
PathletRL: Trajectory Pathlet Dictionary Construction
using Reinforcement Learning

Gian Alix
York University

gcalix@eecs.yorku.ca

Manos Papagelis
York University

papaggel@eecs.yorku.ca

ABSTRACT

Sophisticated location and tracking technologies have led to the
generation of vast amounts of trajectory data. Of interest is con-
structing a small set of basic building blocks that can represent a
wide range of trajectories, known as a trajectory pathlet dictionary.
This dictionary can be useful in various tasks and applications,
such as trajectory compression, travel time estimation, route plan-
ning, and navigation services. Existing methods for constructing
a pathlet dictionary use a top-down approach, which generates a
large set of candidate pathlets and selects the most popular ones to
form the dictionary. However, this approach is memory-intensive
and leads to redundant storage due to the assumption that pathlets
can overlap. To address these limitations, we propose a bottom-up
approach for constructing a pathlet dictionary that significantly
reduces memory storage needs of baseline methods by multiple
orders of magnitude (by up to ∼24K× better). The key idea is to
initialize unit-length pathlets and iteratively merge them, while
maximizing utility. The utility is defined using newly introduced
metrics of trajectory loss and representability. A deep reinforcement
learning method is proposed, PathletRL, that uses Deep 𝑄 Net-
works (Dqn) to approximate the utility function. Experiments show
that our method outperforms the current state-of-the-art, both on
synthetic and real-world data. Our method can reduce the size of
the constructed dictionary by up to 65.8% compared to other meth-
ods. It is also shown that only half of the pathlets in the dictionary
is needed to reconstruct 85% of the original trajectory data.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting; • Computing methodologies;

KEYWORDS

mobility data, trajectory data mining, pathlet dictionary

ACM Reference Format:

Gian Alix and Manos Papagelis. 2023. PathletRL: Trajectory Pathlet Dictio-
nary Construction using Reinforcement Learning. In The 31st ACM Interna-
tional Conference on Advances in Geographic Information Systems (SIGSPA-
TIAL ’23), November 13–16, 2023, Hamburg, Germany. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3589132.3625622

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0168-9/23/11. . . $15.00
https://doi.org/10.1145/3589132.3625622

Figure 1: (a) Graph representation of a small area in Toronto
1
;

(b) Example of various-length edge-disjoint pathlets in (a).

1 INTRODUCTION

Motivation & Problem of Interest. The development of technol-
ogy for gathering and tracking location data has led to the accu-
mulation of vast amounts of trajectory data, consisting of spatial
and temporal information of moving objects, such as persons or
vehicles. Mining trajectory data to find interesting patterns is of in-
creased research interest due to a broad range of useful applications,
including analysis of transportation systems [30], human mobil-
ity [43], location-based services [59], spatiotemporal epidemics
[3, 37, 38] and more. There are several technical problems in trajec-
tory data mining that researchers and practitioners have focused
on in recent years, including trajectory similarity [11], clustering
[16], classification [4], prediction [57] and simplification [54].

A few comprehensive surveys on the topic can be found in Zheng
[63], Alturi et al. [6], and Hamdi et al. [15]. In this research, we
focus on the problem of constructing a small set of basic building
blocks that can represent a wide range of trajectories, known as
a (trajectory) pathlet dictionary (PD). The term pathlet appears in
the literature by many names, such as subtrajectories, trajectory
segments, or fragments [1, 8, 24, 35, 41, 61]. For consistency, we will
use the term pathlets to denote these building blocks.
The Broader Impact. Effectively constructing pathlet dictionaries
is of increased research and practical interest due to a broad range
of tasks and applications that can use it, such as route planning
[58], travel time prediction [17], personalized destination prediction
[56], trajectory prediction [57], and trajectory compression [62] (see
Appendix A for a supplementary discussion of these applications).
The State of the Art & Limitations. Many existing works frame
the problem of analyzing and deriving pathlets as a (sub)trajectory
clustering problem, where (sub)trajectory clusters represent pop-
ular paths (the pathlets) [1, 20, 48]. A few works considered an
integer programming formulation with constraints to solve the
problem [8, 24]. Some works designed their pathlets based on a
route “representativeness” criterion [35, 53]. Unfortunately, these
existing works suffer some limitations. For example, Chen et al.

1Downtown Toronto maps taken from https://www.mapquest.com/

https://doi.org/10.1145/3589132.3625622
https://doi.org/10.1145/3589132.3625622
https://www.mapquest.com/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589132.3625622&domain=pdf&date_stamp=2023-12-22


SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany Alix and Papagelis

Figure 2: The memory required by top-down (existing) meth-

ods that use overlapping pathlets can be reduced by our pro-

posed bottom-up solution that relies on edge-disjoint path-

lets. Our approach demonstrates significant savings.

[8] assumes that the datasets used are noise-free. Zhou et al.’s
[64] bag-of-segments method requires that trajectory segments
are of fixed length. Van Krevald et al. [48] demands input trajec-
tories to have the same start/endpoints. The cluster centroids in
(sub)trajectory clustering methods [1, 20, 48, 51] do not necessarily
reflect real roads in the road network. In addition, Wang et al. [53]
demonstrated empirically that these clustering methods are compu-
tationally slow. In spite of runtime improvements, [53] also requires
the user to provide some budget constraint 𝐵 in the route repre-
sentative discovery task, a domain-specific parameter that requires
domain expert knowledge. Another related method is Traculus
[20] that requires pathlets to be straight line segments, which is
not always the case in real road maps. In addition, all these works
do not constraint pathlets to be edge-disjoint; two pathlets are said
to be edge-disjoint if they don’t share any edge. Therefore, existing
works allow pathlets in the dictionary to (partially) overlap. These
methods, by design, follow a top-down approach in constructing
a dictionary. This involves forming all possible pathlet candidates
first, by considering pathlets of various configurations and sizes,
and then eliminating candidates to form a smaller sized dictionary
that consists of only the most important ones (e.g., the most pop-
ular). While simple and intuitive, its main limitation is the need
for a large memory to initially store the large number of pathlets,
most of which are redundant. This also limits its applicability in
real-world settings, particularly when dealing with large road net-
works and trajectory data, as the number of initial candidates can
quickly become overwhelming.
Our Approach & Contributions. To address these limitations,
we propose a bottom-up approach for constructing a pathlet dic-
tionary that complies with edge-disjoint pathlets (see Fig. 1) and
reduces memory storage requirement. In Fig. 2 for instance, we
illustrate how our proposed approach saves up to ∼24K× less mem-
ory space than existing methods for storing the initial pathlets (see
Experiment (Q2) for full details, with Appendix B presenting a
more theoreotical proof). The key idea of our approach is to initial-
ize unit-length pathlets & iteratively merge them to form longer,
higher-order ones, while maximizing utility [2, 26]. Longer pathlets
are preferred (over shorter ones) as they hold more spatiotemporal
information, such as mobility patterns in trajectories [8]. A deep
reinforcement learning method is proposed to approximate the
utility function. A summary of our contributions is provided below:
• We introduce a more strict definition of a pathlet than in previ-
ous works to comply with edge-disjoint pathlets. This enables
a bottom-up approach for constructing pathlet dictionaries that
reduces memory storage needs.

Symbol Definition

𝜏 and T A trajectory 𝜏 and a set of trajectories T
G⟨V, E⟩ Road network with intersectionsV and segments E
𝜌 and P A pathlet 𝜌 and a pathlet set P
G𝑝 ⟨V𝑝 , E𝑝 ⟩ The pathlet graph representation of road network G

Ψ(𝜌) The neighbors of pathlet 𝜌
Φ(𝜏) The pathlet-based representation of a trajectory 𝜏
Λ(𝜌) The trajectory traversal set of a pathlet 𝜌
𝜇 (𝜏) The trajectory representability of trajectory 𝜏
𝐿𝑡𝑟𝑎 𝑗 The trajectory loss
S The pathlet dictionary
𝜙 The avg # of pathlets representing each 𝜏 in T
Table 1: Summary of notation used in this work

• We introduce two novel metrics, namely trajectory loss and tra-
jectory representability, which allow us to more comprehensively
evaluate the utility of a pathlet and the overall quality of a con-
structed pathlet dictionary.
• We formulate the problem of pathlet dictionary construction as a
utility maximization problem, where shorter pathlets are merged
to form a set of longer ones with higher utility.
• We propose PathletRL, a deep reinforcement learning method
that utilizes a Deep 𝑄 Network (Dqn) policy to approximate the
utility function of constructing a pathlet dictionary. To the best of
our knowledge, this is the first attempt to employ a deep learning
method for the problem.
• We demonstrate empirically that the dictionary constructed by
our PathletRL is of superior quality to those constructed by
traditional non-learning-based methods. Our method reduces the
size of the the dictionary by up to 65.8% compared to other meth-
ods. Moreover, using only half of the pathlets in the dictionary
suffices to reconstruct 85% of the original trajectory data.
• We open-source our code to encourage reproducibility2.

Paper Organization. The remainder of the paper is organized as
follows. Section 2 presents preliminaries and a formal definition of
the problem. Section 3 presents our methodology and the details of
the proposed method. We describe the experimental setup, present
the results, and make some insightful discussions in section 4. We
review related work in section 5 and conclude in section 6.

2 PRELIMINARIES & PROBLEM DEFINITION

In this section, we briefly introduce some definitions and notations
(see Table 1). Then we formally define the problem of interest.

2.1 Primary Definitions and Notations

Definition 2.1 (Trajectory). Let O = {𝑜1, 𝑜2, ..., 𝑜 |O | } be a set of
moving objects in a certain geographic mapM ⊂ R2. A trajectory
𝜏 of a single object 𝑜 ∈ O can be represented as a sequence of time-
enabled geo-coordinate points: 𝜏 =

〈
(𝑥1, 𝑦1, 𝑡1) , ..., (𝑥 |𝜏 | , 𝑦 |𝜏 | , 𝑡 |𝜏 | )

〉
,

where each 𝑥𝑖 and 𝑦𝑖 represents 𝑜’s longitudinal and latitudinal
coordinates at a specific time instance 𝑡𝑖 ∈ [0,𝑇 ]. We let |𝜏 | be
its length, or the # of time-enabled points for the trajectory of 𝑜 .
Moreover, we let trajectory (data) set T consist of all trajectories of
all 𝑜 ∈ O: T =

⋃
∀𝑜∈O T𝑜 , with T𝑜 as the set of all 𝑜’s trajectories.

2https://github.com/techGIAN/PathletRL

https://github.com/techGIAN/PathletRL


PathletRL: Trajectory Pathlet Dictionary Construction
using Reinforcement Learning SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany

Definition 2.2 (Road Network). We denote by G⟨V, E⟩ the road
network within mapM, whereV and E ⊆ V ×V represents G’s
set of road intersections (nodes) and segments (edges) respectively.

Trajectory points (GPS traces) outsideM are filtered out as a
preprocessing step. The remaining trajectories also require to be
map-matched (see Appendix C for details). With map-matched data,
we can now formalize the fundamental building block in this work.
Definition 2.3 (Pathlet). A pathlet 𝜌 is defined as any sub-path in
the road network G, with P being the set of all such pathlets.

In ourwork, we consider edge-disjoint pathlets, s.t. no two 𝜌1, 𝜌2 ∈
P share any edge. For simplicity, we assume discrete pathlets –
meaning they begin and end at an intersection (a node in the graph,
with either start/endpoints at 𝜌.𝑠/𝜌.𝑒), but the work can easily be
generalized to include continuous pathlets that drop this restriction.
Definition 2.4 (Pathlet Length

3
). Denoted by ℓ , this represents

pathlet 𝜌’s path length in the road network.
The smallest unit of the pathlet has length ℓ = 1. Moreover,

we restrict all pathlets 𝜌 ∈ P to be of length ℓ ≤ 𝑘 , for some
user-defined 𝑘 . In this case, we say that P is a 𝑘-order pathlet set.
Definition 2.5 (Pathlet Graph). The pathlet graph G𝑝 ⟨V𝑝 , E𝑝 ⟩
of a road network G⟨V, E⟩ depicts the road network’s pathlets,
where the road intersections represent the nodesV𝑝 ⊆ V and the
road segments connecting road intersections as the edges E𝑝 ⊆ E.

Fig. 1(a), for example, represents the pathlet graph representation
of a small area in Toronto. In our work, we consider an initial pathlet
graph where each pathlet has length ℓ = 1.
Definition 2.6 (Pathlet Neighbors). Given a pathlet 𝜌 ∈ P, its
neighbor pathlets, denoted by Ψ(𝜌), are all other pathlets 𝜌′ ∈
P \ {𝜌} who share the same start/endpoints with that of 𝜌 :

Ψ(𝜌) =
⋃

𝜌 ′∈P\{𝜌 }, (𝜌.𝑠∈{𝜌 ′ .𝑠,𝜌 ′ .𝑒 })∨(𝜌.𝑒∈{𝜌 ′ .𝑠,𝜌 ′ .𝑒 })
𝜌′

For example, the grey pathlet in Fig. 1(b) has two neighbors: the
orange & blue pathlets.
Definition 2.7 (Pathlet-based Representation of a Trajectory).
A trajectory 𝜏 ∈ T can be represented based on some subset of path-
lets P𝑠𝑢𝑏 ⊆ P. Moreover, the pathlets in P𝑠𝑢𝑏 can be concatenated
in some sequence resulting into the path traced by 𝜏 on the road
network G. We denote this by Φ(𝜏) = {𝜌 (1) , 𝜌 (2) , ..., 𝜌 ( | P𝑠𝑢𝑏 | ) },
where 𝜌 (𝑖 ) ∈ P𝑠𝑢𝑏 denotes the 𝑖th pathlet in the sequence that
represents the pathlet-based representation for 𝜏 .

Based on this, it is also possible to define a trajectory’s pathlet
length, which we initially set before constructing the pathlet graph.
Each trajectory 𝜏 ∈ T has pathlet length equal to

∑
∀𝜌∈Φ(𝜏 ) ℓ (𝜌),

whose value remains static for the rest of our algorithm.
Definition 2.8 (Trajectory Traversal Set of a Pathlet). Let Λ(𝜌)
be the set of all trajectories 𝜏 ∈ T that pass or traverse pathlet
𝜌 ∈ P. This can also be written as Λ(𝜌) = {𝜏 | ∀𝜏 ∈ T , 𝜌 ∈ Φ(𝜏)}.

We can also assign weights𝜔 to pathlets. In the unweighted case,
all pathlets are weighed equally; while in theweighted version, path-
lets are weighed equal to the # of trajectories traversing a pathlet,
i.e., 𝜔 (𝜌) = |Λ(𝜌) |, or |Λ(𝜌 ) || T | when normalized. These weights indi-
cate each pathlet’s importance in the road network/pathlet graph.

3Not to confuse with a road segment’s length that represents the measure depicting
its actual physical distance, the pathlet length can be derived based on graph context.

2.2 Novel Trajectory Metrics

We can now introduce some novel metrics to allow us to more
comprehensively evaluate our pathlets and pathlet dictionaries.
Definition 2.9 (Trajectory Representability

4
). The (trajectory)

representability 𝜇 ∈ [0%, 100%] of a trajectory 𝜏 denotes the % of 𝜏
that can be represented using pathlets in pathlet set P.

Clearly, the pathlet-based representation of 𝜏 is directly related
to its representability, i.e., 𝜇 (𝜏) = |Φ(𝜏) |/∑∀𝜌∈Φ(𝜏 ) ℓ (𝜌), for the un-
weighted case and 𝜇 (𝜏) = ∑

∀𝜌∈Φ(𝜏 ) 𝜔 (𝜌), for the weighted version.
Definition 2.10 (Trajectory Loss). We define the trajectory loss
𝐿𝑡𝑟𝑎 𝑗 to be the # of trajectories ∀𝜏 ∈ T that have representability
value 𝜇 = 0%, i.e., 𝐿𝑡𝑟𝑎 𝑗 = |{𝜏 |𝜏 ∈ T , 𝜇 (𝜏) = 0}|. We can also
describe these trajectories as "lost" or "discarded" from the given
trajectory set T , and we may also depict this number as a %.

The relevance and impact of these two metrics will become clear
as we go over the methodology in finer details.

2.3 Problem Definition

Before formalizing the problem, we first introduce the pathlet dic-
tionary and some optimization definitions.
Definition 2.11 (Pathlet Dictionary). A (trajectory) pathlet dic-
tionary (PD) is a data structure that stores pathlets 𝜌 ∈ P (keys),
and their associated trajectory traversal set Λ(𝜌) (values).

See Fig. 3 (the righthand boxes inside the orange & blue panels)
for an illustrative example of a PD.We are interested in constructing
a PD that aims to achieve one or a combination of the following:
(O1) Minimal size of candidate pathlet set S, or the candidate set

with the least possible number of pathlets (i.e., min |S|)
(O2) Minimal 𝜙 , or the avg # of pathlets representing each trajec-

tory 𝜏 ∈ T (i.e., min𝜙 = min 1
| T |

∑
𝜏∈T |Φ(𝜏) |)

(O3) Minimal trajectory loss 𝐿𝑡𝑟𝑎 𝑗 (i.e., min𝐿𝑡𝑟𝑎 𝑗 )
(O4) Maximal 𝜇, or the average representability values of the re-

maining trajectories in T (i.e., max 𝜇 = max 1
| T |

∑
𝜏∈T 𝜇 (𝜏))

In other words, the objective function that we wish to optimize
is based on the four objectives above – which can be modelled by:

min∑
𝑖 𝛼𝑖=1

(
𝛼1 |S | + 𝛼2

1
| T |

∑︁
𝜏 ∈T
|Φ(𝜏 ) | + 𝛼3𝐿𝑡𝑟𝑎𝑗 − 𝛼4

1
| T |

∑︁
𝜏 ∈T

𝜇 (𝜏 )
)

(1)

where the 𝛼𝑖 ’s are user-defined objective weights.
Problem 1 (Pathlet Dictionary Construction). Given a road net-
work G⟨V, E⟩ of a specific mapM, a trajectory set T , max pathlet
length 𝑘 , max trajectory loss𝑀 , and avg trajectory representability
threshold 𝜇, construct a 𝑘-order pathlet dictionary S. The dictionary
S consists of edge-disjoint pathlets with lengths of at most 𝑘 , and
achieves the max possible utility according to some utility function
as depicted in Equation (1), such that 𝐿𝑡𝑟𝑎 𝑗 < 𝑀 and 𝜇 ≥ 𝜇.

3 METHODOLOGY

Wenow describe ourmethods to address the problem of interest (see
Fig. 3 for its architecture). In particular, we describe the components
of the proposed PathletRLmodel (Pathlet dictionary construction
using trajectories with Reinforcement Learning). There are two
4Not to be confused with representativeness that describes the capability of a trajectory
to represent other similar nearby trajectories, representability depicts how much a
trajectory can be reconstructed given our pathlets.



SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany Alix and Papagelis

Figure 3: The overall architecture (including the constructed PDs) of our proposed PathletRL model

main components: (1) the method responsible for extracting the
candidate pathlet sets through a merging-based process, and (2) a
deep reinforcement learning-based architecture for approximating
the utility function of the merging process of (1).

3.1 Extracting Candidate Pathlets

In this section, we describe the algorithmic details for merging
our edge-disjoint pathlets. The high-level idea of the algorithm
is based on the theory of maximal utility [2, 26], i.e., iteratively
merging (neighboring) pathlets until this brings forth little to no
improvement on the utility (details of the utility are given later).
The algorithm takes in as input a road network G, a trajectory
set T operating within G, the max threshold for the trajectory
loss𝑀 , the trajectory representability threshold 𝜇, and a positive
integer 𝑘 denoting the desired 𝑘-order pathlet graph. As output, it
returns a pathlet dictionary (PD) that holds pathlet information as
described in Definition 2.11. The extracted PD aims to satisfy the
four objectives (O1)-(O4). See Algorithm 1 for the pseudocode.
Initialization. The algorithm first initializes the pathlet graph G𝑝 ,
extracted from G – and more importantly are the initial (length 1)
pathlets E𝑝 (lines 1-2). Then, we make a copy of all the input
trajectories in T ∗, which keeps track of the current trajectories
that we currently have; and further initialize an empty set for the
candidate pathlet set we intend to build (line 3). We also set up
other important variables such as the 𝜙 and the 𝜇 as defined in the
preliminaries, as well as empty dictionaries for the the trajectory
loss and utility that will be useful for later (lines 4-5). Moreover,
a pathlet from E𝑝 is chosen uniformly at random (line 6).
An Iterative Algorithm. The basic idea behind the while loop
is that we iteratively merge pathlets until merging brings little to
no improvement on G𝑝 ’s utility. Once a pathlet cannot be further
merged with any of its neighbors, due to no further gain in utility,
we add it to our candidate set and randomly select the next pathlet.

We set the utility of G𝑝 associated with pathlet 𝜌 to be 0, i.e., not
merging 𝜌 with any of its neighbors brings zero utility (line 8).
We then consider each of the unprocessed neighbors 𝜌 of pathlet
𝜌 ; compute the utility of merging 𝜌 with each of its neighbors 𝜌 ,
and then also the set of all trajectories that could be lost for when
the pair of candidate pathlets do end up merging (lines 9-11).
More specifically, these lines maintain a record of how much the
merge of this candidate pair will impact the representabilities and
losses of the trajectories. The algorithm then finds a pathlet 𝜌∗ that

is a candidate for merging with current pathlet 𝜌 ; this candidate
achieves the highest utility when merged with the current pathlet
(line 12). There are then two cases for where merging is not rec-
ommended (line 13): (1) when 𝜌∗ = 𝜌 (i.e., the algorithm deems
that merging with another neighboring pathlet contributes little to
no improvement on the utility of G𝑝 ), and (2) when ℓ > 𝑘 (i.e., merg-
ing the two pathlets 𝜌 and 𝜌∗ would violate the 𝑘-order constraint).
In either of these cases, we add current pathlet 𝜌 to our candidate
pathlet set, and then randomly select another unprocessed pathlet
in the pathlet graph; if all pathlets have already been processed,
then we immediately end the loop and return the candidate pathlet
set S (lines 14-18). Otherwise, we immediately take out the two
pathlets that are candidate for merging and then add the newly
merged pathlet to our current pathlet set E𝑝 in our pathlet graph
(lines 20-21). Moreover, we remove the collected lost trajectories
from line 11 from our current trajectory set T ∗ (line 22). The
method also updates 𝜙 , 𝜇, the current pathlet processed and its
current length (lines 23-24). The iterative procedure ends when
one of the following occurs: (1) all pathlets have been processed,
(2) the trajectory loss has exceeded the threshold 𝑀 , or (3) the avg
representability 𝜇 falls below the threshold 𝜇.
The Utility Function. To complete the description of the algo-
rithm, we discuss the formulation of the utility function that we
approximated using a learning-based method. In particular, a re-
inforcement learning method is utilized to learn the (sequence of)
actions (i.e., merge or don’t merge pathlets) that would yield the
highest possible utility. Specifically, we frame the utility function
as a reward function that we aim to optimize (i.e., maximize). We
discuss the details of this design in the next section.

3.2 Reinforcement Learning Framework

In reinforcement learning (RL), desirable actions lead to higher
rewards while unfavorable actions result in punishment (lower-
valued rewards) – a trend analogous to what we desire. RL methods
have seen success in solving decision-based problems in an attempt
to maximize rewards [28, 44]. As this aligns with our goal to max-
imize utility, we motivated the use of RL to merge pathlets. We
briefly go over its components here (see the gray panel of Fig. 3).
The Environment. RL models are designed for an agent to learn
the most optimal actions, commonly in games [28, 46]. In this con-
text, we consider the entire pathlet graph G𝑝 to be the environment
model; it is where our deep RL algorithm will be operating on.



PathletRL: Trajectory Pathlet Dictionary Construction
using Reinforcement Learning SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany

Algorithm 1: Candidate Pathlet Set Extraction Algorithm
Input :The road network G⟨V, E⟩, the trajectory set T , integer

𝑘 , the maximum trajectory loss𝑀 and the average
trajectory representability threshold 𝜇.

Output :The 𝑘-order candidate pathlet set S of merged pathlets
with a trajectory loss not exceeding𝑀

/* Initialization */

1 G𝑝 ⟨V𝑝 , E𝑝 ⟩ ← ExtractPathletGraph(G⟨V, E⟩)
2 ℓ ← 1 // Size of the initial length 1 pathlets

3 T∗ ← T; S← ∅

4 𝜙 ← 1
| T∗ |

∑︁
𝜏 ∈T∗

|Φ(𝜏 ) | ; 𝜇 ← 1
| T∗ |

∑︁
𝜏 ∈T∗

𝜇 (𝜏 )

/* Setup traj loss and utility dictionaries */

5 𝑇𝐷 ← Dict( ) ; 𝑈𝐷 ← Dict( )
6 𝜌 ← Rand(E𝑝 ) // Uniformly pick 𝜌 ∈ E𝑝 at random

/* Repeat until all pathlets are processed */

/* Or when traj loss exceeds the maximum */

7 while E𝑝 ≠ S or sum(𝑇𝐷 .Values( ) ) < 𝑀 or 𝜇 ≥ 𝜇 do

/* Initially set G𝑝’s utility associated to the curr

pathlet 𝜌 to be 0 */

8 𝑈𝐷 [𝜌 ] = 0
/* For each of 𝜌’s unprocessed neighbors */

9 foreach 𝜌 in Ψ(𝜌 ) \ S do
10 𝑈𝐷 [𝜌 ] ← ComputeUtil(Merge(𝜌, 𝜌 ) )
11 𝑇𝐷 [𝜌 ] ← GetAllTrajLost (Merge(𝜌, 𝜌 ), T∗ )

/* Find the one with the highest utility */

12 𝜌∗ ← argmax
𝜌∈𝑘𝑒𝑦

𝑈𝐷 [𝑘𝑒𝑦 ]

13 if 𝜌∗ = 𝜌 or ℓ > 𝑘 then // Merge not necessary

14 S← S ∪ {𝜌 }
15 𝜌 ← Rand(E𝑝 \ S) // Pick new pathlet

16 if 𝜌 = ∅ then // All pathlets processed

17 break

18 ℓ ← 1 // Reset pathlet length

19 else // Merge recommended

20 𝜌𝑚𝑒𝑟𝑔𝑒𝑑 ← Merge(𝜌, 𝜌∗ )
21 E𝑝 ←

(
E𝑝 \ {𝜌, 𝜌∗}

)
∪ {𝜌𝑚𝑒𝑟𝑔𝑒𝑑 }

22 T∗ ← T∗ \𝑇𝐷 [𝜌∗ ]

23 𝜙 ← 1
| T∗ |

∑︁
𝜏 ∈T∗

|Φ(𝜏 ) | ; 𝜇 ← 1
| T∗ |

∑︁
𝜏 ∈T∗

𝜇 (𝜏 )

24 𝜌 ← 𝜌𝑚𝑒𝑟𝑔𝑒𝑑 ; ℓ ← ℓ + 1

25 return S

TheAgent. RL is often designed for training robotic agents, or some
AI [19]. In our case, our agent is trained to learn which pathlets in
the pathlet graph are to be merged/kept unmerged. In particular,
we train the agent to learn the most optimal sequence of actions
that would yield the highest possible utility (reward).

The States. The reinforcement learning paradigm is based on the
Markov decision process (Mdp) [49], that requires specification
of states. In this case, the state 𝑠𝑡 ∈ S is depicted by the current
state of the pathlet graph environment. In particular, the pathlet
graph’s state can be represented as a 4-tuple (𝑆1, 𝑆2, 𝑆3, 𝑆4), where
𝑆1 denotes the # of pathlets in the current pathlet graph, 𝑆2 denotes
the average # of pathlets to represent the trajectories, 𝑆3 is the
trajectory loss and 𝑆4 is the average trajectory representability.

The Actions. At each time 𝑡 , the agent has a choice of two discrete
actions on the currently processed pathlet 𝜌 , as expressed by the
action space A = {keep,merge}. In other words, keep action sug-
gests that the current pathlet 𝜌 should be kept and not be merged
with any one of its neighbors. As a result, Algorithm 1 puts the
current pathlet 𝜌 in the processed set and then selects a new pathlet
to process, performing one of the two actions in the action space
on that new pathlet. The merge action should however merge the
current pathlet 𝜌 with one of its |Ψ(𝜌) | neighbors. For that, the
agent would need to decide on which neighbor in the set Ψ(𝜌) to
merge with. Thus, the action space can succinctly be written as:

A =
⋃

∀𝜌∈Ψ(𝜌 )
merge(𝜌, 𝜌) ∪ {keep(𝜌)}

The Reward Function. We formulate our reward function 𝑅 based
on the optimization equation defined in Equation (1):

max
𝑎𝑡
E

[(
−𝛼1 |S | − 𝛼2

1
| T |

∑︁
𝜏 ∈T
|Φ(𝜏 ) | − 𝛼3𝐿𝑡𝑟𝑎𝑗 + 𝛼4

1
| T |

∑︁
𝜏 ∈T

𝜇 (𝜏 )
)]

(2)

Whenever the RL agent performs an action 𝑎𝑡 in the pathlet graph
environment, the environment provides back feedback to it in the
form of instantaneous rewards {𝑟𝑡 }𝑇𝑡=0:

𝑟𝑡 = −𝛼1Δ|S| − 𝛼2Δ𝜙 − 𝛼3Δ𝐿𝑡𝑟𝑎 𝑗 + 𝛼4Δ𝜇

where Δ⊙ represents the change of ⊙’s value in the previous and
current timesteps. In the end, the agent receives the total sum
of these instantaneous rewards, plus the final reward as depicted
in Equation (2). Note that in order for the agent to realize the
importance of both immediate and long-term future rewards, a
user-defined discounted rate factor 𝛾 ∈ [0, 1] was introduced.
The Policy and DQN Networks. The policy 𝜋 imposed on an
agent is one that maximizes the future expected reward from the
environment. A state-action pair at time 𝑡 , denoted by (𝑠𝑡 , 𝑎𝑡 )
can be mapped to some quality index 𝑄𝜋 function represented
as 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ). In other words, 𝑄𝜋 possess the max possible future
expected reward in the environment for state-action pair (𝑠𝑡 , 𝑎𝑡 ):

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) = max [E (𝑅𝑡 | 𝑠𝑡 , 𝑎𝑡 )]

Therefore, the agent’s goal is to learn the most optimal policy
𝜋 , through the selection of the action 𝑎𝑡 while in state 𝑠𝑡 that
maximizes the 𝑄-index. The idea of this 𝑄-learning method is for
the agent to record and keep track of all possible state-action (𝑠𝑡 , 𝑎𝑡 )
pairs and the𝑄-values they map to in a lookup table. In other words,
it maintains a𝑄-table of values with |S| states and |A| actions. The
𝑄-table is then updated at each timestep recursively:

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼𝑙𝑟
[
𝛾 max

𝑎𝑡+1
𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1 ) − 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 )

]
(3)

where 𝛼𝑙𝑟 is the learning rate. In fact, this𝑄-learning paradigm has
seen significant success in the reinforcement learning community
[47]. However, it can be observed that while our action space A is
discrete, the state space S is continuous. As a result, the agent is un-
able to maintain large state-action spaces and therefore a nonlinear
function approximator such as neural networks is necessary to es-
timate these 𝑄-values. In particular, a deep reinforcement learning
(Drl) architecture was employed, specifically a Deep 𝑄-Network
(Dqn) algorithm was utilized as the proposed solution to this end
(see Appendix D for other reinforcement learning policies).



SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany Alix and Papagelis

The Experience Replay Buffer. As there are no generated data
for where the agent can learn the optimal actions, it would have
to learn based on prior experience. More specifically, the agent
(collects data of) keeps track of all state-action pairs and state-
transitions it has had in the past so it can learn from them at a later
time. The Epsilon-Greedy method was used to determine the most
optimal action 𝑎𝑡 while the agent collects the data; i.e., this Epsilon-
Greedy policy is the data collection policy used by the agent and
should not be confused with the 𝑄-policy that the agent uses for
evaluation and deployment. Moreover, the experience tuple records
(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) are stored in a memory buffer called the experience
replay buffer [13]. The agent samples a memory minibatch from
this replay buffer and then calculates the (Huber) loss function.
Note that this particular loss function is distinct from our proposed
trajectory loss metric, where the former is calculated based on the
agent’s actions while the latter is based on the # of trajectories that
cannot be represented by the pathlets in the pathlet set.

4 EVALUATION

In this section, we present the details of our experimental setup for
evaluating our proposed method. We aim to analyze and evaluate
our models based on the following research questions:
(Q1) How does PathletRL compare with the SotA methods, in

terms of the quality of the extracted PDs?
(Q2) How much memory does the bottom-up approach save com-

pared to top-down methods?
(Q3) How much improvement and how much more effective is our

PathletRL model against its ablation variations?
(Q4) What is the distribution of pathlet lengths in the obtained

dictionary in our PathletRL model?
(Q5) How effective is the constructed PD in reconstructing the

original trajectories?
(Q6) What is the sensitivity of the user-defined parameters [𝛼1, 𝛼2,

𝛼3, 𝛼4] in the performance of our PathletRL model?

4.1 Datasets

We utilize two datasets that each depict a different map scenario (see
Appendix E for its complete statistics, and Appendix F for a brief
discussion about the data’s privacy concerns). We used real world
maps of two metropolitan cities, Toronto5 and Rome through the
OpenStreetMaps6. A realistic synthetic vehicular mobility datasets
for the Toronto map was generated using the Sumo mobility app
simulator7 (3.7 hrs). Moreover, larger-scale, real-world taxi cab
trajectories (first week of February 2014) were taken fromCrawdad
[7], an archive site for wireless network and mobile computing
datasets, to form the Rome dataset. We split our trajectory sets into
70% training and 30% testing, where the training data was used to
construct our pathlet dictionaries and the remainder for evaluation.

4.2 Experimental Parameters

Refer to Appendix G for full details of the implementation. To
implement the RL architecture, we used a deep neural network
that consists of the following parameters. It comprises of three

5https://www.toronto.ca/city-government/data-research-maps/open-data/
6https://www.openstreetmap.org/
7
Simulation of UrbanMObility: https://www.eclipse.org/sumo/

PathletRL-Nr ✗ ✓ ✓

PathletRL-Rnd ✓ ✓ ✗

PathletRL-Unw ✓ ✗ ✓

PathletRL (ours) ✓ ✓ ✓

PathletRL

Algorithm

Representability

Measure

Weighted

Networks

Deep Learning

Policy

Table 2: Features of the proposed PathletRL models,

alongisde its ablation baselines.

hidden fully-connected layers of 128, 64 and 32 hidden neurons.
The ReLU activation function has been employed, optimized by
Adam with a learning rate of 0.001. We also use a 0.2 dropout in the
network, together with the Huber loss function. More specific to the
DQN’s parameters, we have𝑚 = 5 episodes for each of the 𝑛 = 100
iterations. The size of the experience replay buffer is 100,000 and the
memory minibatch size is 64. Our agent also uses a discount factor
𝛾 = 0.99. Moreover, we use 𝑘 = 10 for the 𝑘-order candidate set,𝑀 =
25% maximum trajectory loss and 𝜇 = 80% average representability
threshold. We also set 𝛼𝑖 = ¼, ∀𝑖 , which denotes equal importance
for each of the four objectives as depicted in Equation (2).

4.3 Baselines

We introduce the following baselines (see Appendix H for a discus-
sion on baseline choice). The first two are SotA (top-down-based)
baselines, while the last three are ablation versions of our proposed
model. Table 2 depicts the features withheld in each ablation varia-
tion to demonstrate the feature’s importance and effectiveness.
Chen et al. [8]. The very first paper that introduces the notion of
pathlets. This method frames the problem as an integer program-
ming formulation, that is solvable using dynamic programming.
Agarwal et al. [1]. Framing PD extraction as a subtrajectory clus-
tering problem, where subtrajectory clusters are treated as pathlets,
they use pathlet-cover inspired from the popular set-cover algorithm.
Sgt. The Singleton baseline considers all initial length-1 pathlets
(the original road map), without merging any pathlets.
PathletRL-Rnd. This version of PathletRL does not support
Deep𝑄 Networks and does not utilize a Dqn agent. Actions at each
episodic timestep are taken uniformly at random.
PathletRL-Nr. Trajectory representability is absent under this
ablation. If a pathlet traversed by some trajectory 𝜏 merges with
another pathlet that is not traversed by this 𝜏 , then there no longer
exists a subset of pathlets in the pathlet set that can represent 𝜏 ; as
a result, we immediately discard trajectory 𝜏 .
PathletRL-Unw. This version of PathletRL is applied to a
pathlet graph environment where all pathlets are equally weighted.

4.4 Evaluation Metrics

To evaluate model performance, we consider the following metrics
that will measure the quality of the extracted pathlet dictionaries.
Note that [↓] ([↑]) indicate that lower (higher) values are better.
(1) |S|, the size of the pathlet dictionary [↓]
(2) 𝜙 , the avg # of pathlets that represent each trajectory [↓]
(3) 𝐿𝑡𝑟𝑎 𝑗 , the # of trajectories discarded (expressed in %) [↓]
(4) 𝜇, the average representability across the remaining trajectories

(expressed in %) [↑]

https://www.toronto.ca/city-government/data-research-maps/open-data/
https://www.openstreetmap.org/
https://www.eclipse.org/sumo/


PathletRL: Trajectory Pathlet Dictionary Construction
using Reinforcement Learning SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany

Baselines Null PathletRL

[8] [1] Sgt Rnd Nr Unw (ours)

T o
ro

nt
o

[↓] |S| 13,886 7,982 2,563 2,454 1,896 1,801 1,743

[↓] 𝜙 7.02 5.97 4.76 3.77 2.89 3.98 3.75
[↓] 𝐿𝑡𝑟𝑎 𝑗 n/a n/a 0% 19.7% 17.6% 15.1% 15.2%
[↑] 𝜇 n/a n/a 100% 79.9% n/a 80.0% 83.9%

Ro
m
e

[↓] |S| 59,396 31,017 15,465 9,718 7,003 5,804 5,291

[↓] 𝜙 202.91 188.33 230.15 173.04 158.18 146.39 139.89

[↓] 𝐿𝑡𝑟𝑎 𝑗 n/a n/a 0% 24.9% 21.1% 22.9% 20.4%

[↑] 𝜇 n/a n/a 100% 82.7% n/a 86.2% 85.6%
Table 3: Numerical results showing the attributes of the path-

let dictionaries extracted by each method for each dataset.

Note that the third and fourth metrics above do not apply to
Chen et al.’s [8] and Agarwal et al.’s [1] methods as such measures
are only applicable to pathlet-merging methods. Moreover, the
fourth metric does not apply to PathletRL-Nr. Under this model,
all remaining trajectories in the dataset (and hence the average) are
always 100% representable, which is not so interesting.

4.5 Results and Discussion

In this section, we go over each of the six research questions, present
the experimental results and provide some discussion.

(Q1) Quality of the Extracted PDs. We evaluate the pathlet dic-
tionary extracted by our PathletRL algorithm against the PDs
extracted by SotA baselines. See Table 3 for the numerical results,
where the bold numbers indicate the result of the most superior
model for the given PD metric and the underlined number is the
result of the second-best performing model (note that we do not
boldface or underline the numbers of Sgt as such model serves
as the null model where nothing is done to the pathlet graph). Al-
though the nature of the pathlet definition and the approaches
are not necessarily the same, the algorithms of Chen et al. [8] and
Agarwal et al. [1] are still comparable. We ultimately show that
their top-down approaches are not as effective as our bottom-up
strategies. First, we look at the size of the pathlet dictionary, |S|,
where the smaller the number the better is the result. Our Path-
letRL model was able to improve from Sgt by ∼32.0% (∼65.8%)
for the Toronto (Rome) dataset. These numbers are an ∼87.4%
(∼91.1%) improvement from Chen et al.’s [8] model on the Toronto
(Rome) dataset. Our model also improves by ∼78.2% (∼82.9%) from
Agarwal et al.’s [1] method on the Toronto (Rome) dataset. These
two observations indicate how superior our method is against the
state-of-the-art; i.e., bottom-upmethods being better than top-down
schemes. Note as well that Chen et al.’s [8] and Agarwal et al.’s [1]
PDs are larger than the initial # of length-1 pathlets, as their meth-
ods are top-down – which initially considers all possible pathlet
sizes and configurations (including overlaps). Clearly, they do not
exhibit ideal results, compared to our proposed PathletRL model,
as well as in all of the ablation versions of PathletRL.

Then, we focus on the metric of the average pathlet number that
represents each trajectory (which can go up or down at each step
of the iterative algorithm). Similar to |S|, a smaller 𝜙 indicates a
more ideal dictionary. Our PathletRL model was able to extract
dictionaries that improve from Sgt by ∼21.2% (∼39.2%) on the

Figure 4: Performance evaluation of proposed and ablation

PathletRL models, measured using the average return met-

ric of𝑚 = 5 episodes across 𝑛 = 100 iterations (run 10 times)

Toronto (Rome) dataset. Meanwhile, Chen et al.’s [8] PD has 𝜙
quality ∼47.4% higher than Sgt for Toronto dataset, and only
∼11.8% lower than Sgt on Rome dataset. A similar trend can be
seen in Agarwal et al.’s [1] dictionary, with ∼25.4% higher and
∼18.2% lower than the initial number in the Toronto and Rome
datasets respectively. Clearly, our proposed PathletRL (and its
ablation variations) outperforms these SotA baselines.

Our PathletRL also improves from Sgt based on the |S| and
𝜙 metrics. Because no action is taken on the pathlet graph in Sgt,
only the original numbers are shown; thus, 𝐿𝑡𝑟𝑎 𝑗 and 𝜇 remains as
0% and 100% for both datasets. However, we can see the benefits of
PathletRL by trading off these values to obtain smaller dictionaries
with much less 𝜙 scores – as controlled by the 𝛼 parameters.

(Q2) Memory Efficiency. Fig. 2 (in log scale) demonstrates how
much more memory-efficient PathletRL is compared to the base-
lines [1, 8]. As can be seen in Fig. 2, our method gets as input a
set of trajectories that requires ∼900 MB (∼30+ GB) to be stored in
memory, and builds a trajectory pathlet dictionary that requires a
mere ∼100 KB (∼1 MB) for the Toronto (Rome) dataset. In fact, this
represents a ∼7.4K× (∼24K×) saving. This considerable improve-
ment can be attributed to the fact that our method uses a bottom-up
approach where only edge-disjoint pathlets are considered. In con-
trast, the current baselines follow a top-down approach, where the
trajectory pathlet dictionary consists of overlapping pathlets of
various sizes and configurations, most of which are redundant.

(Q3) Ablation Study. Next, we perform an ablation experiment
to see how well our proposed PathletRL model performs. Fig. 4
displays the average returns of PathletRL and its ablations across
𝑛 iterations on the two datasets. We can observe similar trends on
both datasets. Notice that PathletRL-Rnd has the poorest perfor-
mance, exhibiting a random RL policy that shows no learning at all.
Meanwhile, all other models demonstrate that their average return
value converges after some iterations (for example, 15 and 20 itera-
tions for PathletRL on the Toronto and Rome datasets), and then
fluctuating slightly within a small range. PathletRL-Nr, while it
demonstrates some level of learning due to the Dqn policy, does
not perform well compared to PathletRL-Unw – which suggests
that representability is an essential component. This unweighted
version of PathletRL can be seen as a runner up to our (weighted)
proposed model, which indicates that there is some value to assign-
ing pathlet weights than simply weighing all pathlets equally.

Besides comparing the trends of PathletRL models’ perfor-
mance evaluation, we can also look at the quality of their PDs (see



SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany Alix and Papagelis

Figure 5: The pathlet length distribution of pathlet dictionar-

ies obtained by PathletRL model and its ablation versions

on the Toronto (top) and Rome (bottom) datasets.

Table 3 for the results). Generally speaking, our proposed Path-
letRL’s PD is superior than the PDs extracted by its ablation varia-
tions (i.e., the |S| metrics for both the Toronto and Rome datasets,
the 𝜇 metric for the Toronto dataset, and the 𝜙 and 𝐿𝑡𝑟𝑎 𝑗 metrics
for the Rome dataset). In other cases that PathletRL did not rank
first, it was a runner up but this can be explained. For instance,
consider the 𝜙 metric in the Toronto dataset. The reason for the
higher quality of PathletRL-Nr’s PD than that of PathletRL’s in
terms of the 𝜙 metric is that because trajectory counts easily shrink
faster in PathletRL-Nr; the average 𝜙 can easily go down should
the number of pathlets representing each trajectory also dwindle in
number. The 𝜇 metric for the PD of PathletRL-Unw is higher than
that of the PD of PathletRL on the Rome dataset, which could be
because PathletRL-Unw has fewer trajectories remaining in its
trajectory set and that it just so happened that those that remained
have high representability 𝜇 values. Regardless, the differences in
numbers between the PDs of PathletRL and PathletRL-Unw in
terms of the 𝜇 metric is small and still comparable. The same can
be said for the 𝐿𝑡𝑟𝑎 𝑗 metric of the PDs of PathletRL-Unw and
PathletRL on the Toronto dataset, which differs by only a measly
∼0.1% – demonstrating that PathletRL is still competitive.
(Q4) Pathlet Length Distribution. We also analyze the length
distribution of the pathlets in our dictionaries. The trend is similar
for both datasets (Fig. 5 shows the pathlet length distribution, with
the 𝑦-axis in log scale). The PathletRL-Rnd has a decreasing #
for longer pathlets, which is intuitive as the random policy blindly
keeps & merges pathlets. It is harder to maintain longer pathlets
in this random probabilistic manner as pathlets that terminate
their growth are already considered “processed” and cannot grow
further. As a result, it is more rare to see higher-ordered pathlets
than shorter pathlets in PathletRL-Rnd’s PD. The rest of the other
RL models utilizing Dqn policy have longer-length pathlets as
expected (with more length-9 and 10 pathlets in the dictionary).
Our proposed PD can capture more of these higher-ordered pathlets
– indicating a smaller pathlet dictionary, as reflected by the results in
Table 3. Meanwhile, we can still observe a large number of length-1
pathlets, which may be due to a number of reasons. One could be
that some of the length-1 pathlets are still unprocessed (as a result
of early stopping caused by the various termination criteria in our
algorithm). It could also be that some of the length-1 processed
pathlets are unmerged due to the algorithm’s recommendation
based on the utility, or perhaps based on pathlets losing all neighbor

Figure 6: The % of evaluation trajectories reconstructable

from a sample set taken from extracted pathlet dictionaries.

pathlets to merge with. The latter case depicts a scenario for where a
length-1 processed pathlet 𝜌 may have lost all its neighbor pathlets
as a result of these neighbors merging amongst one another, leaving
no way for 𝜌 to merge with any of these formed merged pathlets.
(Q5) Partial Trajectory Reconstruction. See Fig. 6 for a plot that
displays the results of this experiment, where we determine how
much of the dictionary is adequate enough to reconstruct most of
our trajectories in our testing set. Here, we say that a trajectory
is reconstructable if its representability value 𝜇 ≥ 0.75 (i.e., 75%
of the trajectory can be represented by the PD). Anything less
would mean that the trajectory is not reconstructable due to an
excessive number of gaps. Ideally, we would like to take the top
𝑥% of the pathlets in the PD that are the most traversed by the
trajectories in the training set. However, we can further remove
the bias in the experiment by choosing instead a random sample of
𝑥 ∈ [10%, 20%, ..., 100%] pathlets in the extracted PD, and measuring
how much of the trajectories in the testing set are reconstructable
by this pathlet sample set. As shown in the results, by using around
half of the pathlets in PathletRL’s PD, a good ∼80% (∼85%) of the
trajectories in the Toronto (Rome) testing set can be reconstructed;
and by using the whole dictionary, almost all trajectories in the set
can be reconstructed. This shows that our proposed model is able to
extract a high-quality pathlet dictionary. Comparing this with our
ablation versions, they all follow a similar trend for both datasets –
i.e., the amount of trajectories that the dictionaries of the ablation
models can reconstruct is less than the amount that our proposed
PathletRL’s dictionary can do so. The worst being is PathletRL-
Rnd’s dictionary that can reconstruct up to only ∼50% (∼65%) of
the trajectories in Toronto (Rome) given the entire dictionary.
(Q6) Parameter Sensitivity Analysis. We then discuss how the
values of the four 𝛼 values (𝛼1, 𝛼2, 𝛼3, 𝛼4) affect the output PD’s
quality in terms of its four attributes: |S|, 𝜙 , 𝐿𝑡𝑟𝑎 𝑗 , 𝜇 respectively8.
There are four stacked plots, as seen in Fig. 7. The first one depicts
the changes to the PD’s |S| as we vary 𝛼1 = [0.0, 0.1, ..., 1.0] (while
keeping the other 𝛼 terms equal 𝛼2 = 𝛼3 = 𝛼4 =

1−𝛼1
3 ). We notice,

as expected, a decreasing trend; larger 𝛼1 values indicate higher
importance to a smaller dictionary size. By varying 𝛼2 and keeping
the other terms equal, we can also observe a decreasing trend;
higher 𝛼2 values imply a stronger emphasis on lower 𝜙 scores –
that is, lower average number of pathlets representing trajectories.
Then when term 𝛼3’s value is varied, while keeping other 𝛼 terms
the same, it also shows a trend that decreases as we increases 𝛼3.
The greater the 𝛼3 is, the more importance we put into keeping
8
Note: the goal here is not to find an optimal value for 𝛼𝑖 , but intends on showing the
trend of how |S | ,𝜙 ,𝐿𝑡𝑟𝑎𝑗 , 𝜇 changes with varying values of𝛼1 ,𝛼2 ,𝛼3 ,𝛼4 respectively.



PathletRL: Trajectory Pathlet Dictionary Construction
using Reinforcement Learning SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany

Figure 7: Parameter sensitivity experiment: the impact of 𝛼 ’s

on the quality of PathletRL’s pathlet dictionary

the trajectory loss low. Finally, varying 𝛼4 while keeping the other
𝛼 terms equal, shows an opposite trend than the other 𝛼 terms.
Here, we can observe that larger 𝛼4 values are indicative of greater
importance towards possessing higher representability values.

5 RELATEDWORK

Our research is related to (i) trajectory data mining, (ii) pathlet
mining, (iii) subtrajectory clustering, and (iv) deep learning for spa-
tiotemporal data. We cover below some of the most significant
efforts relevant to our work.
Trajectory Data Mining. Trajectory data mining has been an ac-
tive research direction for a long time [6, 15, 63]. This high interest
can largely be attributed to the rapid development and prominence
of geospatial technologies [10], location-based smart devices [40],
abundance of GPS-based applications [36], and generation of mas-
sive trajectory datasets [12]. The focus is on popular technical prob-
lems, including trajectory similarity [11] and trajectory clustering
[16]. Modeling trajectory data using graphs to address complex
trajectory mining tasks has also been a popular approach in recent
years. Example tasks include, but are not limited to similarity search
[11], recovery [9], node centrality computation [39], mining spa-
tiotemporal interactions [42, 43], learning semantic relationships
of geographic areas [27] and recommendations [50, 55].
Pathlet Mining. Pathlet mining focuses on finding patterns and
extracting knowledge of a small set of basic building blocks that can
represent a wide range of trajectories. One of the original works
in this direction is the work of Chen et al. [8], where they formu-
lated the problem of pathlet dictionary construction as an integer
programming problem with optimization constraints; they also
provided a solution based on dynamic programming. Zhou et al.
[64] designed a bag of segments representation for motion trajec-
tories and showed that the method is compact and expressive on
trajectory classification and similarity search tasks. Panagiotakis et
al. [35] proposed a method for finding representative subtrajecto-
ries through global voting, segmentation and sampling methods.
Wang et al. [53] solves the problem of finding top 𝑘 representa-
tive routes that cover as many trajectories as possible under some
budget constraint and distance threshold; they also proposed three
near-optimal solutions that can address the problem efficiently.
Subtrajectory Clustering. Pathlet mining is commonly framed
as a subtrajectory clustering problem. Lee et al. [20] proposed the

Traculus algorithm that partitions trajectories into line segments,
and then groups those partitions that lie in a similar dense re-
gion to form a cluster. Van Krevald et al. [48] designed a novel
measure for mining median trajectories, similar to the method of
route representative discovery, that serves as the cluster centroid
of (sub)trajectories. Agarwal et al. [1] gains motivation in their
pathlet cover method from the popular set cover algorithm. In all
these subtrajectory clustering methods, the cluster centroids are
seen as popular segments traversed by many trajectories and can
alternatively be seen as the pathlets.
Deep Learning for Spatiotemporal Data. In recent years, deep
learning methods have been proposed for learning representations
of spatiotemporal data [52]. Of particular interest are deep reinforce-
ment learning based methods that are often evaluated on agents
playing a specific game [46]. These methods have successfully
been adapted and shown promise in addressing several complex
trajectory-related problems, such as route planning [14], trajectory
simplification [54], and adaptive vehicle navigation problem [5].

6 CONCLUSIONS

Constructing trajectory pathlet dictionaries, or small sets of build-
ing blocks able to represent large numbers of trajectories, have
become an important problem due to a number of applications
such as route planning, travel time estimation, and trajectory com-
pression. This work offers a deep (reinforcement) learning solution
to the problem of interest, that can generate a dictionary that is
65.8% much smaller than the original dictionary, in contrast to non-
learning-based methods. Further, only half of the pathlets in the
proposed PathletRL’s dictionary is necessary to reconstruct 85% of
the original trajectory dataset; with baselines requiring the entirety
of its dictionary to reconstruct only 65% the trajectories. Moreover,
PathletRL also demonstrates a significant amount of memory sav-
ings by as much as ∼24K× in contrast with existing methods. This
is due to the initial amount of memory required to store the initial
pathlets of the dictionary, that was shown empirically and theoreti-
cally. The deep reinforcement learning component, representability
and pathlet weights are all important assets to the PathletRL, as
proven by the inferiority of its ablation variations.

REFERENCES

[1] P. K. Agarwal, K. Fox, K. Munagala, A. Nath, J. Pan, and E. Taylor. 2018. Subtra-
jectory Clustering: Models and Algorithms. In Proc. of the 37th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Sys. (PODS ’18). 75–87.

[2] F. Aleskerov, D. Bouyssou, and B. Monjardet. 2007. Utility Maximization, Choice
and Preference. Springer Berlin Heidelberg, Berlin, Heidelberg.

[3] G. Alix, N. Yanin, T. Pechlivanoglou, J. Li, F. Heidari, and M. Papagelis. 2022. A
Mobility-based Recommendation System for Mitigating the Risk of Infection
during Epidemics. In 2022 23rd IEEE Intl. Conf. on Mobile Data Mgt. (MDM). 292–5.

[4] M. Alsaeed, A. Agrawal, and M. Papagelis. 2023. Trajectory-User Linking using
Higher-order Mobility Flow Representations. In 2023 24th IEEE International
Conference on Mobile Data Management (MDM). 158–167.

[5] F. Arasteh, S. SheikhGarGar, andM. Papagelis. 2022. Network-Aware Multi-Agent
Reinforcement Learning for the Vehicle Navigation Problem. In Proc. of the 30th
Intl. Conf. on Adv. in Geographic Info. Sys. (ACM SIGSPATIAL ’22). Article 69.

[6] G. Atluri, A. Karpatne, and V. Kumar. Spatio-Temporal Data Mining: A Survey of
Problems and Methods. ACM Comp. Surveys 51, 4, Article 83 (Aug 2018).

[7] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi. 2014.
CRAWDAD Roma/taxi dataset. https://crawdad.org/roma/taxi/20140717.

[8] C. Chen, H. Su, Q. Huang, L. Zhang, and L. Guibas. 2013. Pathlet Learning for
Compressing and Planning Trajectories. In Proc. of the 21st ACM SIGSPATIAL
Intl. Conf. on Adv. in Geographic Info. Sys. (ACM SIGSPATIAL’13). 392—-5.

[9] Y. Chen, H. Zhang, W. Sun, and B. Zheng. 2022. RNTrajRec: Road Network
Enhanced Trajectory Recovery with Spatial-Temporal Transformer.

https://crawdad.org/roma/taxi/20140717


SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany Alix and Papagelis

[10] A. Datta. Seizing The Future: Geospatial Industry Technology Trends and Direc-
tions. GWPrime (Feb 2022).

[11] Z. Fang, Y. Du, X. Zhu, D. Hu, L. Chen, Y. Gao, and C. S. Jensen. 2022. Spatio-
Temporal Trajectory Similarity Learning in Road Networks. In Proc. of the 28th
ACM SIGKDD Conf. on Knowledge Discovery & Data Mining (ACM SIGKDD ’22).
347–56.

[12] A. Faraji, J. Li, G. Alix, M. Alsaeed, N. Yanin, A. Nadiri, and M. Papagelis. 2023.
Point2Hex: Higher-order Mobility Flow Data and Resources. In Proc. of the 31st
Intl. Conf. on Adv. in Geographic Info. Sys. (SIGSPATIAL ’23).

[13] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland,
and W. Dabney. 2020. Revisiting Fundamentals of Experience Replay. In Proc. of
the 37th Intl. Conf. on Machine Learning (ICML’20). JMLR, Article 287.

[14] Y. Geng, E. Liu, R. Wang, and Y. Liu. Deep Reinforcement Learning Based
Dynamic Route Planning for Minimizing Travel Time. CoRR (2020).

[15] A. Hamdi, K. Shaban, A. Erradi, A. Mohamed, S. K. Rumi, and F. D. Salim. Spa-
tiotemporal data mining: a survey on challenges and open problems. Artificial
Intelligence Review 55, 2 (Feb 2022), 1441–1488.

[16] N. Han, S. Qiao, K. Yue, J. Huang, Q. He, T. Tang, F. Huang, C. He, and C.-A. Yuan.
Algorithms for Trajectory Points Clustering in Location-Based Social Networks.
ACM Trans. Intell. Syst. Technol. 13, 3, Article 43 (mar 2022).

[17] Q. Han, Y. Lei, L. Zeng, G. He, L. Ye, and L. Qi. 2021. Research on Travel Time
Prediction of Multiple Bus Trips Based on MDARNN. In 2021 IEEE Intl. Intelligent
Transportation Sys. Conf. (ITSC). 3718–3725.

[18] Z. He, L. Tao, Z. Xie, and C. Xu. Discovering spatial interaction patterns of near
repeat crime by spatial association rules mining. Sci. Reports 10, 1 (Oct 2020).

[19] J. Kober and J. Peters. 2014. Reinforcement Learning in Robotics: A Survey. Springer
Intl. Publishing, Cham, 9–67.

[20] J.-G. Lee, J. Han, and K.-Y. Whang. 2007. Trajectory Clustering: A Partition-and-
Group Framework. In Proc. of the 2007 ACM SIGMOD Intl. Conf. on Mgt. of Data
(ACM SIGMOD ’07). 593–604.

[21] L. Li, R. Jiang, Z. He, X. M. Chen, and X. Zhou. Trajectory data-based traffic
flow studies: A revisit. Transportation Research Part C: Emerging Technologies 114
(2020), 225–240.

[22] M. Li, P. Tong, M. Li, Z. Jin, J. Huang, and X.-S. Hua. Traffic Flow Prediction with
Vehicle Trajectories. Proceedings of the AAAI Conference on Artificial Intelligence
35, 1 (May 2021), 294–302.

[23] T. Li, J. Gao, and X. Peng. 2021. Deep Learning for Spatiotemporal Modeling of
Urbanization. In Proc. of the 35th Conf. on Neural Info. Proc. Sys. (NeurIPS 2021).

[24] Y. Li, D. Gunopulos, C. Lu, and L. J. Guibas. Personalized Travel Time Prediction
Using a Small Number of Probe Vehicles. ACM Trans. Spatial Algorithms Syst. 5,
1, Article 4 (may 2019).

[25] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. 2009. Map-Matching
for Low-Sampling-Rate GPS Trajectories. In Proc. of the 17th ACM SIGSPATIAL
Intl. Conf. on Adv. in Geographic Info. Sys. (Seattle, Washington) (GIS ’09). Assoc.
for Comp. Machinery, New York, NY, USA, 352–361.

[26] K. McCormick. An Essay on the Origin of the Rational Utility Maximization
Hypothesis and a Suggested Modification. Eastern Eco. Journal 23 (’97), 17–30.

[27] S. Mehmood and M. Papagelis. 2020. Learning Semantic Relationships of Geo-
graphical Areas based on Trajectories. In 2020 21st IEEE Intl. Conf. on Mobile Data
Mgt. (MDM). 109–118.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. 2013. Playing Atari With Deep Reinforcement Learning. In NIPS
Deep Learning Workshop.

[29] J. Muckell, J.-H. Hwang, C. T. Lawson, and S. S. Ravi. 2010. Algorithms for
Compressing GPS Trajectory Data: An Empirical Evaluation. In Proc. of the 18th
SIGSPATIAL Intl. Conf. on Adv. in Geographic Info. Sys. (ACM GIS ’10). 402–405.

[30] A. Nematichari, T. Pechlivanoglou, and M. Papagelis. 2022. Evaluating and
Forecasting the Operational Performance of Road Intersections. In Proc. of the
30th Intl. Conf. on Adv. in Geographic Info. Sys. (ACM SIGSPATIAL ’22). Article 31.

[31] M. E. J. Newman. 2018. Networks (second edition ed.). Oxford University Press,
Oxford, United Kingdom; New York, NY, United States of America.

[32] P. Newson and J. Krumm. 2009. HiddenMarkovMapMatching through Noise and
Sparseness. In Proc. of the 17th ACM SIGSPATIAL Intl. Conf. on Adv. in Geographic
Info. Sys. (GIS ’09). 336–343.

[33] M. Nyhan, S. Grauwin, R. Britter, B. Misstear, A. McNabola, F. Laden, S. R. H. Bar-
rett, and C. Ratti. “Exposure Track”—The Impact of Mobile-Device-BasedMobility
Patterns on Quantifying Population Exposure to Air Pollution. Environmental
Science & Technology 50, 17 (2016), 9671–9681.

[34] P. J. Olver and C. Shakiban. 2018. Applied Linear Algebra (2nd ed. 2018 ed.).
Springer International Publishing: Imprint: Springer, Cham.

[35] C. Panagiotakis, N. Pelekis, I. Kopanakis, E. Ramasso, and Y. Theodoridis. Segmen-
tation and Sampling of Moving Object Trajectories Based on Representativeness.
IEEE Trans. on Knowledge and Data Eng. 24, 7 (2012), 1328–1343.

[36] M. K. Pandey, P. Srivastava, and G. Petropoulos. 2021. Chapter 21 - Future
pathway for research and emerging applications in GPS/GNSS. In GPS and GNSS
Technology in Geosciences. Elsevier, 429–438.

[37] T. Pechlivanoglou, G. Alix, N. Yanin, J. Li, F. Heidari, and M. Papagelis. 2022.
Microscopic Modeling of Spatiotemporal Epidemic Dynamics. In Proc. of the 3rd

ACM SIGSPATIAL Intl. Workshop on Spatial Comp. for Epidemiology (SpatialEpi
’22). 11–21.

[38] T. Pechlivanoglou, J. Li, J. Sun, F. Heidari, and M. Papagelis. Epidemic Spreading
in Trajectory Networks. Big Data Research 27 (2022).

[39] T. Pechlivanoglou and M. Papagelis. 2018. Fast and Accurate Mining of Node
Importance in Trajectory Networks. In 2018 IEEE Intl. Conf. on Big Data (Big
Data). 781–790.

[40] T. Ruth. Why Location Services and IoT are Leading the 5G Trends of 2022.
Quuppa (Sep 2022).

[41] S. Sankararaman, P. K. Agarwal, T. Mølhave, J. Pan, and A. P. Boedihardjo. 2013.
Model-Driven Matching and Segmentation of Trajectories. In Proc. of the 21st
ACM SIGSPATIAL Intl. Conf. on Adv. in Geographic Info. Sys. (Orlando, Florida)
(SIGSPATIAL’13). Assoc. for Comp. Machinery, New York, NY, USA, 234–43.

[42] A. Sawas, A. Abuolaim, M. Afifi, and M. Papagelis. 2018. Tensor Methods for
Group Pattern Discovery of Pedestrian Trajectories. In 19th IEEE Intl. Conf. on
Mobile Data Mgt. (MDM). 76–85.

[43] A. Sawas, A. Abuolaim, M. Afifi, and M. Papagelis. A versatile computational
framework for group pattern mining of pedestrian trajectories. GeoInformatica
23, 4 (Oct 2019), 501–531.

[44] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A
general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science 362, 6419 (2018), 1140–1144.

[45] A. Strzelecki. The Apple Mobility Trends Data in Human Mobility Patterns
during Restrictions and Prediction of COVID-19: A Systematic Review and Meta-
Analysis. Healthcare 10, 12 (2022).

[46] S.-H. Sun, T.-L. Wu, and J. J. Lim. 2020. Program Guided Agent. In Intl. Conf. on
Learning Representations.

[47] R. S. Sutton and A. G. Barto. 2018. Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA.

[48] M. van Kreveld and L. Wiratma. 2011. Median Trajectories Using Well-Visited
Regions and Shortest Paths. In Proc. of the 19th ACM SIGSPATIAL Intl. Conf. on
Adv. in Geographic Info. Sys. (GIS ’11). 241–250.

[49] M. van Otterlo andM.Wiering. 2012. Reinforcement Learning andMarkov Decision
Processes. Springer Berlin Heidelberg, Berlin, Heidelberg, 3–42.

[50] J. Wang, N. Wu, and W. Zhao. Personalized Route Recommendation With Neural
Network Enhanced Search Algorithm. IEEE Transactions on Knowledge & Data
Engineering 34, 12 (Dec 2022), 5910–5924.

[51] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, and X. Qin. Fast Large-Scale Trajectory
Clustering. Proc. VLDB Endow. 13, 1 (Sep 2019), 29–42.

[52] S. Wang, J. Cao, and P. Yu. Deep Learning for Spatio-Temporal Data Mining: A
Survey. IEEE Trans. on Knowledge & Data Eng. 34, 08 (Aug 2022), 3681–700.

[53] T. Wang, S. Huang, Z. Bao, J. S. Culpepper, and R. Arablouei. 2022. Representative
Routes Discovery from Massive Trajectories. In Proc. of the 28th ACM SIGKDD
Conf. on Knowledge Discovery and Data Mining (Washington DC, USA) (KDD
’22). Assoc. for Comp. Machinery, New York, NY, USA, 4059–69.

[54] Z. Wang, C. Long, and G. Cong. 2021. Trajectory Simplification with Reinforce-
ment Learning. In 2021 IEEE 37th Intl. Conf. on Data Eng. (ICDE). 684–695.

[55] Z. Wang, Y. Zhu, Q. Zhang, H. Liu, C. Wang, and T. Liu. Graph-Enhanced Spatial-
Temporal Network for Next POI Recommendation. ACM Trans. Knowl. Discov.
Data 16, 6, Article 104 (Jul 2022).

[56] J. Xu, J. Zhao, R. Zhou, C. Liu, P. Zhao, and L. Zhao. Predicting Destinations by a
Deep Learning based Approach. IEEE Trans. on Knowledge and Data Eng. 33, 2
(2021), 651–666.

[57] H. Xue, B. P. Voutharoja, and F. D. Salim. 2022. Leveraging Language Foundation
Models for Human Mobility Forecasting. In Proc. of the 30th Intl. Conf. on Adv. in
Geographic Info. Sys. (ACM SIGSPATIAL ’22). Article 90.

[58] R. K. Yadav, G. Kishor, Himanshu, and K. Kashyap. 2020. Comparative Analysis
of Route Planning Algorithms on Road Networks. In 2020 5th Intl. Conf. on Comm.
and Electronics Sys. (ICCES). 401–406.

[59] M. Yassin and E. Rachid. 2015. A survey of positioning techniques and location
based services in wireless networks. In 2015 IEEE Intl. Conf. on Signal Processing,
Informatics, Communication and Energy Systems (SPICES). 1–5.

[60] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun. 2010. An Interactive-Voting
Based Map Matching Algorithm. In 2010 11th Intl. Conf. on Mobile Data Mgt.
43–52.

[61] J. Zhao, J. Xu, R. Zhou, P. Zhao, C. Liu, and F. Zhu. 2018. On Prediction of User
Destination by Sub-Trajectory Understanding: A Deep Learning Based Approach.
In Proc. of the 27th ACM Intl. Conf. on Info. and Knowledge Mgt. (ACM CIKM 2018).
1413–1422.

[62] Y. Zhao, S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen, and K. Zheng. 2018. REST:
A Reference-Based Framework for Spatio-Temporal Trajectory Compression. In
Proc. of the 24th ACM SIGKDD Intl. Conf. on Knowledge Discovery Data Mining
(ACM SIGKDD ’18). 2797–2806.

[63] Y. Zheng. Trajectory Data Mining: An Overview. ACM Trans. Intell. Syst. Technol.
6, 3, Article 29 (May 2015).

[64] Y. Zhou and T. S. Huang. 2008. ‘Bag of segments’ for motion trajectory analysis.
In 2008 15th IEEE Intl. Conf. on Image Processing. 757–760.



PathletRL: Trajectory Pathlet Dictionary Construction
using Reinforcement Learning SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany

APPENDIX

A PATHLET DICTIONARY’S APPLICATIONS

Trajectory Compression. Compression is the process of reducing
the size of a trajectory while preserving its important spatiotempo-
ral features [29]; it is more commonly useful when there is a need
of transmitting or storing large trajectory datasets in much smaller,
more limited resources (e.g., mobile devices, wireless networks, etc.).
A common technique for trajectory compression involves sampling
points in trajectories that carry the most significant amount of
spatiotemporal information. With a pathlet dictionary, we are able
to capture the pathlets in a trajectory’s pathlet-based representa-
tion set that are most useful and could represent a large number of
trajectories in the dataset.

Route Planning. While navigation services and route planning
apps such as Google Maps9 and Apple Maps10 exist, they are not
necessarily accessible to users when online (internet) connection
is not available (e.g., network outages, poor wifi signals in remote
areas, etc.). As such, there is a need for accessing maps and loading
mobility data offline while at the same time efficiently answering
majority of user queries (for example, path recommendation from
Point 𝐴 to 𝐵). Pathlet dictionaries can be useful in this case.

Trajectory Prediction. Prediction and forecasting of trajectories is
important in several domains including transportation [21], urban
planning [23], and healthcare [37, 45]. Pathlets could be useful by
expressing trajectories as sequences of pathlets, predicting the next
pathlet(s) in the sequence and then concatenating these predicted
pathlets to form the predicted trajectories.

Anomaly Detection. Spotting outliers has been an active research
direction. One could use pathlets to detect trajectories that move or
behave anomalously by expressing each trajectory as their pathlet-
based representation set and then identifying which of those tra-
jectories has a pathlet-based representation set that deviates from
other trajectories.

Trajectory Similarity Search. The trajectory similarity search
task is an important problem of interest due to its numerous prac-
tical applications in domains such as traffic analysis [22], public
safety [18], and environmental conservation [33]. With pathlets, the
similarity of two trajectories can be calculated based on the cosine
similarity (or some other similarity metric) of their pathlet-based
representations.

B SPACE COMPLEXITY ANALYSIS

To analyze the space complexity expressed in terms of the 𝑛 number
of road segments on the road network, we can simply provide a
lower bound on this number. First, we consider the analysis for
top-down approaches. The following two facts would be useful
in this proof (we will bypass the proofs of these facts as they are
trivial; refer to linear algebra books for their complete proofs [34]).

Fact 1. Let 𝑎𝑖 𝑗 be the entry situated at the 𝑖th row and 𝑗th column
of an𝑚 ×𝑚 square matrix 𝐴. Moreover, let x be a column vector of

9http://maps.google.com/
10https://www.apple.com/maps/

ones that has dimension𝑚 × 1. Then the sum of all entries of 𝐴 is:
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑎𝑖 𝑗 = x⊤𝐴x (4)

Fact 2. For an𝑚×𝑚 square symmetric matrix𝐴 (i.e.,𝐴 = 𝐴⊤) with
𝜆𝑚𝑖𝑛 as its smallest eigenvalue, then the quadratic form x⊤𝐴x is
lower bounded by the squared 𝐿2-norm of x, for all ∀x ∈ R𝑚×1:

x⊤𝐴x ≥ 𝜆𝑚𝑖𝑛 | |x| |22 (5)

In other words, x⊤𝐴x ∈ Ω( | |x| |22)
Space Complexity Analysis. So nowwe focus firstly on the nodes
(road intersections) of the road network. If one was to construct
an adjacency matrix 𝐴 where entry 𝑎𝑖 𝑗 ∈ 𝐴 equals 1 if there is an
edge (or road segment) from 𝑖 to 𝑗 (or 𝑗 to 𝑖 as our road network
is undirected by assumption) and 0 otherwise, then 𝑎𝑖 𝑗 ∈ 𝐴ℓ deter-
mines the number of paths of length ℓ to traverse node 𝑖 to 𝑗 (or
vice-versa) on the road network represented by adjacency matrix
𝐴 [31]. Assuming the absence of self-loops, then the total number
of paths of length ℓ for any pair of nodes in the road network is
the sum of all entries in the upper diagonal (excluding the main
diagonal) of 𝐴ℓ . We express it as follows. Let 𝑄ℓ = 𝐴ℓ − D(𝐴ℓ ),
where D(𝐴) is the matrix that contains the diagonal entries of 𝐴
along its main diagonal and zeros elsewhere. And then the sum
of the upper diagonal entries of 𝑄ℓ is simply 1

2x
⊤𝑄ℓx, with x as

dim(𝐴) × 1 column of ones (the sum of entries is in line with Fact
1 above in Equation (4)). And then the half here is to avoid double
counting (i.e., the undirected graph from 𝑖 to 𝑗 is the same as 𝑗 to 𝑖
as a result of symmetry). So clearly, if we want all the pathlets of at
least length-1, then we can write it as follows:∑︁

ℓ∈Z+
x⊤𝑄ℓx≠0

1
2
x⊤𝑄ℓx (6)

To yield a lower bound on this summation with respect to the num-
ber of road segments in the road network (instead of the nodes/road
intersections), consider the smallest possible number of nodes for
𝑛 edges in the road network first. Each edge connects together
two nodes; as a result, there can be at least |V| = 𝑛 nodes (i.e.,
dim(𝐴) = 𝑛). Thus, in Equation (6), (assuming we have this least
possible number of nodes) then it turns out that the dim(𝑄ℓ ) = 𝑛

and dim(x) = 𝑛 × 1 as a result of dim(𝐴) = 𝑛.
Now, each of the terms in the summation of Equation (6) is

lower-bounded by Ω( | |x| |22) = Ω(𝑛) as a consequence of the Fact
2 in Equation (5). To see why Ω( | |x| |22) reduces to Ω(𝑛), first note
that x is a column vector of ones with dimension 𝑛 × 1. Therefore,
its squared 𝐿2-norm is:

(√
12 + 12 + ... + 12

)2
=

(√
𝑛
)2

= 𝑛. Note
however that the eigenvalue 𝜆𝑚𝑖𝑛 should not be relevant towards
the space complexity expressed in terms of the number of road
segments. However, such space analysis is only for one of the 𝑛
terms in the summation of Equation (6)11; thus the lower bound for
the number of pathlets of the top-down scheme is𝑛×Ω(𝑛) = Ω(𝑛2).

On the other hand, the proposed bottom-up method PathletRL,
which consumes less memory space to initially store the pathlets,
is more efficient with Θ(𝑛) memory space complexity. It is quite
11It can be noted that at the worst case, the longest pathlet length in the road network
is 𝑛; so that is why the summation can have up to 𝑛 terms

http://maps.google.com/
https://www.apple.com/maps/


SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany Alix and Papagelis

easier to analyze. Since we only consider length-1 edge-disjoint
pathlets, it is easy to see how ours simply relies exactly on the
number of segments in the road network – which happens to be
𝑛, and is therefore more space efficient compared to the top-down
approaches the requires at least Ω(𝑛2) amount of memory space.□

C MAP-MATCHING

Figure 8: An example of the map-matching procedure.

Map-matching is a common task that identifies the path on the
road an object has taken given a sequence of GPS locations [32]
(Fig. 8 provides an illustrative example). Ideally, we prefer highly
accurate map-matched data from GPS trajectory traces; however,
this task is itself involved and is outside the paper’s scope. Thus,
we rely on existing methods [25, 60] to handle map-matching.

D OTHER DEEP REINFORCEMENT LEARNING

POLICIES

The choice of Dqn method over others such as Actor-Critic (A2c)
and Policy-gradient is due to a number of reasons. For one, Dqns
are more sample efficient than Policy-gradient methods because
learning happens using an experience replay buffer rather than
learning from data collected with the current policy. Moreover,
with small action spaces, Dqn’s are more stable and more efficient
than A2c methods; a separate neural network computes (approxi-
mates) the target 𝑄-values, which can reduce the variance in these
estimates. In addition, implementing Dqns is more straightforward
compared to Actor-critic and Policy-gradient methods that tend
to be more complex in terms of architectures and hyperparameter
tuning. This makes them easier to employ in real-world settings.

E DATASET STATISTICS

Feature Toronto Rome

r o
ad
m
ap # nodes 1.9K 7.5K

# edges / initial pathlets 2.5K 15.4K

tr
aj
e c
to
ri
es Trajectory type realistic synthetic real world

Object cars taxis
# Total trajectories 169K 3.8M

Table 4: Dataset attributes

F PRIVACY AND ETHICS

Our proposed methodology makes use of real-world trajectory
datasets in the experiments that could potentially raise concerns
about the individual (vehicle taxi cab) privacy and the potential for
re-identification of such individuals. Therefore, to ensure protec-
tion of privacy and ethical considerations, all datasets used in our
evaluation have been anonymized. Such datasets are derived from
publicly-available sources, are publicly available, and are free of use
for the intention of research purposes as outlined by their curators.
In addition, all terms and conditions of use have been followed,
with proper attribution and citation of works.

G IMPLEMENTATION DETAILS

Machine Specifications. The models have been implemented
using Python 3.10 and an Intel Core i7-9700, 3.00GHz CPU, 62GB
RAM and a GeForce RTX 2800 8GB GPU.
The RL Implementation. We implemented our deep reinforce-
ment learning architecture using the tf-agents12 package, a Tensor-
flow-based library designed specifically for implementing RL meth-
ods.

H THE CHOICE OF BASELINES

While there have been a number of considerable baseline methods
[35, 53, 64] that can be used to compare PathletRL with, there are
some reasons we decided to not do so. Firstly, Wang et al. [53] fo-
cuses on route representativeness discovery which is a completely
different task than ours. Theirs, including Panagiotakis et al. [35]
use a representativeness criterion that is not applicable to our case.
Zhou et al. [64] moreover focuses on motion analysis which is a sub-
stantially different setting and task. This is in contrast to Chen et al.
[8] and Agarwal et al. [1], where we have opted for their baselines
methods due to a number of reasons. The former is the original and
most representative work on pathlet dictionary construction, while
the latter is the most representative/newest method on subtrajec-
tory clustering that frames the pathlet dictionary construction as a
subtrajectory clustering task. Both of these baselines also do not
rely on learning-based methods, compared to our proposed model
where we show the importance of deep learning.

As an aside, it is important to note that the technical problem of
trajectory pathlet dictionary construction is novel and state-of-the-
art methods are originating from the original work of Chen et al.
[8]. We revisit the problem with a RL-based approach and consider
additional constraints (such as edge-disjointness in pathlets and
the 𝑘-order constraint).

12https://www.tensorflow.org/agents

https://www.tensorflow.org/agents

	Abstract
	1 Introduction
	2 Preliminaries & Problem Definition
	2.1 Primary Definitions and Notations
	2.2 Novel Trajectory Metrics
	2.3 Problem Definition

	3 Methodology
	3.1 Extracting Candidate Pathlets
	3.2 Reinforcement Learning Framework

	4 Evaluation
	4.1 Datasets
	4.2 Experimental Parameters
	4.3 Baselines
	4.4 Evaluation Metrics
	4.5 Results and Discussion

	5 Related Work
	6 Conclusions
	References
	A Pathlet Dictionary's Applications
	B Space Complexity Analysis
	C Map-Matching
	D Other Deep Reinforcement Learning Policies
	E Dataset Statistics
	F Privacy and Ethics
	G Implementation Details
	H The Choice of Baselines

