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Abstract—Trajectory user linking (TUL) is a problem in
trajectory classification that links anonymous trajectories to the
users who generated them. TUL has various uses such as iden-
tity verification, personalized recommendation, epidemiological
monitoring, and threat assessments. A major challenge in TUL
modeling is sparse data. Previous TUL research heavily relies on
sequence-to-sequence models such as RNNs and LSTMs, with
trajectory segmentation to combat sparsity, but segmentation
does not sufficiently address the issue and existing models
often ignore data skewness, resulting in poor precision and
performance. To address these problems, we present TULHOR, a
TUL model inspired by BERT, a popular language representation
model. One of TULHOR’s innovations is the use of higher-
order mobility flow data representations enabled by geographic
area tessellation. This allows the model to alleviate the sparsity
problem and also to generalize better. TULHOR consists of a
spatial embedding layer, a spatial-temporal embedding layer and
an encoder layer, which encodes properties and learns a rich
trajectory representation. It is trained in two steps, first using a
masked language modeling task to learn general embeddings,
then fine-tuned using a balanced cross-entropy loss to make
predictions while handling imbalanced data. Experiments on real-
life mobility data show TULHOR’s effectiveness as compared to
current state-of-the-art models.

Index Terms—trajectory classification, trajectory-user linking,
trajectory representation learning, machine learning

I. INTRODUCTION

Motivation. Location-based services (LBS) are systems that
provide services to users based on their geographic location.
The location information is typically obtained from a GPS-
enabled device (such as a cell phone) and is used to provide
services such as maps, directions, local search, and location-
based advertising. Examples of LBS include ride-hailing apps,
food delivery apps, and weather apps, to name a few. LBS can
provide more personalized and relevant experiences to users by
analyzing user trajectory data, a collection of geographic data
points that describe the moving patterns of a user or vehicle,
over a period of time. For instance, they can be used to provide
location-based recommendations to users based on their past
movements and interests, or to predict future traffic conditions
for commuting to home or work location. They can also be
used in marketing for optimizing the placement and timing of
advertisements based on the trajectory of users in a particular
area, or for customer segmentation by grouping customers
together based on their movement patterns and preferences.
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Fig. 1: An illustrative example that shows how sample check-
in data from FOURSQUARE-NYC (a) can be abstracted to
higher-order areas (b), and how the sequence of check-ins that
infer a trajectory (c) can be abstracted to higher-order mobility
flow (d). We propose TULHOR, a spatiotemporal BERT-
based model that learns higher-order mobility flow represen-
tations to solve the trajectory-user linking (TUL) problem.

Problem of interest. Associating a particular trajectory with
the correct user is known as the trajectory-user linking (TUL)
problem. In principle, the TUL problem is a trajectory classifi-
cation problem that aims at classifying anonymous trajectories
to the users who generated them. Addressing this problem is
essential for LBS because it ensures the privacy and security of
user data and enables the provision of accurate and trustworthy
location-based services. The main idea in addressing the TUL
problem is to examine human mobility patterns to gain insight
into the ways in which people move and interact with their
surroundings. This analysis can encompass various aspects of
human movement, including daily routines, commuting habits,
event data (check-ins), and general movement patterns within
a specific geographic region.
Current approaches. Current methods to address the TUL
problem can be broadly divided into two categories: (i) clas-
sical machine learning (ML)-based methods, and (ii) deep
learning-based methods. The classical ML-based methods
involve traditional trajectory similarity techniques. The most
prominent ones are the longest common sub-sequence, dy-
namic time warping [1], and NeuTraj [2]. These techniques are
used to link a user to a trajectory by comparing the similarities
between identified and unidentified trajectories. The deep
learning-based methods involve modeling the trajectories by
learning rich low-level spatial-temporal embeddings of points



of interest (POIs), then linking them to the corresponding
user based on the spatial-temporal patterns observed in their
trajectories. Most existing solutions apply seq2seq models like
RNN and LSTM to learn the transition pattern between POIs
in trajectories [3]. Miao et al. [4] use LSTM and BiLSTM
with attention to learn intra-trajectory relationships. Zhou et
al. [5] use RNN with variational auto encoding to learn the
temporal pattern in trajectories; they also address the problem
by constructing a spatial and a check-in graph, then combining
them together and applying GNN to learn POI embeddings [6].
Limitations of current approaches. Despite the promising
results of the current approaches, there are some major chal-
lenges of the TUL problem:

• data quality: trajectory data are typically of low quality,
due to low accuracy and/or completeness;

• data sparsity: trajectory data are sparse, due to limited
and/or missing data;

• imbalanced data: the distribution of trajectories across
different users (classes) is unequal.

These challenges can hinder the accurate linking of trajectories
to their corresponding users. Some of the existing works
attempt to resolve the limited data issue by generating new
trajectories from existing ones through trajectory segmentation
and augmentation methods. While this approach increases the
number of available training samples, and can potentially
improve model performance, it does not resolve the data
quality and sparsity problems. In addition, existing works
have overlooked the imbalanced data issue, which can be
problematic when developing machine learning models, as it
can lead to biased or inaccurate results.
Our approach & contributions. Our approach to the problem
aims at addressing some of the main challenges of the TUL
problem. The key idea is that we extrapolate location data
to higher-order mobility flow data. Mobility flow refers to
the movement of people from one location to another over
time. This is in contrast to existing models that incorporate
spatial features into learned models by either using pre-
trained POI embeddings, or by directly modeling the physical
distance between POIs. Note that physical distance does not
capture the mobility flow dynamics, as it does not follow
the mobility constraints imposed by the map. In addition,
instead of defining mobility flow at the granularity of tra-
jectory data points (which are sparse), we learn higher-order
mobility flow representations based on a regular tessellation
of the observation area (map) in hexagons. These high-order
representations of trajectories are used to address the TUL
problem. A summary of our contributions is provided below:

• We present a method that given location data (as data
points), generates higher-order mobility flow data. These
data represent sequences of regular hexagons defined on
a tessellated observation area (map). The method gener-
alizes and can generate mobility flow data at different
levels of tessellation granularity.

• We propose TULHOR (trajectory-user linking using
higher-order representations), a deep learning model

TABLE I: Summary of notations

SYMBOL DESCRIPTION

M The map of a geographic area
P A set of points of interest in M
u User ID
l Location ID
t Timestamp
⟨x, y⟩ A tuple of latitude and longitude
r A check-in record represented by a quadruplet (u, l, t, ⟨x, y⟩)
Tr A check-in trajectory represented as Tr = {r1, r2, ...., rm},

where ri is the ith check-in
G G = {g1, g2, g3, ..., gn} is an hexagonal tessellation of M,

where gi is the ith grid cell ID

based on a spatial-temporal variation of the Bidirectional
Encoder Representation from Transformers (BERT) [7]
that addresses the TUL problem by learning and utilizing
higher-order mobility flow representations.

• We address the problem of imbalanced data that is
important for developing fair and accurate TUL models
that can effectively handle real-world data with unequal
class distributions.

• We demonstrate empirically that our proposed model
TULHOR outperforms the state-of-the-art methods and
other sensible baselines. We also perform an ablation
study and a parameter sensitivity analysis that demon-
strate the impact of the different embedding components
in the accuracy performance of TULHOR.

• We make our source code publicly available to encourage
the reproducibility of our work1.

Paper organization. The remainder of the paper is organized
as follows. Section II presents preliminaries and a formal
definition of the problem. Section III presents our method for
generating higher-order mobility flow data, and Section IV
presents our TULHOR model for addressing the TUL problem.
We describe the experimental setup, and present and discuss
the results in section V. We review related work in section VI
and conclude in section VII.

II. PRELIMINARIES & PROBLEM DEFINITION

In this section, we briefly introduce some definitions and
notations (a summary is provided in Table I). Then we
formally define the trajectory-user linking problem.

Definition 1: (Map) Let M be a map over a predefined,
finite, and continuous geographical area.

Definition 2: (POI) Let P = {p1, p2, . . . , p|P |} be a set of
points of interests on a map M.

Definition 3: (Visits or Check-ins) In location-based ser-
vices, a visit or check-in of a person to a location or place
at a particular time is a record represented by a quadruplet
r = (u, l, t, ⟨x, y⟩), where u denotes the user, l denotes the
location ID, t stands for the time of the visit, and the tuple
⟨x, y⟩ represents the latitude and longitude of the visited loca-
tion. We represent the set of all visits or check-ins by R. In this
research, we use the term visit or check-in interchangeably.

1https://github.com/theWonderBoy/TULHOR

https://github.com/theWonderBoy/TULHOR


Definition 4: (Trajectory) A temporarily ordered sequence
of a user’s visits to places (or check-ins), observed during
a time period, can be used to describe a trajectory Tr =
{r1, r2, ...., rm}, where m represents the length of the trajec-
tory. We represent the set of all trajectories by T . Since every
visit or check-in record relates to a specific point of interest
p ∈ P , a trajectory can also be represented by a sequence of
points of interest Tr = {p1, p2, ..., pm}, where pi is a point
of interest at the location l of the record ri.

Problem Definition. TUL aims to link anonymous trajectories
to the user who generates them. Let T = {Tr1, T r2, ..., T rn}
be the set of unlinked trajectories and U = {u1, u2, u3, .., uc}
be the set of users who generate them, then TUL is defined
as a multiclass classification problem:

min
f

E[L(f(Tri), ui)] over F , (1)

where F is the set of all classifiers in the hypothesis space,
L(·) is the loss between the predicted label f(Tri) ∈ U and
the true label ui ∈ U of trajectory Tri.

III. GENERATING HIGHER-ORDER MOBILITY FLOW
REPRESENTATIONS

In this section, we present details of our method for gener-
ating higher-order mobility flow data. We first present the key
idea of our method. Then, we can expand on the details and
provide explanation and examples to clarify the main points.

Key idea. The check-in data lacks information on the route
traveled by a user between consecutive check-ins. However,
the routes could provide additional context and show the
flow of people in a city. We therefore calculate possible
routes that connect the check-in locations, consisting of origin,
destination, as well as intermediate check-ins (waypoints).
We can estimate these routes using publicly available APIs2.
While these routes are not representing the actual path a
user followed, they can largely capture the common routes
that connect specific check-in locations. In addition, mobility
flow from a check-in to location to another one can also
be further abstracted, by considering higher-order abstractions
on the map. This include higher-order representations of the
check-in locations and the routes connecting them. We achieve
this by tessellating the map and translating check-in and
route information using higher-order elements of the map’s
tessellation. The premise of these ideas is that the richer data
will help our deep learning model to generalize and avoid
overfitting to input training data.

We provide below a formal definition of the key concepts.
Definition 5: (Grid) Let G ∈ {g1, g2, . . . , gn} be a set of

disjoint grid cells that fully tessellate map M. All gk ∈ G are
polygons of the same size covering an area. Our work assumes
that grid cells are regular hexagons that can fill a plane with
no gaps, forming a hexagonal tiling (see example in Fig. 1b).

2https://developers.google.com/maps/documentation/directions

Fig. 2: An illustrative example (FOURSQUARE-NYC) that
shows how transforming higher-order check-in data (top) to
higher-order mobility flow data (bottom) enriches the trajec-
tory semantics and can help to address the TUL problem.
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Fig. 3: Impact of higher-order abstraction on sparsity.

Note that the tessellation can happen at different level of
resolution, by defining different sizes of the hexagons. The
smaller the hexagon size, the higher the resolution.

The tessellation of the map allows to define higher-order
semantics for chech-ins, trajectories and mobility flow.

Definition 6: (Higher-order check-ins) Since the map M
is fully tessellated, for every visit/check-in and every p ∈ P
there is a g ∈ G, such that p is located in g.

Definition 7: (Higher-order trajectories) Since every p ∈
P belongs in a g ∈ G, we can translate every trajectory
Tr = {p1, p2, ..., pm} to a sequence of grid cells Tr =
{g1, g2, ..., gm}, where every gi ∈ G.

Definition 8: (Higher-order mobility flow) Given a higher-
order trajectory Tr = {g1, g2, ..., gm}, we can define
a higher-order mobility flow as a new trajectory Tr =



{g1, ⟨. . .⟩, g2, ⟨. . .⟩, ..., ⟨. . .⟩, gm}, where every ⟨. . .⟩ repre-
sents the sequence of grid cells g ∈ G that need to be traversed
between two sequential grid cells of the original trajectory.

Fig. 1 provides an example of how starting from check-
in data as input to the problem, we can gradually generate
higher-order mobility flow data. In addition, Fig. 2 provides an
illustrative example that shows how transforming higher-order
check-in data to higher-order mobility flow data enriches the
trajectory semantics and can potentially help to improve on the
TUL problem. In the figure, we can also observe how higher-
order mobility data captures the city’s road infrastructure and
physical constraints. We also notice that higher-order mobility
data exposes new densely visited areas that are missed with
the higher-order check-ins. The method is general and can
probably be useful in other problems and applications.
Rationale for using higher-order mobility flow. Check-in
data is known to be very sparse. Sparsity is characterized by
the percentage of zeros in the user-POI interaction matrix.
In this matrix, an entry (i, j) is set to 1 if user i visited
POI j. Other than being sparse, the data is also very skewed,
with most locations having a few check-ins, and only a few
locations having many check-ins. This sparsity level can affect
the accuracy of modeling trajectories and result in a skewed
data representation. Another major challenge of of check-in
data is that embedding the longitude and latitude pairs of
location data into a machine learning model is challenging
due to their continuous nature. They also provide information
at a very refined level. A more practical approach is to learn
spatiotemporal embeddings at a higher level of granularity,
such as at the level of grid cells (of a tessellated map).

We therefore propose to transform the check-ins and mobil-
ity flow data to a higher order to address this issue. In practice,
this translates the sparse user-POI matrix into a denser user-
grid cell matrix. In the user-grid cell matrix, an entry is equal
to 1 if the user has visited any place in the corresponding
grid cell. This expands the range of interactions from a single
locations to multiple locations in a broader area, reducing
sparsity. Additionally, multiple POIs can be located within the
same cell, further decreasing sparsity. For example, consider
the case of three users visiting only one POI each. In this case,
the sparsity of the toy user-POI matrix is 66.6% since it has
nine entries (3 users x 3 POIs), and only three of them are 1.
If we project this to a higher dimension and assume two POIs
fall in the same grid cell, then the toy user-grid cell matrix
has six entries (3 users x 2 grid cells), and three of them are
1, reducing the sparsity to 50%. Fig. 3 presents the impact of
higher-order representations on decreasing the sparsity on two
benchmark datasets (FOURSQUARE-NYC and FOURSQUARE-
TKY). We observe about a 1% decrease in sparsity when using
higher-order check-ins, and more than a 5% decrease for the
case of higher-order mobility flow.

IV. MODELING TRAJECTORY-USER LINKING

In this section, we present details of our spatiotemporal
deep-learning model, TULHOR, that utilizes higher-order
mobility flow data to accurately address the TUL problem.

Fig. 4: High-level architecture of TULHOR.

TULHOR is composed of three components: (A) a spatial
embedding layer, (B) a spatial-temporal embedding layer, and
(C) an encoder (see Fig. 4). TULHOR is based on a Trans-
former architecture, specifically BERT [7], and uses a masked
language modeling task to generate contextual embeddings.
TULHOR also benefits from the self-attention mechanism of
the Transformer architecture, making it more powerful and
efficient than RNN or LSTM models. Unlike BERT, which
is trained on sentences, TULHOR is trained on higher-order
sequences of check-ins. We also provide information about
(D) pre-training, and (E) fine-tuning the model.

A. TULHOR’s Spatial Embedding Layer

To learn the spatial relationship of the grid cells, we first
construct a graph that captures the spatial proximity of grid
cells. Then, we use the higher-order mobility flow data to
capture the semantic relationship of grid cells, similarly to
the approach followed in [8].
Constructing a hexagon-lattice graph. Given a grid G, we
construct an undirected, unweighted graph G = (V,E) of V
nodes and E edges, where a node u ∈ V represents a grid
cell g ∈ G and an edge e(u,v) ∈ E indicates that there is a
movement from u ∈ V to v ∈ V in the mobility flow data.
We call this graph a hexagon-lattice graph because its nodes
and edges are artifacts of a hexagonal tiling of a map.
Learning node representations of the hexagon-lattice
graph. In this step, we employ the node2vec model [9]
to learn the node representations of the grid cells modeled
in the hexagon-lattice graph. The node2vec model is based
on random walks on a graph to learn node representations.
Instead of random walks, we use the high-order mobility flow
data to represent walks on the graph (i.e., each high-order
trajectory represents a walk on the hexagon-lattice graph).
By employing these walks we end up learning the semantic
relationships between different grid cells on the map. These
relationships reflect real-life connections between geographic
areas, including constraints imposed by the map (e.g., bridges)



and do not solely capture physical proximity. As a result, we
learn spatial representations of grid cells.

B. TULHOR’s Spatiotemporal Embedding Layer

The spatial-temporal embedding layer converts sparse one-
hot encodings of check-in components (grid cells, POI, and
timestamps) into a dense representation. POI information is
included to differentiate mobility patterns that traverse the
same grid cell sequence. For instance, Alice and Bob studying
at the same university but in different departments, would have
similar grid cell movements but varying POI interactions. The
embedding process can be formulated as:

zgi = ϕg(gi,Wg) (2)
zpi = ϕp(pi,Wp) (3)
zsi = ϕs(gi,Ws) (4)

where gi is the grid cell id, pi is the point of interest visited
in grid cell gi, and zgi , zpi , and zsi are the embedding of the
grid cell gi, point of interest pi, and the spatial embedding of
gi, respectively. The three embeddings are calculated through
three different layers: ϕg(.), ϕp(.), ϕs(.). The W refers to the
learnable parameters optimized during the learning process.
Wg and Wp are randomly initialized matrices, while Ws is
initialized with the output of the spatial embedding layer. To
preserve the unchanging spatial features of cells and avoid
unintended modifications during training, Ws is frozen. Equa-
tions 2 and 4 use the same input, gi, but while equation 2 learns
the semantic embedding of cells during training, equation 4
reflects the static spatial features that remain constant. The
dimensions of Wg , Wp, and Ws are n × dL , np × dL and
n × dL, respectively, where n is the number of grid cells
in the tessellation, np is the number of POIs, and dL is the
embedding dimension.

The timestamp ti is a continuous feature, and therefore,
regarding it directly as an input feature will lead to a loss of
information since the embeddings will not scale linearly in
the feature space. The aim is to learn timestamp embeddings
that preserve the properties of time, such as periodicity.
Furthermore, the distance in the embedding space between two
timestamps needs to be proportional to the difference between
the timestamps, i.e., the relative information between the
timestamps must be preserved. Inspired by existing work [10],
we design a temporal-aware positional encoding to replace the
positional encoding used in the original BERT model with:

[zti ]j =

{
sin(wjti), if j is odd
cos(wjti), if j is even

(5)

where j is the order of the dimension, wj is a learnable
parameter, and ti is the timestamp of the ith check-in in the
trajectory. To see why this temporal encoding preserves the
relative information between the timestamps, we can calculate
the distance between two consecutive timestamps as:

(zti)(z
t
i+1)

⊺ =

d∑
i=1

cos(wi(ti+1 − ti)) (6)

where the distance between ti and ti+1 timestamps is the
dot product of their respective temporal encoding (zti) and
(zti+1). We can observe that the distance between the vectors
is dependent on the difference between the timestamps ti+1−ti
and on wi (parameters which the model learns during the
training). Thus, the relative and periodic information of time
is preserved and learned in this encoding function.

We adopt a non-invasive self-attention mechanism [11]
where the side information, like spatial and temporal prop-
erties, is passed to the self-attention module directly instead
of adding it to the grid cell embeddings. Therefore, the spatial-
temporal embedding layer produces two outputs:

R(id) = zg1 , z
g
2 , ..., z

g
m (7)

R = ({zs1, zs2, ..., zsm}, {zp1 , z
p
2 , ..., z

p
m}, {zt1, zt2, ..., ztm}) (8)

where R(id) embeddings are passed forward to the encoder,
while the R embeddings are passed directly to the self-
attention component, as shown in the Figure 4. The R(id)

contains the embeddings of the grid cells, while R contains
three sets, each one having the embedding of different side
information like spatial, temporal, and POIs.

C. TULHOR’s Encoder

The encoder block consists of a multi-head spatial-temporal
non-invasive self-attention mechanism followed by a position-
wise feed-forward layer. The self-attention enriches each to-
ken with spatial, temporal, and contextual information from
other tokens in the sequence. By employing multiple heads,
the model can capture diverse dependencies simultaneously.
A position-wise feed-forward network with ReLu activation
introduces non-linearity, and a residual connection ensures
stable gradient flow during training.

The multi-head spatial-temporal non-invasive self-attention
(ST-NOVA) in TULHOR differs from the standard self-
attention (SA) found in Transformer models. SA uses invasive
attention, requiring additional features like positional informa-
tion to be incorporated into the input sequence representation.
However, this approach poses a drawback as the output of
the self-attention layer is fed to the predicting layer, making
the searching task more challenging due to the creation of a
compounded embedding space To address these problems, we
use a non-invasive attention instead, which is represented as:

NOV A(R(id), R) = σ(
QKT

√
dL

)V (9)

V = Rid ×WV ,K = F ×Wk, Q = F ×WQ (10)

F = MLP (R(id)||R) (11)

where WV ,Wk,WQ ∈ RdL×dn , F ∈ Rm×dL and || is the
concatenation operation. The ST-NOVA takes two inputs, the
input sequence id R(id) and the other side information in R.
Then ST-NOVA uses the input sequence id R(id) to calculate
the Values matrix. Regarding the Keys and Query matri-
ces, the component concatenates the input sequence id with the
additional features and uses a multilayer perceptron (MLP) to
unify the dimension; the output of the MLP is used to calculate



TABLE II: Statistics of two FOURSQUARE datasets
(FOURSQUARE-NYC and FOURSQUARE-TKY) including
the # of trajectories for three user groups (108, 209, all).

DATASET |U| |T |

FOURSQUARE-NYC
108 6795
209 9,637
234 10,133

FOURSQUARE-TKY
108 9343
209 14,151
451 20,964

the Keys and Query matrices. ST-NOVA uses the additional
features to calculate how tokens are similar. Unlike SA, which
infuses the additional features directly into the input sequence,
we use the additional features to understand how two tokens
are similar.

D. Pre-training TULHOR

BERT-based models are trained following the masked lan-
guage modeling (MLM) and the next sentence prediction
(NSP) training approaches. In our setting, we do not require
the NSP task, so we drop it. The main issue with the MLM
training is that the model requires many steps to converge
because only a percentage of the tokens are masked, which
translates to smaller training samples than the autoregressive
training task. To address this issue, we increase the percentage
of masked tokens. The original BERT model is trained with
15% of tokens masked. However, recent research [12] has
shown that increasing the percentage of the masked tokens
can boost the model’s performance, while also helping it
to converge faster. Therefore, we adapted the recommended
configuration of 40% of masked tokens. Let LMLM be the
Masked Language Modeling loss, then:

LMLM =
1

|Trm|
∑

gm∈Trm

− logP (gm = gm∗|Trm
′
) (12)

where Tr is a trajectory and Trm
′

is the masked version of
it, Trm is the set containing the randomly masked items in
Tr, and gm

∗
is the true grid cell for the masked item gm.

E. Fine-tuning TULHOR

Pre-training our model using the masked language modeling
objective, enables it to learn generalized embeddings. Next, we
need to fine-tune the model for addressing the trajectory-user
linking problem. The first step in fine-tuning our model is
to add a classification layer to TULHOR, which will get the
probability distribution of users. As in the traditional BERT,
a [CLS] token is added in the beginning of each trajectory.
This token has no temporal-positional information; however,
the output of TULHOR for the token [CLS] is inferred by
all the other steps in the trajectory, so [CLS] maintains the
spatial-temporal representation of the trajectory. This means
that the output of TULHOR for [CLS] can still be useful
for trajectory-user linking problem. Let hTr be the [CLS]

representation of the trajectory Tr. Then the classification
layer is formulated as follows:

y′ = (WC · hTr + bc) (13)

where Wc ∈ R|U|×dL and bc ∈ R|U| are the weight matrix
and bias of the classification layer, y′ is a vector, and y′i is the
probability that the trajectory Tr belongs to user ui. We apply
a softmax activation function to y to transform the values into
normalized probabilities:

σ(y′i) =
ey

′
i∑|U|

j=1 e
y′
j

for i = 1, 2, . . . , |U| (14)

The function’s output is a probability distribution, where all
values are between 0 and 1, and the sum of all values is 1. This
makes it easy to select the user with the highest probability
as the final output with argmax.

The final step in fine-tuning is network training, where we
apply a balanced cross-entropy loss, balanced by the number
of effective samples [13], with backpropagation to train our
model. Given unlinked trajectory Tr generated by ui, then
the loss for one sample in the training set is represented as:

L(Tr, ui) =
1− β

1− βnui
log(σ(y′)) (15)

where nui
is the number of trajectories in the training set with

user ui and β is a hyperparameter that controls the balancing
factor. Not all samples in the training set have the same impact
on performance. Some samples are more crucial, while others
may overlap, like in the case of trajectories. Balancing by
the effective number of samples considers this factor, whereas
inverse class frequency sampling does not.

V. EVALUATION

We perform experiments on two real-world datasets, the
New York (NYC) and Tokyo (TKY) check-in datasets from the
FOURSQUARE3 social network, consisting of check-ins from
2012-2013. We do not consider trajectories with less than three
check-ins and users with less than five trajectories. To assess
model robustness, we evaluate them on three user groups (109,
208, all) from both datasets, using 80% of user trajectories for
training and the remaining 20% to evaluate performance. Table
II provides the statistics of the datasets.

A. Baselines and Implementation

Baselines. We evaluate TULHOR against the following base-
lines:

• Conventional ML methods: Decision Tree (DT), Linear
Discriminant Analysis (LDA) and Linear Support Vector
Machine (SVM). To embed the trajectories, we use Bag-
of-Words (BOW) method, followed by applying Singular
Value Decomposition (SVD) to reduce the dimensionality
of the embeddings.

• TULER [3]: A recurrent neural network model with three
variations RNN (TULER), LSTM (TULER-L), and GRU
(TULER-G). We reimplement this model in PyTorch.

3https://sites.google.com/site/yangdingqi



TABLE III: Results on FOURSQUARE-NYC mobility dataset. The highest performance is indicated in bold and the second best
performance has been underlined. ‘Improvement’ denotes the improvement of TULHOR model over the strongest baseline.

FOURSQUARE-NYC
|U| = 108 |U| = 209 |U| = 234

MODEL ACC@1 ACC@5 P R F1 ACC@1 ACC@5 P R F1 ACC@1 ACC@5 P R F1

DT 0.884 0.892 0.878 0.867 0.868 0.785 0.788 0.753 0.728 0.730 0.778 0.782 0.722 0.712 0.705
LDA 0.822 0.851 0.962 0.810 0.868 0.746 0.781 0.791 0.687 0.718 0.696 0.752 0.724 0.615 0.650
LINEAR-SVM 0.873 0.929 0.966 0.878 0.909 0.776 0.839 0.785 0.702 0.727 0.731 0.798 0.724 0.628 0.657
TULER 0.870 0.929 0.869 0.851 0.852 0.776 0.853 0.749 0.722 0.718 0.768 0.844 0.733 0.707 0.703
TULER-L 0.903 0.942 0.904 0.890 0.890 0.847 0.898 0.828 0.803 0.807 0.845 0.889 0.821 0.806 0.803
TULER-G 0.909 0.949 0.914 0.897 0.898 0.854 0.892 0.835 0.811 0.812 0.846 0.891 0.821 0.805 0.803
ATT-LSTM 0.823 0.896 0.715 0.703 0.709 0.716 0.832 0.554 0.559 0.556 0.712 0.830 0.569 0.557 0.563
ATT-GRU 0.886 0.933 0.779 0.779 0.791 0.835 0.891 0.663 0.680 0.671 0.889 0.936 0.741 0.738 0.740
DEEPTUL 0.853 0.923 0.765 0.738 0.751 0.733 0.840 0.614 0.597 0.606 0.789 0.891 0.607 0.617 0.612

TULHOR 0.940 0.966 0.938 0.931 0.932 0.903 0.943 0.890 0.877 0.876 0.892 0.932 0.876 0.864 0.860
Improvement 3.42% 1.85% -2.89% 3.85% 2.53% 5.82% 5.07% 6.58% 7.83% 7.87% 0.35% -0.49% 6.61% 7.13% 7.19%

TABLE IV: Results on FOURSQUARE-TKY mobility dataset. The highest performance is indicated in bold and the second best
performance has been underlined. ‘Improvement’ denotes the improvement of TULHOR model over the strongest baseline.

FOURSQUARE-TKY
|U| = 108 |U| = 209 |U| = 451

MODEL ACC@1 ACC@5 P R F1 ACC@1 ACC@5 P R F1 ACC@1 ACC@5 P R F1

DT 0.789 0.793 0.785 0.777 0.775 0.658 0.664 0.629 0.615 0.613 0.522 0.525 0.446 0.437 0.431
LDA 0.853 0.912 0.927 0.847 0.874 0.722 0.808 0.778 0.692 0.713 0.574 0.720 0.553 0.501 0.495
LINEAR-SVM 0.890 0.948 0.923 0.886 0.898 0.769 0.878 0.794 0.736 0.748 0.609 0.761 0.610 0.539 0.550
TULER 0.870 0.933 0.871 0.860 0.860 0.768 0.864 0.762 0.735 0.736 0.637 0.74 0.588 0.554 0.548
TULER-L 0.905 0.952 0.904 0.898 0.897 0.848 0.911 0.837 0.825 0.824 0.739 0.827 0.708 0.675 0.675
TULER-G 0.915 0.954 0.916 0.910 0.909 0.851 0.911 0.842 0.824 0.825 0.738 0.823 0.701 0.672 0.671
ATT-LSTM 0.908 0.966 0.916 0.901 0.908 0.752 0.871 0.795 0.729 0.760 0.407 0.584 0.362 0.326 0.343
ATT-GRU 0.933 0.975 0.932 0.928 0.930 0.869 0.937 0.872 0.856 0.864 0.742 0.821 0.715 0.689 0.695
DEEPTUL 0.922 0.966 0.927 0.913 0.920 0.773 0.904 0.820 0.747 0.782 0.660 0.790 0.631 0.587 0.608

TULHOR 0.939 0.973 0.937 0.934 0.933 0.893 0.953 0.883 0.877 0.875 0.801 0.888 0.783 0.755 0.752
Improvement 0.58% -0.26% 0.59% 0.71% 0.37% 2.7% 1.77% 1.33% 2.53% 1.30% 7.86% 7.47% 9.52% 9.53% 8.11%

• DeepTUL [4]: A recurrent neural network with historical
attention module, this also has three variations RNN
(DeepTUL), LSTM (Attn-LSTM) and GRU (Attn-GRU).
Unlike TULER, DeepTUL captures the temporal features
and is the current state-of-the-art model.

Implementation. TULHOR model is implemented in PyTorch
with one encoder layer and 12 attention heads. For pre-training
and fine-tuning, we use a batch size of 24 and a learning rate
of 0.005 with decays of 0.5. The embedding size is set to
512, β is set to 0.99 and the model is trained for 10 epochs.
We also reimplement TULER and its variants in PyTorch and
provide the code with our source code. The default settings
are used for the baselines.

B. Evaluation Metrics

For evaluating the performance of the TUL models, we
use standard metrics from the multiclass classification domain
including accuracy@K (ACC@K, with K = 1 and 5), macro
precision (P), macro recall (R), and macro F1 score. ACC@K
evaluates the accuracy of user-linking classification, while
macro F1 provides a comprehensive evaluation of the model’s
performance across all classes. This is particularly important
in the case of TUL datasets, which are characterized by
imbalanced data distributions.

C. Overall Performance

In this study, we evaluate the performance of TULHOR
and various baseline models on the NYC and TKY datasets,
with the results presented in Tables III and IV, respectively.

Our findings indicate that TULHOR outperforms all the other
baseline models under all the user groups settings and along
every metric. In terms of F1 score, on the NYC dataset,
TULHOR yields improvements of 4.2%, 7.8%, and 7.1%
when |U| = 108, 209, 234, respectively, over the strongest
baseline model. Similarly, for the TKY dataset, although
the improvement in smaller user settings is moderate, when
|U| = 451 setting is considered, TULHOR improves over
the strongest baseline by nearly 8.1%. It is worth noting that
while TULHOR consistently outperforms the other baselines,
the amount of improvement gains considerably increases as
the problem becomes more challenging (number of users
increases), indicating the scalability and effectiveness of our
model. This superior performance can be attributed to TUL-
HOR’s ability to capture spatial-temporal patterns in trajec-
tories more effectively than the other methods. Additionally,
unlike the baseline models, TULHOR sufficiently addresses
the imbalanced data through proper sampling techniques as
reflected by the competitive macro recall and macro precision
scores for all user groups.

D. Ablation Study

We conduct a comprehensive ablation study to assess each
component’s significance in the TULHOR model. The full
TULHOR model is compared against several modified vari-
ations, including: (1) -HOR: This eliminates the higher-order
generation step, essentially reducing the model to a BERT
architecture that processes trajectory data without high-order
information, making it comparable to the approach of the other
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Fig. 5: Results of ablation experiments of TULHOR model
for FOURSQUARE-TKY, |U| = 451.

baseline models. (2) -SP: This removes the spatial feature ex-
tractor step, thus excluding spatial embedding from embedding
layer. (3) -POI: The point-of-interest information is removed
from the higher-order trajectory and subsequently POIs em-
beddings are removed from the spatial-temporal embedding
layer. (4) -T: This substitutes the temporal positional encoding
with the standard positional encoding used in the original
Transformer architecture. (5) -B: This omits the balancing
factor from the training loss. The results of the ablation study
are shown in Figure 5, where we notice that the removal of
any of the components results in a decrease in performance
of the model, with varying degrees. The results indicate that
the inclusion of higher-order information is crucial for the
model’s performance, as evidenced by the fact that the -HOR
variation performed the worst among all the experiments. The
second worst performance was observed in the -POI varia-
tion, highlighting the importance of using POI information
in conjunction with higher-order information to differentiate
between visits to similar grid cells. The results of the -SP and
-T variations demonstrate the significance of spatiotemporal
features, respectively, in enhancing the performance of the
model. Lastly, the -B variation highlights the importance of
effective sampling techniques when dealing with imbalanced
datasets, which is characteristic of the TUL datasets.

E. Parameter Study

Impact of hyperparameters. We evaluated TULHOR’s per-
formance through a parameter study to understand the effect
of various hyperparameters: embedding dimension, hidden
dimension, number of encoder layers, and number of attention
heads, with the experiments conducted using FOURSQUARE-
TKY dataset with 451 users. The results are presented in Fig-
ure 6. We observe that increasing the embedding and hidden
dimensions generally improve TULHOR’s performance by al-
lowing the model to store more information in the latent space.
Similarly, increasing the number of attention heads leads to
improved performance up to a certain point, but adding more
than 16 heads results in a decrease in performance, likely due
to the limited size of the dataset. Lastly, adding more encoder
layers reduces the performance, suggesting that fewer layers
may be sufficient for smaller datasets.

Impact of grid cell size. We conduct one more study to
test the impact of varying grid cell sizes on TULHOR’s
performance. We test three different sizes and refer to them

32 64 128 256 512
Embedding dimension

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

F1
-s

co
re

32 64 128 256 512
Hidden dimension

0.64
0.66
0.68
0.70
0.72
0.74
0.76

F1
-s

co
re

8 12 16 20
# of Attention Heads

0.725
0.730
0.735
0.740
0.745
0.750

F1
-s

co
re

1 2 3 4
# of Encoders

0.736
0.738
0.740
0.742
0.744
0.746
0.748
0.750
0.752

F1
-s

co
re

Fig. 6: Results of varying hyperparameters on TULHOR
model for FOURSQUARE-TKY, |U| = 451.

TABLE V: Statistics about different tessellations with the # of
cells and cell size for each resolution for FOURSQUARE-NYC

RESOLUTION # OF CELLS CELL SIZE (km2)

HEX@7 334 5.160
HEX@8 2,003 0.730
HEX@9 11,036 0.015

as Hex@k, where k = {7, 8, 9} is the resolution. The smaller
the k is set to, the larger the cell size is, thereby, decreasing
the number of cells in the grid. Table V provides the statistics
about the different tessellations. The results of this experiment
are presented in Table VI. We observe that as the cell size
decreases (i.e., the k increases), the performance of the model
increases. For the 108 user setting, a 2% decrease in macro
F1 is observed for Hex@8 and Hex@7, with slightly higher
accuracy for Hex@9. For 209 users, the gap in performance
between Hex@9 and other tessellations grows, reaching a
6% difference in macro F1 for Hex@7 and a 3% difference
for Hex@8, along with a 3% decrease in accuracy between
Hex@8 and Hex@9. In the 451 user setting, while the
performance difference between Hex@8 and Hex@9 remained
relatively stable, a significant gap in ACC@1 between Hex@9
and Hex@7 is observed. Comparing the 209 and 451 user
settings, the difference between Hex@9 and Hex@7 in recall
and precision decreased from 6% to 4%, likely due to the use
of an effective balanced sampling technique for dealing with
imbalanced datasets, like the 451 user setting. To conclude,
as the cell size increases, capturing user movement patterns
becomes increasingly challenging, as seen in the results.

VI. RELATED WORK

Our research is related to (i) trajectory data mining, (ii)
trajectory-user linking, and (iii) deep learning for spatiotem-
poral data. We cover below some of the most significant
efforts relevant to our work. Note that some related work
have already been cited throughout the manuscript to keep
the discussion focused, so they are mostly omitted here.

A. Trajectory Data Mining

Trajectory data mining involves extracting insights and
patterns from large-scale mobility data. It aims to uncover
hidden relationships and insights into mobility patterns and



TABLE VI: Results of impact of different grid sizes on the performance of TULHOR on FOURSQUARE-TKY dataset.

FOURSQUARE-TKY
#USERS = 108 #USERS = 209 #USERS = 451

METHOD ACC@1 ACC@5 P R F1 ACC@1 ACC@5 P R F1 ACC@1 ACC@5 P R F1

HEX@7 0.923 0.971 0.920 0.911 0.913 0.868 0.943 0.832 0.817 0.815 0.711 0.883 0.734 0.734 0.711
HEX@8 0.926 0.977 0.925 0.917 0.917 0.868 0.940 0.862 0.849 0.849 0.790 0.884 0.753 0.740 0.733
HEX@9 0.939 0.973 0.937 0.934 0.933 0.893 0.953 0.883 0.877 0.875 0.801 0.888 0.783 0.755 0.752

behaviors, with the goal of supporting a wide range of appli-
cations, including transportation planning [14], location-based
services [15], urban planning, and public health monitoring
[16]. Of particular interest are technical problems related to
trajectory similarity [17], trajectory clustering [18], anomaly
detection in moving objects [19], and graph-related problems,
such as finding important nodes in mobility networks [20],
and mining interactions of moving objects or people [21]. A
couple of comprehensive surveys on trajectory data mining
exist that provide a taxonomy of the technical problems,
available methods to address them, applications and open
research problems [22]–[24].

B. Trajectory-User Linking

Trajectory-user linking (TUL) is a recently introduced
trajectory classification problem, where the objective is to
link anonymous trajectories to the users that they belong
to. Addressing the TUL problem is essential for LBS as it
enables personalization, improves data privacy and security,
and ensures the accuracy of the services provided to users.
Without the ability to accurately link trajectories to users, LBS
would not be able to personalize their offerings effectively. For
example, if a LBS is not able to accurately identify a user,
it may not be able to provide accurate recommendations or
advertisements based on their location and movement patterns.
By being able to link trajectories to users, LBS can ensure
that user data is only used for the intended purpose and is not
shared or misused by third parties. TUL can be addressed
using either classical methods or machine learning-based
methods (both conventional and deep learning-based ones).

Classical methods. Classical methods rely on trajectory sim-
ilarity metrics. Typically, these metrics compute the distance
between an anonymous trajectory and those of known users,
and linking is done based on the smallest distance. The most
popular techniques include the longest common sub-sequence,
the Hausdorff distance, dynamic time warping [1], and Neu-
Traj [2]. These methods have limitations in capturing long-
term relationships in location data, sensitivity to noise and
outliers, and high computational costs, making them unsuitable
for real-time or large-scale applications.

Conventional ML methods. Conventional ML-based classi-
fication models, such as k-nearest neighbors (KNN) [25] and
support vector machines (SVM) [26] can also solve the TUL
problem by transforming trajectories into a one-hot vector,
treating users as labels, and training the models on trajectories
with known users. However, these methods fail to consider
spatial-temporal features and often perform inferior to deep
learning-based models.

Deep learning-based ML methods. Deep learning-based
methods offer several advantages over traditional methods for
solving the TUL problem, including improved accuracy, the
ability to handle high-dimensional trajectory data, robustness
to noise and outliers, and scalability. These advantages make
these methods a promising approach for solving the TUL
problem. One of the first works in this category [3] used
sequence-to-sequence models such as RNN, LSTM, and GRU
to learn the check-in embeddings and feed the output to a
shallow classification layer. DeepTul [4] improved on this by
adding an attention component and considering the temporal
dimension. The method generates a representation of a user’s
historical trajectories for classification and learning multi-
periodic patterns. GNNTUL [6] pointed out the high compu-
tational cost of previous works and proposed a graph neural
network approach that incorporates user visiting intentions in
the classification task. TULSN [27] used a siamese neural
network to capture semantic information of the trajectories.

C. Deep Learning for Trajectory Data

Trajectory data is a type of spatiotemporal data, which
depending on the task, can be treated as sequantial data.

Spatiotemporal models. Deep learning based methods have
been proposed for learning representations of spatiotemporal
data that are a good fit for several trajectory data mining down-
stream tasks. A few examples include recommending points
of interest (POIs) [28]–[31], clustering trajectories [32], and
analyzing movement behavior [33]. The foundation of these
approaches involves learning low-dimensional representations
of the trajectory data. One of the first methods towards this was
“trajectory2vec” [32], which used a sliding window method to
capture space- and time-invariant characteristics of trajectories.
Similarly, “t2vec” [34] used a customized RNN with a spatial-
loss function to address the low sampling rate and noisiness of
the data. While other approaches focused solely on capturing
the spatial-temporal properties of trajectories, Boonchoo et
al. [35] were the first to consider multimodal deep learning
that learns representations from data of multiple modalities
(images, reviews, and geo-tags). The model learns embeddings
by predicting the context of the next trajectory data point, sim-
ilar to learning sentence representations in language models.
A recent trend for learning trajectory representations exploits
paths defined on the road networks due to the decrease in
sparsity and the ability to learn richer embeddings [36], [37].
A comprehensive review can be found in Wang et al. [38].

Sequence models. For many tasks it is customary to treat tra-
jectory data as a type of sequential data that can be processed
by sequence models. For example, Recurrent Neural Networks



(RNNs) [39], [40] have been used to address the problem of
human trajectory prediction [41], and to generate trajectories
using generative models [42]. Additionally, attention-based
models, such as Transformer models [43], can also be used to
model trajectory data and capture the long-range dependencies
between the different points in the trajectory. For example,
Li et al. use a graph-based spatial Transformer-based deep
learning model for pedestrian trajectory prediction [44].

VII. CONCLUSIONS

In this work, we proposed a novel deep learning framework
– TULHOR (trajectory-user linking using higher-order repre-
sentations) – for modeling the trajectory-user linking problem.
To address some of the challenges related to data quality,
sparsity, and imbalance, our model was trained by higher-order
mobility flow representations extracted by simple check-in
data. The results of extensive experiments over two real-world
datasets demonstrated the effectiveness of the proposed model,
which consistently outperforms several strong baselines. We
believe our proposed method and model can have broad and
useful applications. Future directions include trajectory-user
linking on the roads network and multi-trajectory user linking.
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