
a sneaky walk, while Figure 1(right) a walk-like sneak. The latter
motion appears to be the motion of a character tiptoeing in order to
keep quiet, without the characteristic hunched posture of a sneaky
motion.

5.2 Running and Sneaking

Here we combine a running motion with the previous sneaking mo-
tion. We find a similar style component that captures the hunched
posture of the sneak, as in the previous example, and apply it to the
run. The sneaky run is shown in Figure 3.

Figure 4: Running (left) and running with a walking style - jogging
(right).

Figure 5: Walking (left) and walking with a running style - power-
walking (right).

5.3 Running and Walking

For this example we combine a running and a walking motion. A
style component is found that captures the shrugged shoulders, the
raised elbows and the bending of the knees of the running motion.
The same style component captured the upright stance and relaxed
arms of the walking motion. By applying the walking style to the
run, our resulting motion resembles a jogging motion, Figure 4,
while our run-like walk resembles a power walk, Figure 5.

5.4 Old Man’s Walk and An Approaching Fighter

We combine an old man’s walk with a threatening, fighter-like ap-
proach. The old man’s arms shake while he walks, and his legs
move in a bow-legged manner. The fighter moves with a steady
upper body and a deliberate gait. By finding a style component
that captures the fighter’s uprightness and raised hands, we synthe-
size a new motion showing an old fighter walking in an aggressive
manner. The new motion retains the cadence, shaky arms and bow
legged movement, but incorporates the raised hands and slightly
raised head, Figure 6.

5.5 Motion Interpolation

The original and stylized motion retain very similar characteris-
tics, including global translation and general movement speed. The
alignment between these two motions eliminates problems such as
foot-skating and phase differences when interpolating two different
motions. Thus, the stylized motion can be linearly interpolated with
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Figure 6: The old man (left), the fighter (middle) and the old man as a fighter (right).

Figure 7: Interpolating between a sneak and a walk-like sneak.

the original motion in order to produce a continuum of motions that
contain varying amount of style. Figure 7 shows an interpolation
between the sneak and the walk-like sneak (tiptoeing).

5.6 Discussion

The human body can be considered generally as a highly non-linear
control system. It is therefore counter-intuitive that linear methods
such as LDS as proposed by Li et al [19] and ICA prove to be
effective tools for motion modeling and editing. However, it seems
that as the human body repeats and learns common motions, such
as gaits, it optimizes and simplifies its control strategies. Thus, the
observed dynamics of such motions can often be approximated with
combinations of linear models.

It is helpful to consider ICA in relation to PCA. PCA and ICA
are both statistical techniques that can reduce the dimensionality of
data. PCA produces components that are orthogonal, uncorrelated
and in often do not have intuitive interpretation when decomposing
full-body motion in our method. In contrast, ICA assumes that the
components are statistically independent. The first stage of ICA is
the whitening stage which is done with PCA. ICA rotates each PCA
component independently of each other, and therefore is often able
to capture dimensions of the motion data in a more meaningful way
than is PCA alone. This has been shown in the case of facial motion
by Cao et al [6].

Extracting style is a difficult problem. It is difficult to prove
that any style extraction scheme such as frequency band manipu-
lation or other decomposition techniques work well in all cases.
Most of these techniques are experimentally proven to work in a
range of cases. The same holds for our proposed ICA decompo-
sition method. Our method achieves interesting results within a
certain data set of motions that represent movement in full-body an-
imation. A similar scheme has proved successful for facial motion
as well [6]. ICA has been used in the vision literature for motion
recognition cases. Our technique is simple, fast and provides an in-

tuitive decomposition into motion components, some of which can
be identified as representing stylistic aspects of the motion.

Although, our method produced some surprising results with its
ability to capture the difference in style of a range of motions, it has
several limitations.

Our experiments show that our method is more effective with
cyclic motions than with acyclic motions. This is probably due to
the fact that aligning cyclic motions is more intuitive than aligning
arbitrary motions. However, our decomposition method is often
able to separate one-time events, such as gestures, from the cyclic
aspects of a motion.

The FastICA [14] algorithm that we currently use does not al-
ways converge to the globally optimal decomposition. However, to
our knowledge it is one of the most efficient algorithms, which is
crucial for interactive editing.

We would also like to clarify that, in this work, we assume that
motion data is already segmented into suitable pieces of singular
motion. Automatic data segmentation is out of the scope of this
paper.

6 CONCLUSION

We have presented a novel method for interactive motion editing.
Our method, based on Independent Component Analysis, provides
a meaningful decomposition of the original motion into reusable
components called style components. An important feature of our
decomposition is that the resulting style components are themselves
motion data. Therefore, they are a familiar model for animators and
can be subject to the growing number of techniques that work with
motion data.

Based on the proposed decomposition we have defined a set of
editing operations that can change the style of an original motion.
Of special interest is the ability of our approach to extract stylistic
aspects from one motion and apply it to another. At the same time,
we can edit the style components themselves to reduce or exagger-
ate their effect on the motion. Using our interactive editing tool we
are able to perform efficiently a series of examples that demonstrate
the effectiveness of the method.

In summary, we believe that our work presents a fast and in-
teractive technique that can often transfer style between motions.
Animators can experiment to quickly obtain new motions.

We have just beginning to explore the possibilities offered by the
ICA-based motion decomposition. We believe that it can be equally
effective in a range of applications, such as motion segmentation,
automatic motion annotation and motion recognition.

ACKNOWLEDGEMENTS

We would like to thank Frédéric Pighin for his many useful discus-
sions and comments. The work in this paper was partially supported

38



by NSF under contract CCF-0429983. We would also like to thank
Intel Corp., Microsoft Corp., Alias Wavefront and ATI Corp. for
their generous support through equipment and software grants.

REFERENCES

[1] Kenji Amaya, Armin Bruderlin, and Tom Calvert. Emotion from mo-

tion. In Graphics Interface, pages 222–229, May 1996.

[2] Okan Arikan, David A. Forsyth, and James F. O’Brien. Efficient syn-

thesis of physically valid human motion. ACM Transaction of Graph-

ics, 22(3):417–426, 2003.

[3] Alessandro Bissacco, Payam Saisan, and Stefano Soatto. Modeling

human gaits with subtleties. In Proceedings of 13th IFAC Symposium

on System Identification, August 2003.

[4] Matthew Brand and Aaron Hertzmann. Style machines. In Kurt Ake-

ley, editor, Siggraph 2000, Computer Graphics Proceedings, pages

183–192. ACM Press / ACM SIGGRAPH / Addison Wesley Long-

man, 2000.

[5] A. Bruderlin and L. Williams. Motion signal processing. Proceed-

ings of ACM SIGGRAPH: Computer Graphics, pages 97–104, August

1995.

[6] Yong Cao, Petros Faloutsos, and Frederic Pighin. Unsupervised learn-

ing for speech motion editing. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, pages

225–231. Eurographics Association, 2003.

[7] E. Chuang, H. Deshpande, and C. Bregler. Facial expression space

learning. In Proceedings of Pacific Graphics, 2002.

[8] Michael Gleicher. Retargeting motion to new characters. In Proceed-

ings of SIGGRAPH 98, Computer Graphics Proceedings, Annual Con-

ference Series, pages 33–42, July 1998.

[9] Michael Gleicher. Motion path editing. In Proceedings of 2001 ACM

Symposium on Interactive 3D Graphics, pages 195–202, 2001.

[10] F. Sebastian Grassia. Practical parameterization of rotations using the

exponential map. of Graphics Tools, 3(3):29–48, 1998.

[11] Jason Harrison, Ronald A. Rensink, and Michiel van de Panne. Ob-

scuring length changes during animated motion. ACM Transactions

on Graphics, 23(3):569–573, August 2004.

[12] Eugene Hsu, Kari Pulli, and Jovan Popović. Style translation for
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