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ABSTRACT
Traffic congestion is characterized by longer trip times, and in-

creased air pollution. In a static road network, the travel time to

a destination is constant and can be computed using the shortest

path first algorithm (SPF). However, road network conditions are

dynamic, rendering the SPF to perform sub-optimally atbe times.

In addition, in a realistic multiple-vehicle scenario, the SPF routing

algorithm can cause congestion by routing all vehicles through

the same shortest path. In this paper, we propose a network-aware

multi-agent reinforcement learning model for addressing this prob-

lem. Our key idea is to assign an RL agent to intersections. Each

RL agent operates as a router agent and is responsible for provid-

ing routing instructions to approaching vehicles. When a vehicle

reaches an intersection, it submits a routing query to the RL agent

consisting of its final destination. The RL agent generates a routing

response based on (i) the destination, (ii) the current state of the

road network, and (iii) routing policies learned by cooperating with

other neighboring RL agents. Our experimental evaluation shows

that the proposed MARL model outperforms the SPF algorithm by

(up to) 20.2% in average travel time.
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1 INTRODUCTION
Traffic congestion in urban road networks is a condition character-

ized by longer trip times, and increased air pollution. The emergence

of new technologies like widely available internet connection, and

GPS data has enabled algorithmic traffic navigation [6]. Currently,

services like Google Maps
1
and Waze

2
help people with route plan-

ning mainly relying on a variant of the popular Shortest Path First
(SPF) algorithm [2]. In a static network and for a single vehicle,

the SPF algorithm is optimal. However, road network conditions

are not always static. In a dynamic road network, the SPF path

between an origin and a destination is harder to compute due to

variable traffic conditions. The main approach to address this issue

is to recursively breaking down the problem and estimating the

travel time for smaller road segments, where the traffic conditions

remain unchanged. This is usually referred to as the traffic predic-
tion problem. Several methods have been proposed to address the

traffic prediction problem of a road segment, such as moving aver-

age models, Support Vector Regression, and Random Forest. More

recently, deep learning methods have been proposed to address the

traffic prediction problem [9, 13]. Still, the estimated travel times,

specifically long-term predictions, may be inaccurate, rendering

the global SPF algorithm to be sub-optimal at times.

Another drawback of the SPF algorithm is that in multiple-

vehicles scenarios, it will route every single vehicle through the

currently available shortest path. As a result, due to the limited

capacity of roads, the current shortest path gets quickly congested.

Other methods, such as probabilistic dynamic programming [11]

and ant colony optimization [8] have been proposed to directly

route the vehicles in the dynamic network. More recently, deep

reinforcement learning has also been proposed for end-to-end rout-

ing without individual road segment travel time prediction [3, 4, 7].

Moreover, graph convolution networks have been proposed to em-

bed the structure of the road network and exploit together with

reinforcement learning for routing in large dynamic networks [12].

To adequately capture the semantics and conditions of the problem

that relates to its dynamic nature and optimization, we propose

the vehicle navigation problem; given a dynamic road network and

a fleet of vehicles, the objective is to minimize the overall travel

time of all vehicles. The vehicle navigation problem is novel and

it is different to the Shortest Path First problem; however it can

be reduced to it for the simple case of a static graph and a single

vehicle. The main idea of the vehicle navigation problem stems from

the packet routing problem in the IP network [1]. It is easy to see the

1
https://maps.google.com/

2
https://www.waze.com/
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analogy — vehicles are continuously routed from one intersection

to another until they reach their destination, similarly to how IP

packets are routed from one router to another. In our context, to

address the vehicle navigation problem, we propose a network-aware
multi-agent reinforcement learning (MARL) model. Specifically, in

our MARL model, an RL agent is assigned to every intersection.

When a vehicle approaches to an intersection, it submits a routing
query to the agent, including its final destination. The agent gener-

ates a routing response based on the vehicle’s final destination and

the current state of the road network traffic. The vehicle follows the
instructions of the routing response, including the next intersection.

The process continues until the vehicle reaches its final destination.

Note that the vehicle doesn’t need to know its exact route to its

destination.

2 PROBLEM DEFINITION
Consider a road network represented as a directed graph 𝑊 =

{𝐼 , 𝑅}, where 𝐼 = {𝑖1, ..., 𝑖𝑁 } is a set of vertices that represent the
intersections, and 𝑅 = {𝑟1, ..., 𝑟𝑀 } is a set of edges that represent
the roads. A road 𝑟 ∈ 𝑅 is a directed edge from 𝑟 -ℎ𝑒𝑎𝑑 ∈ 𝐼 to

𝑟 -𝑡𝑎𝑖𝑙 ∈ 𝐼 . This assumption means that every road connects two

intersections. Also, consider a set of L vehicles𝑉𝐶𝑠 = {𝑣𝑐1, ..., 𝑣𝑐𝐿},
and 𝑁 router agents 𝑈 = {𝑢1, ..., 𝑢𝑁 } each corresponding to an

intersection.When a vehicle approaches an intersection it generates

a routing query. We first define a routing query:

Definition 1. 𝑞: routing query A query for routing at time 𝑡
generated by vehicle 𝑣𝑐 that is currently driving in the road 𝑟𝑐 , to
the router 𝑢, the agent assigned to the intersection 𝑟𝑐 -𝑡𝑎𝑖𝑙 3, with the
destination intersection 𝑖𝑑 . 𝑡𝑚𝑎𝑥 is the deadline for arriving.

The router𝑞-𝑢 at the end of the current road of the vehicle generates

a routing response to the routing query 𝑞. To define a routing

response, we first define the next-hop roads set:

Definition 2. 𝑁𝐻 (𝑟 ): next-hop road set of road 𝑟 the set of
all the outgoing roads from intersection 𝑟 -𝑡𝑎𝑖𝑙 that are connected to
𝑟 . We say that 𝑟𝑘 is connected to 𝑟 if the road network structure at
intersection 𝑟 -𝑡𝑎𝑖𝑙 allows the flow of traffic from 𝑟 to 𝑟𝑘 .

Definition 3. 𝑟𝑒𝑠𝑝 (𝑞) : routing response to query 𝑞

𝑟𝑒𝑠𝑝 (𝑞) =


< 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 >, 𝑖 𝑓 𝑞-𝑟𝑐 -𝑡𝑎𝑖𝑙 == 𝑞-𝑖𝑑
< 𝑓 𝑎𝑖𝑙 >, 𝑖 𝑓 𝑞-𝑡𝑚𝑎𝑥 < 𝑞-𝑡
< 𝑟 ∈ 𝑁𝐻 (𝑞-𝑟𝑐 ) >, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The routing response 𝑟𝑒𝑠𝑝 (𝑞) can be 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 , 𝑓 𝑎𝑖𝑙 , or the next road

to take. We next define the trip and the path for a vehicle:

Definition 4. 𝑡𝑟𝑖𝑝: trip of vehicle 𝑣𝑐 the trip of vehicle 𝑣𝑐 start-
ing at time 𝑡 from road 𝑟 with a destination intersection 𝑖 .

We denote the set of all the trips as 𝑇𝑟𝑖𝑝𝑠 = {𝑡𝑟𝑖𝑝 |𝑡𝑟𝑖𝑝-𝑣𝑐 ∈ 𝑉𝐶𝑠}.

Definition 5. 𝑝𝑎𝑡ℎ(𝑡𝑟𝑖𝑝): path of 𝑡𝑟𝑖𝑝

𝑝𝑎𝑡ℎ(𝑡𝑟𝑖𝑝) = (𝑟𝑒𝑠𝑝 (𝑞1), ..., 𝑟𝑒𝑠𝑝 (𝑞𝑧) =< 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 > /< 𝑓 𝑎𝑖𝑙 >)
is a sequence of routing responses for vehicle 𝑡𝑟𝑖𝑝-𝑣𝑐 .
3
We use a short hyphen (-) to refer to an attribute of an object

We denote the length of path as |𝑝𝑎𝑡ℎ | = 𝑧, and the last element of

the path as 𝑝𝑎𝑡ℎ |𝑝𝑎𝑡ℎ | = 𝑟𝑒𝑠𝑝 (𝑞𝑧). We denote the set of all paths as

𝑃𝑎𝑡ℎ𝑠 = {𝑝𝑎𝑡ℎ(𝑡𝑟𝑖𝑝) |𝑡𝑟𝑖𝑝 ∈ 𝑇𝑟𝑖𝑝𝑠}.

Definition 6. 𝑡𝑡 (𝑝): travel time of path 𝑝 is the difference
between time of the last and fist queries of the path 𝑝 .

We next define the routing success of an episode to know about

the number of 𝑣𝑐 that reached their destination. Also, we define the

average travel time for all the 𝑣𝑐s that reach their destination:

Definition 7. 𝑅𝑆 : Routing Success is the the set of paths that
end up in a < 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 > routing response.

Definition 8. 𝐴𝑉𝑇𝑇 : average travel time The average travel
time of all the paths that end up in <success>.

We now formally define the adaptive navigation problem:

Problem 1. Adaptive Navigation Consider a locally accessible
road network𝑊 , and a set of routing queries 𝑄 , our problem is to
generate a response 𝑟𝑒𝑠𝑝 (𝑞) for each 𝑞 ∈ 𝑄 to (1)𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 |𝑅𝑆 | while
(2)𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝐴𝑉𝑇𝑇 .

3 METHODOLOGY
3.1 MARL Formulation
In this section we present our MARL methodology [14].

Router agent at intersection 𝑖, 𝑢𝑖 .We assign a unique agent 𝑢𝑖
to intersection 𝑖 ∈ 𝐼 . Agent 𝑢𝑖 only responds to the queries 𝑞 ∈ 𝑄

with 𝑞-𝑟𝑐 -𝑡𝑎𝑖𝑙 == 𝑖 .

State of query 𝑞, 𝑠𝑞 . The state of query 𝑞, is the unique represen-
tation of the destination intersection [𝑞-𝑖𝑑 ].

State of intersection 𝑖, 𝑠𝑡
𝑖
. State of intersection 𝑖 at time 𝑡 consists

of the traffic congestion condition in its outgoing roads. A road is

considered congested (𝐶 (𝑟 ) == 𝑇𝑟𝑢𝑒) if its current speed is smaller

than a fixed portion of the free-flow speed of the road.

State of road network𝑊 at time 𝑡 , 𝑠𝑡
𝑊
. The state of the road

network W at time 𝑡 is the concatenation of the states of all inter-

sections.

State of query 𝑞 at step 𝜏 , 𝑠𝜏𝑞 . Assume that 𝜏 is the index of 𝑞 in the

path of vehicle 𝑞-𝑣𝑐 . State of query 𝑞 at step 𝜏 is a tuple consisting

of the state of the query and the state of the network at that time.

Action of agent 𝑢𝑖 for 𝑠𝜏𝑞 , 𝑎(𝑠𝜏𝑞). Selecting one of the outgoing

road-segments of the intersection 𝑖 = 𝑞-𝑟𝑐 -𝑡𝑎𝑖𝑙 .

Next state of 𝑠𝜏𝑞 , 𝑠𝜏+1𝑞 . Assume that 𝑞′ is the 𝜏 + 1 query in path of

vehicle 𝑞-𝑣𝑐 .

Reward, 𝑟 (𝑎(𝑠𝜏𝑞)). Assume that 𝑞′ is the 𝜏 + 1 query in path of

vehicle 𝑞-𝑣𝑐 :

Δ𝑇 = (𝑞′-𝑡) − (𝑞-𝑡)
𝑟 (𝑎(𝑠𝜏𝑞)) = −Δ𝑇 (1)

3.2 Model Architecture
Figure 1 shows the architecture of the Adaptive Navigation algo-

rithm. The destination of the routing query 𝑞, is forwarded to the

agent 𝑢𝑖 = 𝑞-𝑢, and goes through its linear layer and produces

embeddings of the destination IDs:

[𝑠𝑞] = 𝑅𝑒𝐿𝑈 (𝐿𝑖𝑛𝑒𝑎𝑟𝑖 (𝑠𝑞))
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Figure 1: Adaptive Navigation Model Architecture

The network state 𝑠𝑡
𝑊

is passed to the GAT model as a graph signal

and produces intersection state embeddings:

𝑠′𝑖 = (𝐺𝐴𝑇 (𝑠𝑡𝑊 ))𝑖
The concatenation of [𝑠𝑞] and 𝑠′

𝑖
is passed to the Q-network of

agent 𝑢𝑖 to get the Q-values of the actions. The routing response is

the action with the highest Q-value:

𝑟𝑒𝑠𝑝 (𝑞) = argmax

𝑎
𝑄𝑖 (𝑠𝜏𝑞, 𝑎)

We follow the conventional MSE loss (2) in the Q-learning algorithm

per agent, where 𝛾 is the discount factor, and𝑄𝑖+1 is the Q-network
of the next agent. Note that the training of the agents is intertwined.

𝐿(𝑠𝜏𝑞, 𝑎, 𝑟 : \ ) = E[(𝑟 + 𝛾 max

𝑎′
𝑄𝑖+1 (𝑠𝜏+1𝑞 , 𝑎′) −𝑄𝑖 (𝑠𝜏𝑞, 𝑎)2] (2)

Back-propagating the loss leads to end-to-end optimization of all

the network parameters \ . Note that all agents contribute to the

training of the GAT while only optimizing their own Q-network.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup
For the traffic simulation purposes, we used Simulation of Urban

Mobility (SUMO) [5]. We used the SUMO-provided python API,

TraCI, for interacting with the simulation. For our experimental

evaluation, we used both synthetic and realistic networks with syn-
thetic traffic data.
Synthetic Network. We considered a synthetic network based on

the regular lattice network model that resembles a Manhattan-like

urban road network. The lattice network is “regular” because each

inner node has exactly the same number of edges (i.e., four in our

case). Figure 2a shows the topology of our synthetic network, a 5x6

lattice/grid network, where 26 routing agents are assigned, one at

each intersection (except for the corner ones).

Realistic Network. We considered the realistic road network of

an urban area (downtown Toronto). We extracted the road network

structure from Open Street Maps
4
, and abstracted it by removing

the less important roads (e.g., one-lane roads). At the end, we are

left with 52 intersections that are each assigned a routing agent.

Figure 2b shows the abstracted network of downtown Toronto.

Traffic Data. Since we don’t have access to the detailed real-world

traffic demands, we turn to use synthetic traffic demands consisting

4
https://www.openstreetmap.org/copyright

(a) Synthetic network (5x6 grid) (b) Downtown Toronto

Figure 2: Road Network Datasets

D.T Toronto Grid

AN(h=2) 479.3 145.4

AN(h=1) 476.4 138.4
AN(h=0) 477.6 143.7

Q-routing ∞ 159.6

SPF 551.7 173.4

SPFWR 475.6 205.1

Table 1: Testing Results: Average Travel Time (AVTT)

of a uniform demand, a biased demand, and stochastic conges-

tion. Uniform Demand: the Uniform Demand is a set of origin-

destination tuples distributed uniformly in the road network. Bi-
ased Demand: the Biased Demand is a set of user-defined origin-

destination tuples. Congestion: we simulate congestion in a road

by reducing its allowed speed by a fixed ratio. With a fixed period,

we apply a network state change, in which every road is prone to

congestion with a predefined probability.

4.1.1 Baselines. We used three baselines for our evaluations:

Travel Time Shortest Path First (SPF): This method finds the

path with the shortest travel time in the current situation of the

network using the SPF algorithm.

Travel Time Shortest Path First with Rerouting (SPFWR):
This method is similar to the previous method. However, every

time the vehicle reaches an intersection, we recompute the shortest

path based on the new traffic situation.

Q-routing (QR) [1]: As another baseline, we implemented a deep

reinforcement learning version of the Boyan, and Litman Q-routing

for packet routing. This baseline is not aware of the network state.

These baselines are compared against three variants of our Adaptive

Navigation method. AN(h=0): In this version, only the immediate

intersection state is used as input to the router agents. AN(h=1): In
this version, we apply one layer of GAT to the network state and

then pass layer-1 embedding to the router agent. AN(h=2): In this

version, we apply two layers of GAT to the network state and pass

the layer-2 embedding to the router agent.

4.1.2 Evaluation Metric. Following the previous works [10] in traf-

fic optimization, we use the average travel time defined in definition

8 as our primary evaluation metric.
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(a) AVTT (Toronto) (b) AVTT (5x6 Grid)

(c) AVTT (Toronto, last 100 episodes) (d) AVTT, (5x6 Grid, last 100 episodes)

(e) Routing Success (Toronto) (f) Routing Success (5x6 Grid)

Figure 3: Average Travel Time (AVTT) and Routing Success during
800 training episodes for Toronto (a,b, and c) and 5x6 Grid (d,e,f)

4.2 Performance Evaluation
Training In the training phase, we define an episode as a fixed

number of simulation time steps. We don’t set a deadline for ar-

rival. For every episode we report, the Routing Success (number

of vehicles that reached their destination during this episode), and

Average Travel Time (for vehicles that reached their destination).

Figures 3a and 3b, show the training results for 800 episodes of

training for Downtown Toronto and 5x6 Grid network respectively.

Figures 3c, 3d show the average travel time in the final episodes. In

figures 3a,3c,3b,3d the Y-axis shows the average travel time in sec-

onds, and the X-axis shows the episode number. In figures 3e, and

3f the Y-axis shows the number of vehicles that have successfully

arrived at their destination in that episode (|Routing Success|), and

the X-axis shows the episode number.

Testing for testing purposes, to avoid the random noises, instead

of having a flow, we predefined 2000 uniform trips. An episode

in the testing phase lasts as long as all the vehicles reach their

destination. Table 1 shows the average results of 5 episodes in the

testing phase. In the Downtown Toronto network, SPFWR has the

best performance, and AN(h=1) marginally stands in second place.

It is important to note that the goal is not to outperform
the SPFWR. SPFWR needs to compute all-pairs-shortest-path in

every time-step rendering it to be computationally infeasible if the

response time is important. In this experiment, Q-routing fails to

route all the vehicles successfully since it creates infinite loops. In

the 5x6 grid network, AN(h=1) outperforms the other algorithms.

Counter-intuitively, SPFWR has the worst performance in this case.

The network structure and its traffic capacity, e.g., number of lanes

per road play an important role in the SPFWR performance. A road

that has only one lane can easily get congested. SPFWR greedily

sends all the vehicles to the current shortest path and congests it

so that it is no longer the shortest path. Moreover, SPFWR does

not consider the waiting times in the traffic lights queues. Current

experiments show that adding an extra layer of GAT does not

necessarily improve the results since the extra layer increases the

model parameters leading to the performance decay.

5 CONCLUSIONS
The SPF algorithm is the predominant algorithm for routing in a

static network. However, it proves sub-optimal in a dynamic net-

work. In this paper, we introduced the adaptive navigation problem.

Specifically, we assigned a Q-learning agent to every intersection,

which is responsible for the routing of all incoming vehicles to

that intersection. The router agent uses the destination ID of the

approaching vehicle, and the traffic state of its neighborhood for de-

termining the next intersection the vehicle should be forwarded to.

Our empirical evaluation demonstrated a substantial improvement

of up to 20.2% in average travel time, compared to the SPF-based

baselines, for both synthetic and realistic networks.
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