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ABSTRACT
Road intersections represent one of the most complex configu-

rations encountered when traversing road networks. It is there-

fore of vital importance to improve their operational performance,

as that can significantly contribute towards the efficiency of the

whole transport network. Traditional approaches to improve the

efficiency of intersections are based on analysis of static data or

expert opinions. However, due to the advancements on Vehicle-to-

Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication

technologies, it is possible to enhance safety and improve road in-

tersection efficiency by continuously monitoring traffic conditions

and enabling situational awareness of vehicle drivers. Towards this

end, we design, develop and evaluate a system for evaluating and

forecasting the operational performance of road intersections by

mining streams of V2I data. Our system makes use of graph mining

and trajectory data mining methods to continuously evaluate a set

of well-defined measures of effectiveness (MOEs) for traffic opera-

tions at different levels of road network abstraction. In addition, the

system enables interactive analysis and exploration of the various

MOEs. The system architecture and methods are general and can

be used in various settings requiring continuous monitoring and/or

forecasting of the road network state.

CCS CONCEPTS
• Computing methodologies→Machine learning; Model de-
velopment and analysis; Simulation types and techniques; • Applied
computing → Transportation; Forecasting; • Mathematics of
computing → Probabilistic inference problems.
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Figure 1: Illustration of edges, junctions and lanes forming
a road intersection. Our system evaluates and forecasts the
operational performance of road intersections by mining
streams of trajectory data. Metrics are based on well-defined
measures of effectiveness (MOEs) for traffic operations.
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1 INTRODUCTION
Motivation. Traffic congestion describes a situation on transport

networks that occurs when demand approaches the capacity of

a road (or of the intersections along the road). It is characterized

by slower speeds, longer trip times, and increased vehicle queues

and is associated to significant social, economic and environmental

costs. Road intersections represent one of the most complex config-

urations encountered when traversing road networks and a high

percentage of accidents occur at these locations. It is therefore of

vital importance to improve their operational performance, as that

can significantly contribute towards the efficiency of the whole

transport network. An improved road intersection monitoring ser-

vice is of vital importance and has the premise of: (i) increasing the
safety and efficiency of road intersections by enabling situational

awareness of vehicle drivers, and (ii) enabling a more data-driven

decision making by informing policy makers of hard to obtain, but

critical road intersection analytics data.

Limitations and our approach. Traditional approaches to im-

prove the efficiency of intersections are based on analysis of static

https://doi.org/10.1145/3557915.3560965
https://doi.org/10.1145/3557915.3560965
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Figure 2: Illustration of the high-level system architecture.

data or expert opinions. However, today’s vehicles are no longer

stand-alone transportation means. Due to the advancements on

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) commu-

nication technologies it is possible to enhance safety and improve

road intersection efficiency by continuously monitoring traffic in-

formation and enabling situational awareness of vehicle drivers.

Towards this end, we designed and developed a system that adopts

a data-driven approach on evaluating the operational performance

of road intersections by monitoring and forecasting metrics of daily

traffic flow that could identify critical road conditions.

Our approach is based on first defining road segments, the small-

est granularity of a road unit for which metrics are meaningful. In

particular, every road intersection consists of a number of road seg-

ments. Then, for each road segment, we have identified a number

of measures of effectiveness (MOEs) that can be used to determine

its performance, based on industry standards. Once MOEs for each

road segment are computed, we perform aggregation at multiple

higher levels of abstraction to determine the performance of a road
direction (set of continuous road segments in a direction) and the
road intersection as a whole (see Fig. 1). MOEs for each road intersec-

tion are reported in a dashboard (see Fig. 6 (a)). Critical components

of the system have been ported and tested by our industrial partner

for production. So, while there is no direct user base at the moment,

it is designed and deployed as a more full fledged system to serve

real needs of the industrial partner’s clients/customers.

Contributions. We list below the major contributions:

• We introduce the problem of evaluating the operational per-
formance of a road intersection in the road network.

• We propose a novel data-driven method for addressing the

problem based on graph theory and data stream mining.

Complex road intersections are efficiently represented as

graphs, while measures of effectiveness (MOEs) are com-

puted in real-time using the streaming model.

• We design methods for network-level aggregation of MOEs

that are collected at edge-level.

• We design realistic traffic data generation tool for evaluating

the time series models.

• We propose a method for forecasting the operational perfor-

mance of a road intersection in the future that is based on a

structural time series machine learning model.

• We conduct a comprehensive empirical study on both syn-

thetic and realistic road networks to evaluate the proposed

method against sensible baselines.

Organization. The remainder of the paper is organized as follows.

Section 2 provides preliminaries and formally defines the prob-

lem of interest and engineering challenges. Section 3 describes the

system architecture and its components. Section 4 discusses our

experimental evaluation. The related work is discussed in Section

5. We conclude in Section 6.

2 PRELIMINARIES AND PROBLEM
DEFINITION

In this section, we introduce notation and preliminaries of the

problem of interest, as well as formal problem definitions.

Definition 1 (Road network). The road network can be mod-

eled as a directed multigraph (multidigraph), where edges have

their own identity. This means that edges are primitive entities

(just like nodes) and that when multiple edges connect two nodes,

these are different edges. Formally, we define a road network as a

multidigraph 𝐺 := (V, E, 𝑠, 𝑡), where:
• V is a set of nodes that represent junctions of the road

network. A junction typically has two ormore edges adjacent

to it or a single adjacent edge (i.e., representing an edge

entering or exiting a junction); they maintain right-of-way

information (e.g., intersections, lane splits, sharp turns, etc.).
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(a) a road network (OpenStreetMap) (b) extracted network (NetEdit) (c) graph representation of the network

Figure 3: Road network extraction and graph representation.

• E is a set of edges representing a connection between two

junctions; they maintain shape information (e.g. one-way

street, one direction of highway segment).

• Two functions: a function 𝑠 : E → V assigning the source
node of the edge, and another function 𝑡 : E → V assigning

the target node of the edge.

As 𝐺 is a multigraph, there can be multiple edges connecting two

nodes. Functions 𝑠 and 𝑡 are used to define these edges. In the road

network these represent road lanes that maintain speed and length

information (see an example in Fig. 1).

Definition 2 (Road intersection). A road intersection is defined

as a node 𝑣 ∈ V of the road network 𝐺 := (V, E, 𝑠, 𝑡), with a node

degree 𝑑𝑣 greater than two (𝑑𝑣 > 2) (see Fig. 1).

Definition 3 (Measures of effectiveness). We briefly introduce

the measures of effectiveness (MOEs) that our system evaluates

and monitors in real-time and can be used to assess the operational

performance of the road network:

• Capacity (#vehicles): The number of vehicles that can

exist in-system.

• Throughput (#vehicles/sec): The number of vehicles

passed through in a time unit.

• Delay (sec): The additional time that vehicles going through

experienced compared to ideal free-flow time.

• Mean system speed (meters/sec): The average speed of

vehicles in-system.

• Travel Time Index (TTI): An index defined as the average
travel time divided by the free-flow travel time. The
higher the TTI the larger the congestion at this part of the

road network.

These MOEs are designed to help the domain experts and decision

makers rapidly assess the state of the road network system and

identify key intersections that need improvements.

Problem definition. Let a road network 𝐺 := (V, E, 𝑠, 𝑡), an ob-

servation time period [0,𝑇 ], and a set of trajectories T = {𝐶𝑖 },
representing all instances of vehicles that have been in 𝐺 during

[0,𝑇 ], where 𝐶𝑖 = {(𝑡𝑖 , 𝑒)} is a registry of vehicles found at edge

𝑒 ∈ E at time 𝑡𝑖 ∈ [0,𝑇 ]. Now, given a road intersection 𝑣 ∈ V of

the road network 𝐺 and T , we want to:

(i) compute the TTI of the intersection during [0,𝑇 ];

(ii) forecast the TTI of the intersection for the period [𝑇,𝑇 + Δ],
where Δ > 0.

Note that (i) describes a real-time data analytics problem (stream

analytics), while (ii) describes a prediction problem.

3 SYSTEM ARCHITECTURE
In this section, we provide an overview of the system that allows

to evaluate and forecast the operational performance of road inter-

sections. The complete process is depicted in the diagram of Fig. 2

and includes four main components.

(A) Synthetic traffic flow data generation. This component

is responsible for generating realistic synthetic traffic flow

data for our setting. Traffic flow data consists of (i) the road
network, and (ii) traffic data for a period of time.

(B) Road networkMOEs evaluation. Given the (road network

and traffic) data as input, this component is responsible for

computing the measures of effectiveness (MOEs) of any road

intersection at different levels of abstraction, including edge-
level and higher-levelMOEs.

(C) Prediction model. Given the computed MOEs as input, this

component is responsible for forecasting the operational

performance of any road intersection in the near future, by

employing a prediction model.

(D) Dashboard. This component is responsible for visualization

of the road network, as well as the MOE real-time analytics

and forecasting (dashboard). It also allows for interactive

exploration of the various metrics for different road network

abstractions (i.e., road segment, road direction, road inter-

section).

We elaborate on these components in the next paragraphs.

3.1 Synthetic Traffic Flow Data Generation
The objective of the synthetic data generator is to provide realistic

traffic flow data for a given urban area. Traffic flow data generation

requires access to a road network and information about the traffic

over it as a function of time. We rely on the Simulation of Urban

MObility (SUMO
1
) package for simulating traffic flow data. SUMO

is an open source, portable, microscopic and continuous multi-

modal traffic simulation package designed to handle large networks.

1
https://www.eclipse.org/sumo/

https://www.eclipse.org/sumo/
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SUMO also supports tools for specific tasks such as route finding,

visualization, network import and emission calculation.

3.1.1 Road Network Extraction. In order to generate traffic flow

data of an urban area, we need to extract the road network map

of that area. For that purpose, we use the OpenStreetMap (OSM)

platform. OpenStreetMap
2
is a collaborative (crowdsourced) project

that provides geodata underlying maps of the world. An example

map extracted from OpenStreetMap can be seen in Fig. 3(a). Once

a road network’s geodata and meta information is extracted, we

use NetEdit to obtain a simplified abstraction of it. NetEdit
3
is a

visual network editor tool, included with SUMO, and it can be used

to create customized road networks from scratch or to modify an

existing one. An example road network after editing is shown in

Fig. 3(b).

Graph representation of a road network. To work with the road

network, an efficient data structure representation of it is required.

Recall that in our system, we model a road network as a directed

multigraph (multidigraph) 𝐺 := (V, E, 𝑠, 𝑡). In this model, nodes

represent junctions, edges represent links between junctions, and

each edge has its own identity, defined by functions 𝑠 and 𝑡 that

assign the source and target node of the edge. In practice, each edge

represents a road lane. An example graph of a road network can be

seen in Fig. 3(c).

3.1.2 Traffic Data Generation. Traffic data provides information

about the speed with which vehicles travel road segments over time.

It is important in network analysis because traffic affects travel

times. Obtaining real-world traffic data is challenging, mainly due

to privacy concerns. We therefore had to resort to simulated traffic

data for evaluating our system. SUMO has a comprehensive set

of scenario-creation tools, where given a road network, one can

configure a traffic scenario, run it, and visualize it in the SUMO-

gui. By default, simulations in SUMO are randomized. However,

random traffic exhibits no biases/patterns and it appears as if all

destinations (edges or intersections) are equally important and any

random prediction model would perform equally well as a more

sophisticated time series model. This is problematic for our setting,

since we would like to learn interesting patterns of traffic in the

road network and forecast the operational performance of road

intersections in the future. To address this issue, we had to resort to

a tool within SUMO, called Activitygen
4
that can be parameterized

to generate custom traffic data and it allows to generate more

realistic traffic scenarios that include common traffic patterns (e.g.,

more congestion during rush hours, etc.). The output of Activitygen

is a file in FCD format.

Activitygen. Activitygen generates demand from a description of

the population in the network. It uses a simple activity-based traffic

model, and supports going to work, school, park either by foot, a

bike, a car, or a bus. Cars may have their start or stop locations

outside the map. SUMO also handles all routing in an ad-hoc way,

based on the current network status. Activitygen takes as input a

configuration file that provides information about the population

2
urlhttps://www.openstreetmap.org/

3
https://sumo.dlr.de/docs/Netedit/index.html

4
https://sumo.dlr.de/docs/activitygen.html

(a) micro-level (b) meso-level (c) macro-level

Figure 4: Different levels of system abstraction.

distribution inside the given network (the age ranges in the popula-

tion, where they work, go to school, go for hobbies, and so on) and

generate trips. Also the city gates for incoming and outgoing cars

need to to be specified. Based on the estimated places of work and

study, and the population distribution, a real world scenario is run

in the network. For instance, people wake up, go to work, come

back and do some random chores; they go to schools and come

back home based on the hours specified, and so on. Once all trips

are generated, they are given to SUMO for simulation; an output

file in FCD format is created, which is explained in the next section.

FCD output explanation. This file contains the traffic flow data

that we need as input for the current work. It starts from time step

0 and goes on until the simulation has ended. The simulation time

increases in increments/steps of one (1), representing one second

in real world. Each second can be associated with several items

containing people, cars, buses, and bikes. Since we focus on cars

in this work, the only elements related to our work are the cars.

Each car element has the following features: id, 𝑥 , 𝑦, angle, speed,
position, and lane. With information about the position of every car

in the network at every second, we have realistic traffic flow data

in the provided road network.

3.2 Road Network MOEs Evaluation
In Section 2 we formally defined theMOEs that are monitored in our

system. These MOEs are primarily defined at the level of a single

road segment (edge). However, it is possible to define higher levels

of system abstractions that include more complex road network

structures (see Fig. 4). For example, Fig. 4(a) depicts a micro-level
system (a single road segment), Fig. 4(b) ameso-level system (a single

intersection), and Fig. 4(c) a macro-level system (an entire highway

including multiple intersections). Our system can accommodate

monitoring of MOEs at different levels of system abstraction. We

elaborate below how MOEs are computed for these cases.

3.2.1 Edge-level MOE Evaluation. Traffic flow data is processed

in a temporal order (for the observation time period [0,𝑇 ]) and
MOEs are computed in a pseudo-streaming fashion for each single

road segment (edge) as a function of time. In particular, for each

edge we evaluate the capacity of the edge (capacity), the number

of vehicles passed (throughput), the speed of the vehicle (mean
system speed), and the delay of the vehicles (delay). We also

compute the travel time index TTI for each edge. At the end, for

each edge, each MOE defined in Section 2 is represented as a time

series, a sequence of data points occurring in successive order in

[0,𝑇 ].

https://sumo.dlr.de/docs/Netedit/index.html
https://sumo.dlr.de/docs/activitygen.html
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3.2.2 Network-levelMOE Evaluation. Now that all edge-levelMOEs

are computed, we can evaluate MOEs for higher-level system ab-

stractions or otherwise network-level MOEs. A higher-level system

abstraction is a more complex system that includes multiple junc-

tions and edges. Formally, given the multidigraph𝐺 := (V, E, 𝑠, 𝑡)
we define a system abstraction as a subgraph 𝐺 ′

:= (V′, E′, 𝑠, 𝑡)
formed from a subset of the vertices and edges of𝐺 , soV′ ⊆ V and

E′ ⊆ E, respectively, such that 𝐺 ′
is connected. 𝐺 ′

is connected

if every pair of vertices in 𝐺 ′
is connected, or otherwise there is a

path between every pair of vertices.

Now given a subgraph𝐺 ′
:= (V′, E′, 𝑠, 𝑡) representing a higher-

level system abstraction, we can compute the network-level MOEs

by aggregating edge-level MOEs of all edges E′
belonging to the

subgraph 𝐺 ′
. Specifically, the capacity would be the sum of the

capacity values of all edges. For computing the throughput, delay,
mean system speed and TTI, we consider the union of all the in-

coming and outgoing vehicles and all the vehicles inside the custom

system and assume they belong on a single edge. Then, MOEs are

defined for that edge. For example, if we want to compute the MOEs

of a specific intersection, we first need to define a subsystem for

each possible road intersection direction; a road intersection direc-

tion is a subgraph (representing a path) connecting an incoming

edge to an outgoing edge of the intersection. Then, MOEs of each

subsystem will need to be combined to provide the MOEs for the

whole intersection.

3.3 Prediction Model
An important feature of our system is the ability to forecast the

operational performance of a road intersection in the near future.

Out of all the MOEs evaluated, the TTI is the most comprehensive

one, we therefore focus on designing and evaluating predictive

models for that measure. As the continuous TTI computation rep-

resents a time series, the prediction problem reduces to that of time

series forecasting. Below, we first elaborate on time series smoothing
based on amoving average technique. Then, we discuss the proposed
prediction model based on structural time series.

3.3.1 Time Series Smoothing. The time series of the TTI measure

is characterized by short-term fluctuations, represented by altering

rising and falling values. It is easy to see why this is the case in an in-

tersection with a traffic light. When the light turns red, the vehicles

stop moving, while when it turns green they start moving and/or

traversing the intersection without delays. A common technique

for smoothing the time series fluctuations is the “moving average”

model. A moving average smooths a series by consolidating several

single data points into longer units of time by taking their average.

The formula of a moving average is as follows:

−
𝑦𝑡 =

𝑦𝑡 + 𝑦𝑡−1 + ... + 𝑦𝑡−𝑤−1
𝑤

(1)

where 𝑦 is the variable, 𝑡 is the current time step, and𝑤 is the size

of the the span (or window) of the moving average, controlling

the number of time steps contributing to the average. The larger

the𝑤 , the smoother the series become. In our setting, where each

time step represents five (5) minutes, we set𝑤 = 6; that reduces the

fluctuations in the time series as each data point is now representing

a 30 minute time interval. An illustration of time series smoothing

using a moving average technique is shown in Fig. 7.

Figure 5: Structural time series decomposition.

3.3.2 Structural Time Series. Although forecasts of future happen-

ings are essentially uncertain, forecasting is an important aspect

of long-term planning. Predicting time series methods can be used

to infer the potential influence of a feature launch or any other

intervention on customer engagement measurements [4], to ex-

tract the current value of challenging-to-observe quantities like

the rate of unemployment from more available datasets [7], and

in order to identify anomalies in time series data. In our system,

we have designed and developed structural time series models [12]

for predicting the TTI of a road intersection in the near future. A

structural time series (STS) model represents a time series as the

sum of several simple components as in Eq. (2).

𝑓 (𝑡) = 𝑓1 (𝑡) + 𝑓2 (𝑡) + ... + 𝑓𝑛 (𝑡) + Y; Y ∼ 𝑁 (0, 𝜎2) (2)

Each component is a time series regulated by a specific structural

assumption. Structured time series can typically provide good pro-

jections by allowing modellers to include assumptions about the

processes generating the data. We can interpret the model’s assump-

tions about prediction by visualising the structural decomposition

of historical data and future forecasts. Furthermore, structural time

series models employ a probabilistic formulation that handles miss-

ing data naturally and provide a formal measurement of uncertainty.

Our model, considers the following decomposed components,

also shown in Fig. 5 for a more clear intuition:

• seasonality: A flexible periodic function is required to en-

code arbitrary periodic patterns. The Fourier series can be

used to approximate any periodic function. A Fourier series

is a weighted combination of sine and cosine terms that in-

crease in frequency. The required amount of Fourier terms

for a component can be determined by performing a brute

hyper-parameter search to get the optimal performance. We

are using two seasonal components in this work: the hour-
of-day effect and the day-of-week effect.
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(a) Interactive exploration of a network. (b) MOE visual analytics.

Figure 6: Dashboard: Monitoring, analysis and interactive exploration of road intersections.

• external regressors: The prediction is not solely depen-

dent on time, but also on the values of additional regressors.

the TTIs of the close-by edges that have correlations with the
TTI of the whole intersection can be used with a one week

lag because of the seasonal attribute of the time series. These

additional covariates can be included via a linear regression

model.

• noise: An autoregressive component is used to model any

unexplained residual effects. This componentmaintains bounded

variance over time, and can be used for modeling time series

with a level or slope that evolves according to a random walk

or other processes.

We modeled time series as a sum of local linear trend, seasonal,

linear regression, and autoregressivemodels. Then, we used Kalman

filter algorithm [36] and variational inference technique [22] based

on the training data and the structural model to learn the model

parameters and make predictions. For simplicity we only take the

local linear trend in consideration and explain the next steps. The

other parts of the model can be added to the system accordingly.

Here are the steps we took to perform this operation:

(1) Local linear trend. We defined the local linear trend model

as a parameterized linear dynamical system.

(2) Likelihood calculation. The likelihood p(y|z) was then cal-

culated using Gaussian linear transformation and the Kalman

filter technique.

(3) Posterior approximation. Using a distribution q(z), we em-

ployed variational inference to estimate the posterior p(z|y).

The variational distribution with variational parameters is

represented by q(z).

(4) Probability density transformation. We used probability

density transformation to ensure that p(z|y) and q(z) had the

same variable domains.

(5) PDFdistanceminimization. Tominimise the KL-divergence

between q(z) and p(z|y), we employed ELBO(q(z)) as the op-

timisation target. The optimisation algorithm is gradient

descent.

(6) Sample average. To estimate the integration inside formu-

lation of ELBO(q(z), we used sample average. The samples

are drawn from the q(z) distribution.

(7) Reparameterization approach. We used the reparameteri-

zation approach to create q(z) samples from simpler distribu-

tion samples. This simplified distribution is not dependent

on the parameters that we are optimising. Gradient descent

can proceed in this manner.

(8) Predicting the future.With having the parameters of Kalman

filter in hand, we run Kalman filter and get values for the

next timesteps.

More technical details can be found in Appendix A.

3.4 Dashboard
A key feature of our system is the design of a dashboard that pro-
vides visual analytics of the operational performance of a road net-

work. In particular, the user interface provides at-a-glance views of

the edge-level and network-level MOEs of the road network repre-

sented as time series. An illustration of the dashboard is shown in

Fig. 6 (a). In the left pane, one can select the network to be analyzed,

and setup the parameters of the simulation. In the top-right pane,

there is a visual of the entire network. In the bottom-right pane,

there is a breakdown of the different system abstraction levels that

have been automatically identified. These include all edges, paths

representing road intersection directions, and custom networks.

The system also allows for interactive exploration of the various

system abstractions. Once a system (edge, path, or network) has

been selected the results of the analysis are presented. An illus-

tration can be seen in Fig. 6 (b). The top-left pane has options for

showing the MOEs. Identified systems are shown at the bottom-left

pane, while at the bottom-right pane, the MOEs of a selected system

are depicted.

4 EXPERIMENTAL EVALUATION
In this section, we discuss the evaluation of the forecasting com-

ponent of the system. We first provide information about the data
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used, the evaluation metric and the sensible baseline methods eval-

uated. Finally, we report the results and discuss the implications

for our proposed method.

4.1 Data
We need data of all the traffic data in an intersection for around

two month. Because there is no public data that gives that to us and

the conditions don’t allow us to gather such data, we decided to

synthesize the data. To evaluate the forecasting models, we employ

a two-month (9 weeks) synthetic traffic flow dataset using the

data generator described in Section 3 and the map of Fig. 3(a); we

focus on the road intersection indicated with a black brush. The

total population inside the map network is around 10, 000. The

data is split into a training dataset (eight (8) weeks) and a testing

dataset (one (1) week). Fig. 7 demonstrates the time series of the

TTI measure and the effect of the smoothing based on the moving

average technique. Fig. 8 shows the prediction against the ground

truth; the orange shading is showing the standard deviation of the

uncertainty. As can be seen in Fig. 9, the model has detected an

hour-of-day effect and a quite smaller day-of-week effect, as well
as an external regressor. The autoregressive process is responsible

for the majority of the predictive uncertainty, which is based on

its estimate of the unmodeled (residual) variance in the observed

series.

4.2 Evaluation Metric
While there are many metrics for evaluating the accuracy of a

prediction, not all of them are adequate for time series data. That

is because of the chronological dependency amongst samples in

the time series. For instance, standard cross-validation, the most

commonly used method for evaluating prediction models, is not

adequate for time series prediction. However, it can be adjusted so

it can be applied to time series models as well [5]. In the standard

version, say a 5-fold cross validation means the dataset is split into

5 parts and in each iteration one part is held out as a test set. An

alternative version of cross validation [5] that is compatible with

the time series is depicted in Fig. 10. In this version, for a 5-fold

cross validation, the dataset is split into 6 parts. Then at the 𝑛-th

iteration the union of the first 𝑛 parts is used as the training set and

the next part as the test set. So, there will be 5 errors (one for each

part) and their average is reported as the model’s performance. As

a measure of error, we employ the mean absolute error (MAE)[2].

This is the easiest to calculate and interpret, and it is defined as

follows.

𝑀𝐴𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (3)

where 𝑦𝑖 is the prediction and 𝑦𝑖 the true value.

4.3 Methods
The following sensible methods have been evaluated:

• Naive: In a naive forecaster, the mean of all values corre-

sponding to a time point in all the previous seasons will be

forecasted for each point in the future season.

Table 1: Accuracy performance of the forecasting models.

Naive AutoArima PolyTrend ExpSm Prophet STS (ours)

1.24 1.22 1.25 2.25 1.19 0.66

• AutoARIMA: An ARIMA is an autoregressive integrated

moving average. An Auto ARIMA model performs differenc-

ing tests to establish the order of differencing.

• PolyTrend: This model forecasts time series data with a 3rd

degree polynomial trend.

• ExpSm: An exponential smoothing model where a prediction

is a weighted average of past observations; it utilises an

exponentially decreasing weight for past data.

• Prophet: Prophet is a procedure for forecasting time series

data based on an additive model where non-linear trends are

fit with seasonality.

• STS (ours): Our proposed method based on structural time

series, as described in Section 3.3.

4.4 Results
The results of the evaluation of the different forecasting models

are shown in Table 1 and visualized for clarity in Fig. 11. Our

structural time series model (STS) outperforms all the other sensible

baseline time series forecasting models. Large fluctuations of the

MOE time series data points cause many prediction models to

predict a constant line that tries to fit the average MOE value in

the training data. On the other hand, the structural time series

model is able to better capture the data dynamics and is able to

provide more accurate results. We have also experimented with

other intersections with smaller datasets (shorter periods) and the

behavior was consistent. We reported only on the larger experiment

with one intersection.

5 RELATEDWORK
Our work is mostly related to traffic generation and the problem of

travel time estimation and it also deals with trajectory mining. One
of the most important topics in traffic management is travel time

estimation. In this section, we try to review the literature about

data generation and travel time prediction and we introduce some

works around trajectory mining.

5.1 Traffic Generation
Traffic generation allows to simulate commuting scenarios and pro-

vides enough information to study traffic related problems. Tech-

niques for traffic generation can be organized into two categories:

data simulation and data augmentation.

5.1.1 Data Simulation. The majority of researchers are interested

in the platform construction of transportation settings. They use the

Bayes method to compute similar data distributions. For instance,

a simulator is presented in [14] to assist in the preparation and

execution of traffic scenario simulation, which involves a network,

demand, and traffic generation. Similarly, Lon et al. [31] created a

specialized framework for testing pickup-and-delivery algorithms.

Adnan et al. [1] created a simulator to simulate millions of agents
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Figure 7: The effect of smoothing on time series data.

Figure 8: The prediction for the first day of the ninth week.

Figure 9: Effective components decomposition.

through a wide variety of mobility decisions. The simulator pro-

posed in [20] is tailored to ridesharing by incorporating elements

and procedures popular to ridesharing algorithms. Based on the link

among cellular data and traffic condition, a simulation approach is

provided that uses cellular data to detect road congestion on urban

arterials in [15]. The notions of a Markov random walk, which

outlines the movement of a single car, and Markov traffic, which

characterizes the traffic on a road network are introduced in [3].

5.1.2 Data Augmentation. Another approach looks on how to pro-

duce individual data to solve estimation problems. Wang et al. [33],

for example, created routes to predict the travel time from an ori-

gin to a destination. They use the kNN method to find the nearest

historical path. Song et al. [28] used GAN (generative adversarial



Evaluating and Forecasting the Operational
Performance of Road Intersections SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

Figure 10: Time series cross-validation method.

networks) to create human mobility routes to address the same

problem. On a different context, Wu et al. [37] generate fake spa-

tiotemporal data that can substitute real data to prevent mobility

privacy disclosure.

5.2 Travel Time Prediction
Work related to the travel time prediction problem can be organized

into three categories: origin-destination (OD) travel time, path travel
time, and network flow.

5.2.1 Origin-Destination (OD) Travel Time. The goal of the OD
travel time problem is to predict the travel time for a given origin-

destination input. The authors of [33] first used the kNN method

to select historical trajectories with origin point and destination

point that are close to the given origin-destination input. In [13],

the multilayer perceptron (i.e., a multilayer fully connected neural

network) is used to predict the origin-destination travel time. Li et

al. [17], for example, utilized the residual neural network (ResNet)

to encode given origin-destination input. Given the utility of his-

torical trajectories, Yuan et al. [40] used LSTM and CNN methods

to create a model that encodes historical trajectories, allowing an

approximate travel time to be associated with a trajectory.

5.2.2 Path Travel Time. The path travel time problem is character-

ized as estimating travel time on road networks for a given route.

Somemachine learning models, such as decision tree [9] and hidden

Markov model [38] have been proposed to address the problem of

managing non-linearity. A few works concentrate on using deep

learning methods (e.g., CNN and LSTM) to address the problem.

For example, in [32, 41], the authors first consider a given path as a

series of segments. Then, they use the CNN model to encode every

segment to capture local spatio-temporal correlations; finally, used

the RNN model to encode the entire path. Another work addresses

the problem using theWide-Deep model [35]. They split inputs into

various components, which are encoded by various wide (e.g., affine

transformation) and deep models. The authors of [16] used deep

learning methods to produce probability parameters for associated

generative models.

5.2.3 Network Flow. The network flow problem is concerned with

optimizing traffic flow on a transport network. Tang et al. [29]

use the SVR approach and improve it with denoising strategies.

To enhance estimation accuracy, they merge a type of denoising

algorithm and the fuzzy C-means neural network [30]. The authors

of [6, 8, 11] use GCN models to forecast network flows by taking

into account the nature of road networks. Fang [8] created a spatio-

temporal module to encode historical traffic information, which

includes a multi-resolution temporal module and a global correlated

spatial module. In [34] authors address the sequential aspects of

network flows using RNN techniques to encode past data. Li et

al. [18] characterize network traffic as a diffusion process on a

directed graph and propose DCRNN. Wang et al. [6] use a spatial

GNN to encode historical information and a GRU model to encode

the entire sequence. Meta-learning is used to capture the dynamic

relationship between traffic flow data [21] taking into account the

spatial features of road networks.

5.3 Trajectory Mining
The process of extracting useful information such as movement

patterns, travel patterns, and traffic anomalies from trajectory

databases is called trajectory mining. Sawas et al. [25, 26] efficiently

discover trajectories of objects that are found in close proximity to

each other for a period of time by mining group patterns of moving

objects. Pechlivanoglou et al. [24] devise a method that is able to

simultaneously evaluate node importance metrics for all moving ob-

jects in a trajectory network. Sawas et al. [27] focuses on identifying

pedestrian group patterns by analyzing moving pedestrian trajec-

tory data to identify behaviours like group dispersion and group

gathering. Mehmood et al. [19] use trajectory big data to automati-

cally and accurately learn latent semantic relationships between

different geographical areas as revealed by patterns of moving ob-

jects over time. By introducing a data-driven model for the spread

of the disease in a group that takes into account people’s mobility

patterns, Pechlivanoglou et al. [23] make use of GPS-enabled digital

contact traces of individuals to inform a more thorough analysis

and modelling of disease spreading.

6 CONCLUSIONS
Being able to evaluate and forecast road intersection congestion is

highly advantageous for traffic management tasks and to inform

travel time prediction models. We have designed, developed and

evaluated a system that is able to evaluate and forecast the opera-

tional performance of road intersections, which represent complex

road network structures. Our system is based on continuous eval-

uation of industry standard measures of effectiveness (MOEs). In

addition, we have evaluated several forecasting models that are

informed by the computed MOEs. Our proposed structural time

series model outperforms other sensible baselines methods for time

series forecasting. Our system leverages advancements in streaming

analytics, trajectory data mining and graph mining. The broader

impact of our work is twofold:

(i) it provides a simple, yet powerful data-driven approach to

evaluating road intersection operational performance, based

on industrial standard MOEs, and

(ii) it contributes to increased safety and efficiency of road inter-

sections by enabling situational awareness of vehicle drivers.

Overall, the method we described is simple to understand and im-

plement, accurate, fast, and general, so it can be easily adopted in

a variety of strategies and applications for evaluating the perfor-

mance of road intersections. We therefore expect our method to be

beneficial in diverse settings and disciplines.
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Figure 11: Accuracy performance of the forecasting models (visualization).
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A APPENDIX: PREDICTION FORMULAE
More details about the steps of prediction are provided below.

A.1 Local Linear Trend
The local linear trend has the following definition with t as the

time-step.

𝑠𝑙𝑜𝑝𝑒𝑡 = 𝑠𝑙𝑜𝑝𝑒𝑡−1 + 𝜖1, 𝜖1 ∼ N
(
0, 𝜎2

𝑠𝑙𝑜𝑝𝑒

)
𝑙𝑒𝑣𝑒𝑙𝑡 = 𝑙𝑒𝑣𝑒𝑙𝑡−1 + 𝑠𝑙𝑜𝑝𝑒𝑡−1 + 𝜖2, 𝜖2 ∼ N

(
0, 𝜎2

𝑙𝑒𝑣𝑒𝑙

)
𝑦𝑡 = 𝑙𝑒𝑣𝑒𝑙𝑡 + 𝜖3, 𝜖3 ∼ N

(
0, 𝜎2

𝑜𝑏𝑠

)
𝜎𝑙𝑒𝑣𝑒𝑙 , 𝜎𝑠𝑙𝑜𝑝𝑒 , and 𝜎𝑜𝑏𝑠 are the model parameters which we need

to learn from the observations. The matrix form of the local linear

trend is written in the following equation.

𝑥𝑡 = 𝐴𝑥𝑡−1 +𝑤𝑡 the state variable

𝑦𝑡 = 𝐻𝑥𝑡 + 𝑣𝑡 the observation variable

𝐴 =

[
1 1

0 1

]
, 𝐻 =

[
1 0

]
, 𝑥𝑡−1 =

[
𝑙𝑒𝑣𝑒𝑙𝑡−1
𝑠𝑙𝑜𝑝𝑒𝑡−1

]
, 𝑥0 =

[
0 0

]
𝑤𝑡 ∼N (0, Σ𝑤) , where Σ𝑤 =

[
𝜎2
𝑙𝑒𝑣𝑒𝑙

0

0 𝜎2
𝑠𝑙𝑜𝑝𝑒

]
𝑣𝑡 ∼N (0, Σ𝑣) , where Σ𝑣 =

[
𝜎2
𝑜𝑏𝑠

]
In order to learn the parameters we use the Bayesian model,

so we need to calculate the posterior distribution of the model

parameters given observed data.

𝑝 (𝑧 | 𝑦) = 𝑝 (𝑦 | 𝑧)𝑝 (𝑧)∫
𝑝 (𝑦 | 𝑧)𝑝 (𝑧)d𝑧

the posterior density

𝑧 = [𝜎𝑙𝑒𝑣𝑒𝑙 , 𝜎𝑠𝑙𝑜𝑝𝑒 , 𝜎𝑜𝑏𝑠 ] the vector of model parameters

𝑌 = 𝑌1:𝑡 the vector of the observations

We assume that the priors are drawn from a LogNormal distribu-

tion and are independent of one another. As a result, the prior p(z)

is equal to the product of the three distinct LogNormal probability

densities.

𝑝 (𝑧) = 𝑝

(
𝜎
level

, 𝜎
slope

, 𝜎𝑜𝑏𝑠

)
= 𝑝 (𝜎

level
) · 𝑝

(
𝜎
slope

)
· 𝑝 (𝜎𝑜𝑏𝑠 )

= 𝐿𝑁 (𝜎
levei

; ·) 𝐿𝑁
(
𝜎
slope

; ·
)
𝐿𝑁 (𝜎𝑜𝑏𝑠 ; ·)

A.2 Likelihood Calculation
We denote the likelihood and apply the chain rule to it as follows.

𝑝 (𝑦 | 𝑧) = 𝑝 (𝑦1, 𝑦2, . . . , 𝑦𝑇 | 𝑧)
= 𝑝 (𝑦1 | 𝑧) 𝑝 (𝑦2 | 𝑦1, 𝑧) 𝑝 (𝑦3 | 𝑦1:2, 𝑧) · · · 𝑝 (𝑦𝑇 | 𝑦1:𝑇−1, 𝑧)

We make the following assumption.

𝑝 (𝑥𝑡−1 | 𝑦1:𝑡−1, 𝑧) = N (`𝑡−1, Σ𝑡−1) assumption

We can conclude the following because of the rule of Gaussian

linear transformation.

𝑝 (𝑥𝑡 | 𝑦1:𝑡−1, 𝑧) = N
(
𝐴`𝑡−1, 𝐴Σ𝑡−1𝐴⊤ + Σ𝑤

)
conclusion

𝑝 (𝑦𝑡 | 𝑦1:𝑡−1, 𝑧) = N
(
𝐻 (𝐴`𝑡−1) , 𝐻

(
𝐴Σ𝑡−1𝐴⊤ + Σ𝑤

)
𝐻⊤ + Σ𝑣

)
This is the analytical form for an arbitrary term in our likeli-

hood p(y|z). We have the following rules using Kalman filtering

technique:

𝑝 (𝑥𝑡−1 | 𝑦1:𝑡−1, 𝑧)
↓

𝑝 (𝑥𝑡 | 𝑦1:𝑡−1, 𝑧)
↓

𝑝 (𝑦𝑡 | 𝑦1:𝑡−1, 𝑧)
↓

𝑝 (𝑥𝑡 , 𝑦𝑡 | 𝑦1:𝑡−1, 𝑧)
↓

𝑝 (𝑥𝑡 | 𝑦1:𝑡 , 𝑧)

The first three steps provide the model’s prediction for the next

system state and observation. The latter two steps update this belief

using the actual observation.

A.3 Posterior Approximation
The variational distribution is used to estimate the posterior distri-

bution p(z|y).

𝑞(𝑧)

= 𝑞

(
𝜎
level

, 𝜎
slope

, 𝜎𝑜𝑏𝑠

)
= 𝑝 (𝜎

level
) · 𝑝

(
𝜎
slope

)
· 𝑝 (𝜎𝑜𝑏𝑠 )

= N
(
𝜎
level

; `𝑙 , 𝜎
2

𝑙

)
· N

(
𝜎
slope

; `𝑠 , 𝜎
2

𝑠

)
· N

(
𝜎𝑜𝑏𝑠 ; `𝑜 , 𝜎

2

𝑜

)
A.4 Probability Density Transformation
q(z) has its own set of parameters: vp=[`𝑙 , `𝑠 , `𝑜 , 𝜎𝑙 , 𝜎𝑠 , 𝜎𝑜 ] called

variational parameters. We transform the posterior p(z|y) of a prob-

ability density function of variables over the R+ domain into a

probability density function of variable vector u over the R domain,

p(u|y).

𝜎𝑙𝑒𝑣𝑒𝑙 = 𝑒
𝑢𝑙𝑒𝑣𝑒𝑙

𝜎𝑠𝑙𝑜𝑝𝑒 = 𝑒𝑢𝑠𝑙𝑜𝑝𝑒

𝜎𝑜𝑏𝑠 = 𝑒
𝑢𝑜𝑏𝑠

From now on 𝜎𝑙𝑒𝑣𝑒𝑙 , 𝜎𝑠𝑙𝑜𝑝𝑒 , 𝜎𝑜𝑏𝑠 , and p(y|z)p(z) are in the trans-

formed domain.

A.5 PDF Distance Minimization
To quantify the level of overlapping between q(z) and p(z|y), we

use the KL-divergence [10].
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𝐾𝐿(𝑞(𝑧)∥𝑝 (𝑧 | 𝑦)) = E𝑧∼𝑞 (𝑧 )
[
log

𝑞(𝑧)
𝑝 (𝑧 | 𝑦)

]
=

∫
𝑞(𝑧) log 𝑞(𝑧)

𝑝 (𝑧 | 𝑦) d𝑧

𝑞(𝑧; 𝑣𝑝)∗ = arg𝑣𝑝 min𝐾𝐿(𝑞(𝑧)∥𝑝 (𝑧 | 𝑦))

The theory of variational inference tells us that minimising the

KL-divergence is equivalent to maximizing Evidence Lower Bound,

denoted by ELBO(q(z)) [39].

ELBO(𝑞(𝑧))

= E𝑧∼𝑞 (𝑧 ) [log𝑝 (𝑦 | 𝑧)] − E𝑧∼𝑞 (𝑧 )
[
log

𝑞(𝑧)
𝑝 (𝑧)

]
= E𝑧∼𝑞 (𝑧 )

[
log𝑝 (𝑦 | 𝑧) − log

𝑞(𝑧)
𝑝 (𝑧)

]
= E𝑧∼𝑞 (𝑧 )

[
log

𝑝 (𝑦 | 𝑧)𝑝 (𝑧)
𝑞(𝑧)

]
= E𝑧∼𝑞 (𝑧 )

[
log

𝑝 (𝑦, 𝑧)
𝑞(𝑧)

]
=

∫
𝑞(𝑧) log 𝑝 (𝑦, 𝑧)

𝑞(𝑧) d𝑧

A.6 Sample Average
We can use gradient descent to maximize ELBO(q(z)) with respect to

its parameters vp. Then, we can use sample average to approximate

the expectation.

∇𝑣𝑝𝐸𝐿𝐵𝑂 (𝑞(𝑧))

= ∇𝑣𝑝

∫
𝑞(𝑧) log 𝑝 (𝑦, 𝑧)

𝑞(𝑧) d𝑧

≈ ∇𝑣𝑝

[
1

𝑛

𝑛∑︁
𝑖=1

log

𝑝 (𝑦, 𝑍𝑖 )
𝑞 (𝑍𝑖 )

]
, 𝑍𝑖 ∼ 𝑞(𝑧)

= ∇𝑣𝑝

[
1

𝑛

𝑛∑︁
𝑖=1

(log𝑝 (𝑦, 𝑍𝑖 )) − log𝑞 (𝑍𝑖 )
)]

= ∇𝑣𝑝

[
1

𝑛

𝑛∑︁
𝑖=1

log𝑝 (𝑦, 𝑍𝑖 )
]
− ∇𝑣𝑝

[
1

𝑛

𝑛∑︁
𝑖=1

log𝑞 (𝑍𝑖 )
]

A.7 Reparameterization Approach
We reparameterize each of the model parameters. You can see the

reparameterization of 𝜎𝑙𝑒𝑣𝑒𝑙 as an example:

𝜎
level

∼ N
(
`𝑙 , 𝜎

2

𝑙

)
original model parameter

\
level

∼ N(0, 1) reparameterization variable

𝜎𝑙𝑒𝑣𝑒𝑙 = 𝜎𝑙\level + `𝑙 reparameterized 𝜎𝑙𝑒𝑣𝑒𝑙

𝑟 (\𝑙𝑒𝑣𝑒𝑙 ) = 𝜎𝑙\𝑙𝑒𝑣𝑒𝑙 + `𝑙 reparameterization function

This trick turns q(z) and ELBO(q(z)) into a function of \ and vp:

\ = [\𝑙𝑒𝑣𝑒𝑙 , \𝑠𝑙𝑜𝑝𝑒 , \𝑜𝑏𝑠 ]

𝑞(𝑧) = 𝑞(𝑟 (\ ))

ELBO(𝑞(𝑧))

=

∫
𝑞(𝑧) log 𝑝 (𝑦, 𝑧)

𝑞(𝑧) d𝑧

=

∫
𝑞(𝑟 (\ )) log 𝑝 (𝑦, 𝑟 (\ ))

𝑞(𝑟 (\ ))
d𝑟 (\ )
d\

d\

=

∫
N(\ ; 0, 1) log 𝑝 (𝑦, 𝑟 (\ ))

𝑞(𝑟 (\ )) d\

≈ 1

𝑛

𝑛∑︁
𝑖=1

log

𝑝 (𝑦, 𝑟 (Θ𝑖 ))
𝑞 (𝑟 (Θ𝑖 ))

, Θ𝑖 ∼ N(0, 1)

𝜎𝑙 , 𝜎𝑠 , and 𝜎𝑜 must be non-negative, so we use three variables

with full domains to rewrite them:

𝜎𝑙 = 𝑒
𝜙𝑙

𝜎𝑠 = 𝑒
𝜙𝑠

𝜎𝑜 = 𝑒𝜙𝑜

𝑞(𝑧) = 𝑞
(
𝜎
level

, 𝜎
slope

, 𝜎
obs

)
= 𝑝 (𝜎

level
) · 𝑝

(
𝜎
slope

)
· 𝑝 (𝜎𝑜𝑏𝑠 )

= N
(
𝜎
level

; `𝑙 ,

(
𝑒𝜙𝑙

)
2

)
· N

(
𝜎
slope

; `𝑠 ,

(
𝑒𝜙𝑠

)
2

)
· N

(
𝜎𝑜𝑏𝑠 ; `𝑜 ,

(
𝑒𝜙𝑜

)
2

)
Now the ELBO becomes a function of `𝑙 , `𝑠 , `𝑜 , 𝜙𝑙 , 𝜙𝑠 , and 𝜙𝑜

with full real domain R. We use gradient descent to find optimal

values for vp. We first create an Adam optimizer with the ELBO as

the objective function and then perform 200 gradient descent steps.

A.8 Predicting the Future
We can run the Kalman filter now. The result is the distribution of

the system state variable 𝑥𝑡 . We can plug 𝑥𝑇 |𝑦1:𝑇 , 𝑧 into the linear

dynamical system equations to get predictive distributions for the

state variable 𝑥𝑇+1 |𝑦1:𝑇 , 𝑧 and observation variable 𝑦𝑇+1 |𝑦1:𝑇 , 𝑧.

𝑥𝑇+1 = 𝐴𝑥𝑇 +𝑤𝑇+1 gives 𝑝 (𝑥𝑇+1 | 𝑦1:𝑇 , 𝑧)
𝑦𝑇+1 = 𝐻𝑥𝑇+1 + 𝑣𝑇+1 gives 𝑝 (𝑦𝑇+1 | 𝑦1:𝑇 , 𝑧)

𝑝 (𝑥𝑇 | 𝑦1:𝑇 , 𝑧) → 𝑝 (𝑥𝑇+1 | 𝑦1:𝑇 , 𝑧) → · · · → 𝑝 (𝑥𝑇+𝑖 | 𝑦1:𝑇 , 𝑧)
↓ ↓

𝑝 (𝑦𝑇+1 | 𝑦1:𝑇 , 𝑧) → · · · → 𝑝 (𝑦𝑇+𝑖 | 𝑦1:𝑇 , 𝑧)
The process of prediction is to use the first 3 out of 5 steps in the

Kalman filter algorithm to derive our belief of the system state and

observation possibility distributions in the future.
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