
Sampling Online Social Networks
Manos Papagelis, Gautam Das, Member, IEEE, and Nick Koudas, Member, IEEE

Abstract—As online social networking emerges, there has been increased interest to utilize the underlying network structure as well

as the available information on social peers to improve the information needs of a user. In this paper, we focus on improving the

performance of information collection from the neighborhood of a user in a dynamic social network. We introduce sampling-based

algorithms to efficiently explore a user’s social network respecting its structure and to quickly approximate quantities of interest. We

introduce and analyze variants of the basic sampling scheme exploring correlations across our samples. Models of centralized and

distributed social networks are considered. We show that our algorithms can be utilized to rank items in the neighborhood of a user,

assuming that information for each user in the network is available. Using real and synthetic data sets, we validate the results of our

analysis and demonstrate the efficiency of our algorithms in approximating quantities of interest. The methods we describe are general

and can probably be easily adopted in a variety of strategies aiming to efficiently collect information from a social graph.

Index Terms—Information networks, search process, query processing, performance evaluation of algorithms and systems

Ç

1 INTRODUCTION

THE changing trends in the use of web technology that
aims to enhance interconnectivity, self-expression, and

information sharing on the web have led to the emergence
of online social networking services. This is evident by
the multitude of activity and social interaction that takes
place in web sites like Facebook, Myspace, and Twitter to
name a few. At the same time the desire to connect and
interact evolves far beyond centralized social networking
sites and takes the form of ad hoc social networks formed
by instant messaging clients, VoIP software, or mobile
geosocial networks. Although interactions with people
beyond one’s contact list is currently not possible (e.g., via
query capabilities), the implicit social networking structure
is in place.

Given the large adoption of these networks, there has
been increased interest to explore the underlying social
structure and information in order to improve on informa-
tion retrieval tasks of social peers. Such tasks are in the core
of many application domains. To further motivate our
research, we discuss in more detail the case of social search.
Social search or a social search engine is a type of search
method that tries to determine the relevance of search
results by considering interactions or contributions of
users. The premise is that by collecting and analyzing
information from a user’s explicit or implicit social network
we can improve the accuracy of search results. The most
common social search scenario is the following:

1. A user v in a network submits a query to a search
engine.

2. The search engine computes an ordered list L of the
most relevant results using a global ranking
algorithm.

3. The search engine collects information that lies in the
neighborhood of v and relates to the results in L.

4. The search engine utilizes this information to reorder
the list L to a new list L0 that is presented to v.

The utility of social search has been established via
experimental user studies. For example, in [1], Mislove et al.
report improved result accuracy for web search when urls
for a query are not ranked based on some global ranking
criteria, but based on the number of times people in the
same social environment endorsed them. Many ideas have
been suggested to realize online social search; from entirely
human search engines that utilize humans to filter the
search results and assist users in clarifying their search
requests to social-influenced algorithms that exploit a user’s
web history log to influence result rankings, so that pages
that she visits more often are ranked higher. In any case, the
goal is to provide end users with a limited number of
relevant results informed by human judgement, as opposed
to traditional search engines that often return a large
number of results that may not be relevant. These are all
examples of tasks that require to visit and probe a large
number of peers in the extended network of an individual
for information that lies locally in their logs, and then use
this information to improve the quality of search experience.

Despite the fact that many algorithms and tools exist for
analysis of networks, in general, these mainly focus on
analysis of the properties of the network structure and not
on the content of the nodes. They also typically not
operate on user specific graphs (i.e, users’ neighborhoods),
but on the whole graph. Instead, for many modern
applications, it would be beneficial to design algorithms
that operate on a single node. For example, in the case of
social search, it would be beneficial to design algorithms
that starting from a specific user in the network, crawl its

662 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

. M. Papagelis and N. Koudas are with the Department of Computer Science,
Bahen Center for Information Technology, University of Toronto,
40 St. George Street, Toronto, ON M5S 2E4, Canada.
E-mail: {papaggel, koudas}@cs.toronto.edu.

. G. Das is with the Computer Science and Engineering Department,
University of Texas, 626 Engineering Research Building, 500 UTA Blvd.,
Arlington, TX 76019. E-mail: gdas@uta.edu.

Manuscript received 16 Feb. 2011; revised 7 Nov. 2011; accepted 9 Nov. 2011;
published online 8 Dec. 2011.
Recommended for acceptance by B.C. Ooi.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2011-02-0073.
Digital Object Identifier no. 10.1109/TKDE.2011.254.

1041-4347/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

(extended) neighborhood and collect information that lies
on their close peers. Such networks may consist of
thousands of users and their structure may not be static,
thus a complete crawl of all social peers is infeasible.
Therefore, efficient methods are required. Based on these
observations we focus on improving the performance of
information collection from the neighborhood of a user in
a social network and make the following contributions:

. We introduce sampling-based algorithms that given a
user in a social network quickly obtain a near-uniform
random sample of nodes in its neighborhood. We
employ these algorithms to quickly approximate
the number of users in a user’s neighborhood that
have endorsed an item.

. We introduce and analyze variants of these basic
sampling schemes in which we aim to minimize the
total number of nodes in the network visited by
exploring correlations across samples.

. We evaluate our sampling-based algorithms in terms
of accuracy and efficiency using real and synthetic
data and demonstrate the utility of our approach.
We show that our basic sampling schemes can be
utilized for a variety of strategies aiming to rank
items in a network, assuming that information for
each user in the network is available.

Our research aims to offer performance improvements,
via sampling, to the process of (almost) uniformly collecting
information from user logs by exploring the underlying
graph structure of a social network. Note that our work
does not make any assumption about the semantics of
neighboring nodes, thus we do not assume that users that
are closer in the network may exhibit some behavioral
similarity, have similar interests or so. On the contrary, in
designing our algorithms we assume that any node in the
extended neighborhood of a user is by definition equally
important, independently of how close or far it lies from the
initiator node. How one can utilize this information to
increase user satisfaction is orthogonal to our work and out
of the scope of this paper.

The rest of the paper is organized as follows: Section 2
formally defines the problems of interest in the paper and
introduces notation. Foundational ideas of our sampling
methods are presented in Section 3, and Section 4 describes
the algorithmic details that implement them. We experi-
mentally evaluate our algorithms in Section 5. In Section 6,
we review related work and conclude in Section 7.

2 PROBLEM DEFINITION

The social network structure can be modeled as a graph G
with individuals representing nodes and relationships
among them representing edges. We model environments
in which social peers participate in a centralized social
network (where knowledge of the network structure is
assumed) or distributed (where network structure is un-
known or limited). Centralized graphs are typical in social
networking sites in which complete knowledge of users’s
network is maintained (e.g., del.icio.us, flickr, etc.). Dis-
tributed graphs, where a user is aware only of its immediate
connections, are more common. Consider for example, the

case in ad hoc social networks formed by typical instant
messaging or VoIP protocols (e.g., MSN and Skype). There
are also cases that the model of the graph is between the
centralized and the fully distributed allowing limited
knowledge of a node’s neighborhood typically controlled
by the node in terms of privacy settings (e.g., LinkedIn and
Facebook). Our methods apply to these models as well, with
slight modifications. The rate of change of the structure of
these networks is also an important factor. The most typical
case is for such networks to change rapidly as users join and
depart from the graph by forming or destroying social
connections. Although one can make a case for relatively
static social networks (in which the graph structure changes
less frequently) in general such graphs are expected to be
highly dynamic. We focus on dynamic networks (either
centralized or distributed) but also treat the relatively easier
case of static networks. In any case, we assume that the rate
of change of the content in these networks is high. Given such
an environment we define the following two problems of
interest in this paper.

2.1 Sampling Nodes in Social Networks

Using G and starting at v we would like to be able to
obtain the set of nodes in the neighborhood DdðvÞ of v at
some specific depth d (i.e., at most d hops away of v).
However, crawling the entire DdðvÞ at runtime may be
prohibitively slow, especially as the size of the neighbor-
hood increases in number of nodes. Therefore, we have to
resort to efficient approximation methods such as sam-
pling. By sampling we avoid visiting all nodes in DdðvÞ
and thus attain improved performance. We formally define
the following problem:

Problem 1. Let a graph G and a user v 2 G. Let DdðvÞ be a user
specified vicinity of v at depth d. Using G and starting at v,
obtain a uniform random sample of the nodes in DdðvÞ.

Note here that the sampling process operates on a node v
and should respect the underlying network structure of v’s
neighborhood, in a sense that all users in DdðvÞ should have
the same chance to be selected in the sample. Thus, we
assume (by definition of our problem) that any node inDdðvÞ
should be equally important for the information task, and
ignore other semantics, such as the distance of a node from v.

2.2 Sampling Information in Social Networks

For each user in G we assume that a log accumulated over
time is available. Let the log at node v have the form
ðx; countvxÞ, where x is an item and countvx is the number of
times x has been endorsed by user v (or a numeric value that
represents the endorsement of user v to item x). Endorse-
ment of an item is defined in a generic sense and it may have
various instantiations, for example clicking on a url, rating a
movie, etc. Endorsements of items by users in the
neighborhood of v comprise valuable social information
that may be utilized to provide personalized rankings of
items to v. In many social information tasks (such as in social
search) we are interested in the relative order or ranking of a
set of items X in the social network of v. Using G and
starting at v we would like to obtain the total count of the
number of times that each item x 2 X has been endorsed by

PAPAGELIS ET AL.: SAMPLING ONLINE SOCIAL NETWORKS 663

consulting the neighborhood of v at some specific depth d
(i.e., at most d hops away of v). Formally, if we define yv as
the quantity countvx, then for an item x 2 X we may obtain
its exact aggregate value Y ¼

P
i2DdðvÞ yi by visiting and

querying the log at every node in the specified vicinity of v,
DdðvÞ. However, visiting any node in DdðvÞ and computing
the exact aggregate value Y for any item x 2 X at runtime
may be prohibitively slow, especially as the size of the
neighborhood increases in number of nodes. Therefore, we
have to resort to efficient approximation methods such as
sampling. We formally define the following problem:

Problem 2. Let a graph G and a user v 2 G. Let DdðvÞ be a user
specified vicinity of v at depth d. Let X be a set of items.
Obtain through sampling nodes of G in DdðvÞ an estimate of
the ordering of the items X in DdðvÞ.

Once the social information has been collected, a number
of personalization strategies are possible to rerank the items
in X taking into account semantics of the collected
information, such as the item counts or the distance of a
sampled user to user v. Designing and evaluating a
reranking algorithm that increases the user satisfaction is
out of the scope of this paper.

3 SAMPLING METHODOLOGY

In this section, we discuss the foundational ideas behind
our sampling-based approaches to solve Problem 1. We first
describe an idealized approach in which we assume it is
possible to efficiently obtain a uniform random sample of
DdðvÞ. The sampling notation we use is shown in Table 1 for
reference. Let y1, y2; . . . ; yN be the values of the nodes in
DðvÞ. Suppose, we could obtain a uniform random sample
S of size n� N with S � DdðvÞ and values y1, y2; . . . ; yn. Let
y be the sample sum, i.e., y ¼

P
i2S yi. Then it is well known

that the quantity Y 0 ¼ y � ðN=nÞ, i.e., the sample sum scaled
by the inverse of the sampling fraction, is an approximation
for Y . In fact, Y 0 is a random variable whose mean and
standard deviation can be approximated (for large N) by
the following well-known sampling theorem [2].

Theorem 1.

E½Y 0� ¼ Y ; sd½Y 0� ¼ N � �=
ffiffiffi
n
p

:

The standard deviation sd½Y 0� provides an estimate of the
error in estimating Y by Y 0. Since �, the standard deviation
of values in DðvÞ, is usually not known in advance, it can
be itself estimated by computing the standard deviation �0

of the sample; thus sd½Y 0� is estimated as N�0=
ffiffiffi
n
p

. More

fine-grained error estimations such as confidence intervalsare
also possible; see [2] for details. Remind that in Problem 2,
we seek for an approximate ordering of the items in a set X.
This ordering can be obtained directly by the estimated
sample sums without the need to scale them by the inverse
of the sampling fraction (i.e., N=n). Practically, the total
number of nodes in DðvÞ (i.e., N) from which we form the
sample does not need to be known. We will only assume a
priori knowledge of this number when evaluating the
accuracy of our sampling methods, in order to compare
estimated with actual aggregate values. Given this frame-
work, the main challenge confronting us is how to obtain a
uniform or near-uniform random sample of the nodes in
DdðvÞ. We discuss this issue under assumption of static and
dynamic network topologies.

3.1 Assuming Static Networks

We first consider the case where the topology of the social
network is static, or changes only slowly over time
(although the clickthrough logs, i.e., the “data” stored at
each node are rapidly changing). For this case, a straightfor-
ward solution exists where each node, in a precomputation
phase, performs a complete crawl of its neighborhood DdðvÞ
and selects a uniform random sample S of n nodes, whose
addresses (or access paths) are then stored at the initiating
node. At runtime, the value stored at each sample node is
retrieved and aggregated. Clearly, such a precomputation
phase is computationally intensive. However, this phase
needs to be recomputed infrequently; once the social
network topology has undergone significant changes.

3.2 Assuming Dynamic Networks

We next consider the case where the topology of the
network is dynamic, i.e., where the network structure
changes frequently in addition to the data changes at each
node. In such a case, it makes little sense to precompute
samples of DdðvÞ as such samples go stale very quickly.
Thus, the task of sampling from DdðvÞ has to be deferred to
runtime. This problem is challenging because we cannot
crawl the entire neighborhood DdðvÞ at runtime (this will be
prohibitively slow). It becomes even more challenging by
the fact that we are constrained to simulate random walks
by only following edges of the social network. As we
discuss in Section 6, there are methods to generate a
uniform random subset of nodes of a large graph via
random walks. However, in our case, we can improve upon
generic random walk methods on graphs as we can
leverage the fact that we need to only sample from the
neighborhood DdðvÞ of a node v with a small depth d (i.e.,
just a few links away from v). Consequently, we are able to
develop even more efficient random walk procedures. We
first make a simplifying assumption that the graph
structure of the neighborhood DðvÞ resembles a tree rooted
at v. The solution that we first present will consist of
random walks that are initiated from the root of this tree v
and follow edges toward the leaves of the tree. Later, we
describe how to generalize this basic approach for more
general graph structures that are not trees—essentially by
constraining our random walks to only follow edges of a
spanning tree of DdðvÞ rooted at v.

664 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

TABLE 1
Sampling Notation

3.2.1 Assuming that DdðvÞ is a Tree

Assume that the subgraph of the social network induced by
the nodes in DdðvÞ is a tree T with N nodes (a1, . . . , aN),
where each node is a member of DdðvÞ. Assume that v ¼ a1

is the root and that all edges are directed downward, i.e.,
from root to leaf. The maximum depth of this tree is d.
Recall that each node ai in T contains a value yi which we
wish to aggregate. To allow for better conceptualization, let
us first convert the tree T to another tree T 0, such that the
values are only at the leaf nodes, and not at internal nodes.
We do this as follows: for each internal node ai we add a
leaf bi and connect ai to bi via a new edge. We then move the
value of ai to bi (see Fig. 1). Note that for each internal node
in the original tree, the degree in the new tree has been
increased by one, and that now the number of leaves is N .
To motivate our approach, let us first make the (unrealistic)
assumption that for each node ai, we know sizeðaiÞ the
number of leaves in the subtree rooted at ai. Let us also
assume that each edge of the tree is weighted as follows: Let
the set of children of node ai be Ai. Consider any child node
aj in Ai. Then, weight(ai; aj) is defined as

sizeðajÞP
a2Ai

sizeðaÞ :

It is easy to see that each weight is in [0, 1] and for each
node, the sum of the outgoing edge weights adds up to 1.
Once T has been transformed to T 0, we shall perform
random walks on T 0. A random walk starts from the root
and ends at a leaf. At every internal node, it picks an
outgoing edge with probability equal to its weight. Once the
walk has ended, the leaf node is returned by the random
walk. The following lemma determines the probability of
returning any specific leaf node.

Lemma 1. The probability of the random walk returning any
specific leaf node bi is pðbiÞ ¼ 1=N

Proof. (Sketch) The proof hinges on the way the edge
weights of the tree have been defined. Note that each leaf
is picked with probability equal to the product of the
weights of all edges encountered along the walk. tu

This random walk procedure can be repeated n times

to obtain a uniform random sample (with replacement) of

the nodes in DdðvÞ of size n. Thus, after we have done n

independent random walks, we will have collected n

leaves (may contain duplicates), i.e., the set of n leaves is a

near-uniform random sample of the entire set of N nodes.

Of course, for the above scheme to work, we have to

know the sizes of each node and the weights of each edge

of the tree. Clearly, computing these at runtime will be

prohibitive as it will require a full traversal of the tree.

Therefore, without knowing these quantities in advance,

we are left with no choice but to select each outgoing edge

with equal probability, i.e., 1
jAij . But if we perform the

random walk this way, we shall pick leaf nodes in a

biased manner, because some leaves are more likely to be

destinations of random walks than other leaves. We

explore the effect of this bias in the sampling accuracy

in the experimental section.
Correcting for the bias. One way to correct for this bias

is to let the random walk reach a leaf, but instead of
accepting it into the sample, we toss a biased coin and only
accept it if the coin turns up as heads. So, we have to
determine what should the bias (i.e., the acceptance prob-
ability) of the coin be. Let the probability of reaching the leaf
bi be pðbiÞ (i.e., the product of 1=outdegree of all nodes along
the path from root to leaf). Let maxDeg be the maximum
out-degree of the tree. The following lemma suggests how
to set the acceptance probability of a leaf bi to achieve near-
uniform random sample.

Lemma 2. If the acceptance probability of a leaf bi (i.e., the bias of
the coin) is set to C=pðbiÞ where C � 1=maxDegd, then a
random walk performs near-uniform sampling.

Proof. Let C be a constant that controls the probability with
which a leaf node is returned by a random walk. We
need to find a value of C that ensures the probability of
the random walk returning any specific leaf node bi is the
same for all leaves. It is easy to see that an appropriate
value for C depends on the structure of the tree and
the number of leaves in it, which we cannot assume to be
known. Without any prior knowledge of the tree
structure we can, at the worst case, assume that it is a
full k-ary tree, a tree where each node has either 0 or
k children, depending on whether it is a leaf or an
internal node. It is known that for a full k-ary tree with
height h, the upper bound for the maximum number of
leaves is kh. In our case k ¼ maxDegree and h ¼ d.
Therefore, the maximum number of leaves in a tree on
which our random walks operate would be maxDegreed.
Thus, to ensure near-uniform sampling of any leaf node
we require that C � 1=maxDegreed. Note also that since
C=pðbiÞ represents a probability, it has to be at most 1.
This is guaranteed since pðbiÞ � 1=maxDegd. tu

Assuming that maxDeg is known in advance is perhaps
not that crucial; after all, the maximum degree maxDeg of
the tree can be bounded if one has a reasonable idea of the
maximum degree of the entire social network. Note that
unlike the previous case where each random walk returns a
random node, here we are not always guaranteed that a
random node will be returned. In fact, often a random walk
fails to return a node. The probability of success ps of a
random walk returning nonempty is described by the
following lemma.

Lemma 3. The probability of success of the random walk
returning any specific leaf node bi is ps ¼ C.

PAPAGELIS ET AL.: SAMPLING ONLINE SOCIAL NETWORKS 665

Fig. 1. Transformation of T to T 0.

Proof. The probability of success ps that a random walk
returns a leaf bi is equal to the probability of reaching
that leaf (pðbiÞ) multiplied by its acceptance probability
(C=pðbiÞ). Thus, ps ¼ pðbiÞ � C=pðbiÞ) ps ¼ C. tu

Thus if we iterate this random walk several times and
collect all returned nodes, we will be able to get a near-
uniform random sample of any desired size. The following
lemma quantifies the expected number of random walks
needed to generate a near-uniform sample of size n.

Lemma 4. The expected number of random walks required to
collect a uniform random sample of size n is n=ps.

Proof. The proof hinges on the probability of success ps.
Since the probability that a random walk returns a node
is C, we need n=ps random walks to collect n nodes. tu

3.2.2 Generalizing when DdðvÞ is Not a Tree

For purposes of exposition we have been assuming that the
induced subgraph of the social network over DdðvÞ is a tree;
most induced subgraphs are not trees, but graphs with
higher connectivity. However, we can adopt our solution of
sampling from trees to this specific scenario by ensuring
that the union of all random walks made in collecting a
sample always resembles a tree. To do so, we have to keep a
history of all random walks processed in response to this
query, and make sure that at any point in time, their union
has no cycles (see Fig. 2). More precisely, for each fresh
random walk we have to ensure that it can be partitioned
into two parts; the first part is a prefix of a previous random
walk, while the second part is a random walk that does not
visit a single node that has been visited by earlier random
walks. To comply with the above constraints, when a
random walk is progressing, state information can be
maintained as to whether it is still a prefix of a previous
random walk, or whether it has moved on into the unvisited
region of DdðvÞ. Thus, if the last node aj along the random
walk is a previously visited node, then the set of
neighboring nodes that are candidates for the next random
step will be the neighbors of aj minus the nodes that have
been visited earlier. It is not hard to see that such an effort
will ensure that the union of all random walks is a tree
which is a subset of the graph induced by DdðvÞ.

3.3 Tuning CC

Despite its neatness, our sampling approach suffers one

inherent drawback. Setting such a conservative value of C

(i.e., C � 1=maxDegd) results in an extremely inefficient

process for collecting samples. This is because a very small

C, while ensuring near-uniform random samples, almost

always rejects a leaf node from being included in the

sample, and consequently, numerous random walks may

have to be undertaken before a leaf node is eventually

accepted into the sample. Let us refer to the maximum

value of C that ensures a near-uniform random sample as

Copt (i.e., Copt ¼ 1
maxDegd

). Note that setting C to be larger

than Copt would result in a larger acceptance probability

per node (i.e., C
pðbiÞ), which would eventually result in fewer

random walks needed to generate a sample of desired size

n. However, a larger C is likely to introduce nonunifor-

mity, or bias into the sample. This is because for all leaves

bi since C > Copt it will be C
pðbiÞ >

Copt
pðbiÞ . This means that once

leaves are reached they are more likely to be accepted into

the sample and that are therefore going to be unduly

overrepresented in the sample. Thus, the parameter C can

serve to illustrate an interesting tradeoff between ease of

collecting sample nodes and the bias of the sample

obtained. We further investigate the effect of adjusting

the parameter C and demonstrate this tradeoff between

accuracy and efficacy by running experiments on a

synthetic network of 75k nodes and 450k edges, for

network depth d ¼ 4 and for variable values of C and

sample size n ¼ f400; 1000; 2000g. We report on the

sampling accuracy in terms of relative error RE and

the sampling cost in terms of the number of hops in the

random walks needed to form the sample. The values of C

were arbitrarily selected to clearly exhibit the tradeoff

between accuracy and efficiency. Fig. 3 (left) demonstrates

the effect of C in the sampling accuracy, where as C gets

larger the relative error increases. Meanwhile, Fig. 3 (right)

demonstrates the effect of C in the sampling cost, where as

C gets smaller the number of hops in the random walks

needed to form the sample increases and eventually

renders sampling inefficient. Depending on the application

area, one would need to adjust this parameter to balance

time and accuracy performance according to needs.

A method to select a proper C is discussed next.

3.3.1 Selecting a Proper C

An adequate heuristic would be to set the parameter C to be
equal to 1=N , where N is the number of leaves in the
transformed tree from which we want to sample. Recall that
N represents the number of nodes in the original tree
(before the transformation). This would assume that all
leaves have the same probability to be selected, and as 1=N
is expected to be much smaller than 1=maxDegd, fewer
random walks will be needed to generate a sample of
desired size n. However, we cannot assume that the
number of the nodes in the tree N is known a priori.
Finding N would require to perform an exhaustive search
on the graph, using depth-first-search (DFS) or breadth-
first-search (BFS), but this method is impractical in our
setting. The only feasible approach would be to try to
estimate N . Estimating the size of a tree is a challenging
problem that arises in many domains. It commonly appears
as the problem of estimating the size of backtracking trees
or branch-and-bound procedures for solving mixed integer

666 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

Fig. 2. Random walks that obey tree structure.

programming problems. Knuth [3] was the first to discuss
the problem and proposed a method based on random
probing that would estimate the size of a search tree and
eventually the running time of a backtracking program. In
[4], Cornujols et al. predict the size of a branch-and-bound
search tree by building a simple linear model of the
branching rate using the maximum depth, the widest level
and the first level at which the tree is no longer complete.
Later, Kilby et al. [5] proposed two methods to solve the
problem: one based on a weighted sample of the branches
visited by chronological backtracking and another based on
a recursive method that assumes that the unexplored part of
the search tree will be similar to the part that has already
been explored. Finally, statistical techniques have been
applied to predict the size of search trees; in [6], Kautz et al.
describe how Bayesian methods can be used to build
models that predict the runtimes of constraint satisfaction
algorithms; these predictions can then be used to derive
good restart strategies. Unfortunately, these methods
cannot be applied in our problem. More relevant to our
setting are the methods described in [7], where the Katzir
et al. try to estimate the size of an undirected graph or a
social network. Their methods work by performing random
node sampling and then counting the number of collisions
(pair of identical nodes) or the number of nonunique
elements (elements that have been sampled at least once
before) in the sample. Despite their elegance, these methods
cannot be applied in our case, as they assume that nodes are
sampled from the graph’s stationary probability, which we
cannot assume to be known in our setting. The size of a tree
can also be estimated using a method known as mark and
recapture. This method is used in ecology to estimate the size
of a natural population and involves marking a number
of individuals in a population, returning them to that
population, and subsequently recapturing some of them as
a basis for estimating the size of the population at the time
of marking and release. The main idea hinges on the so
called “birthday paradox” effect. After sampling r nodes
uniformly at random we expect to encounter L � r2=2N
collisions (nodes already picked). Then, an estimate N̂ of N
can be computed by N̂ ¼ r2=2L. However, in order to use
this method nodes need to be sampled uniformly. Going
back to our problem, the following strategy can be followed
to find a proper C.

. Set C to a very small value, that can guarantee
uniform sampling of nodes, such as C ¼ 1=maxDegd.

. Obtain r samples fx; . . . ; xrg using our sampling
methodology, and count the number of collisions L.
A collision is a pair of identical samples. Formally,
let Pi;j to be 1 if xi ¼ xj and 0 otherwise. Then,
L ¼

P
i<j Pi;j.

. Use the mark and recapture method to estimate the
tree size N by N̂ ¼ r2=2L.

. Reset the C parameter to C ¼ 1=N̂ and use this value
for feeding the sampling method in subsequent runs.

We investigate the accuracy of this method by running
experiments on a synthetic network of 75k nodes and
450k edges, for variable network depth d ¼ f4; 5g and for
variable sample size n (expressed as percent of nodes in the
original network). We report on the normalized mean
absolute relative error, i.e., jN 	 N̂j=N , where N is the true
size of the network and N̂ is our estimate of it. Plots were
produced by averaging over 10,000 independent experi-
ments (we experimented with 100 random users and for
each user we estimate the network size at depth d,
100 independent times). Fig. 4 demonstrates that as the
sample size increases the error decreases, while the error
converges faster in the case of the larger network. The
advantage of this method is that taking only a small sample
can guarantee an accurate estimate of N . For example, by
using a sample of 10 percent of the network the estimation
ensures a normalized mean absolute error of less than
20 percent. Note, that in setting C we only require a rough
estimate of the network size, and as such this method is
adequate. Throughout the experimental evaluation we set
the C parameter to be equal to 1=N and do not further
investigate the performance of the tree size estimator.
Estimating the size of a tree or a network is an orthogonal
problem; it is expected that other estimators might be
advantageous to our methods with slight modifications,
such as the ones presented in [7].

4 ALGORITHMS

In this section, we present algorithmic details of our
proposed methods. First, we describe SampleDyn, an
algorithm that is able to compute a near-uniform sample
of users in dynamic social networks. Then, we introduce

PAPAGELIS ET AL.: SAMPLING ONLINE SOCIAL NETWORKS 667

Fig. 3. Effect of C in sampling accuracy (left) and sampling cost (right).

two algorithms, EvalSingle and EvalBatch, that utilize
SampleDyn in order to estimate counts for a set of items in a
user’s vicinity.

4.1 Sampling Dynamic Social Networks

Let DdðvÞ be the vicinity of a user v at depth d. We
introduce the algorithm SampleDyn that takes as input the
user v, the size of the sample n, the network depth d, and a
constant value for parameter C and obtains a near-uniform
random sample of users by performing random walks on
the nodes of DdðvÞ. The pseudocode is given in Algorithm 1.
Let childrenðuÞ denote the nodes that are directly connected
to the current node u and are either nodes that have not
been visited by any of the previous random walks (unseen
nodes) or nodes that extend on the prefix random walk that
has been followed so far. Then, childrenðuÞ [u represents
the set of candidate nodes for the next step of the walk
(line 12). Each of the candidate nodes is selected with the
same probability. Thus, a random walk starts at user v and
ends either when a self-link is followed, a link that connects
a node with itself (line 16) or when a node in depth d has
been reached (line 11). Note that, as the random walk
progresses, state information is maintained regarding
previous walks and visited nodes that ensures the random
walk obeys structural properties of a tree. We require that
T [v has no cycle to represent this information (line 13).
Once a node has been reached it is selected to the sample
with probability equal to the acceptance probability C=ps
(line 17). For example, Fig. 5 shows a network of depth
d ¼ 4 around user v along with a set of nodes that have

been visited by previous walks (light and dark shadowed
nodes) and nodes that have already been selected for the
sample (dark shadowed nodes). Note that the random
walks are forced to obey structural properties of a tree. The
tree is defined by the union of the earlier successfull
random walks (indicated by the directed edges). The
structure of the tree remains valid throughout the current
query evaluation (i.e., for as long as n sample nodes have
been selected). Different tree structures are possible every
time a query is evaluated at v depending on the sequence of
the successful random walks and the underlying network
structure of the user’s vicinity at depth d.

Algorithm 1. Sampling in Dynamic Social Networks

1: procedure SAMPLEDYN(u; n; d; C)

2: T ¼ NULL, samples ¼ 0, Sample array of size n

3: while samples <¼ n do

4: if ðv ¼ randomWalkðu; d; C; T ÞÞ ! ¼ 0 then

5: Sample½samplesþþ�¼ v
6: end if

7: end while

8: end procedure

9: procedure RANDOMWALK(u; d; C; T)

10: depth ¼ 0, ps ¼ 1

11: while depth < d do

12: pick v 2 childrenðuÞ [u with pv ¼ 1
degreeðuÞþ1

13: if T [v has no cycle then

14: add v to T

15: ps ¼ ps � pv
16: if v ¼ u then

17: accept with probability C
ps

18: if accepted then

19: return v

20: else

21: return 0

22: end if

23: else

24: u ¼ v, depthþþ
25: end if

26: end if

27: end while

28: return 0

29: end procedure

4.2 Estimating Item Counts

Recall that our goal, as defined in Problem 2, is to compute
the counts of items in a set X, which are then used to
assume an ordering. We present two approaches to estimate
the ordering of a set of items in DdðvÞ using sampling.

4.2.1 Using Separate Samples

A first approach is to draw a separate independent sample
from DðvÞ and estimate the aggregate counts for each item.
Formally, we introduce an algorithm that for each x 2 X,
obtains an approximate value of

P
i2DdðvÞ count

i
x through

sampling nodes of DdðvÞ. The algorithm takes as input v, d,
C, n and X and returns an array of the approximate counts.
We refer to this algorithm as EvalSingle because it
evaluates a single item at each visit to a sampled node.
The pseudocode is given in Algorithm 2. While such an

668 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

Fig. 5. Example random walks guided by SampleDyn.

Fig. 4. Network size estimation error.

approach is statistically sound, the drawback is efficiency—
this approach is unlikely to allow us to complete the re-
ranking process fast enough to satisfy end users.

Algorithm 2. Counts Estimation—Separate Samples

1: procedure EVALSINGLE(v; d; C; n;X)

2: S array of size n

3: Count array of size jXj
4: for all x 2 X do

5: S ¼ SampleDynðv; n; d; CÞ
6: for all i 2 S do

7: Count½x� ¼ Count½x� þ countix
8: end for

9: end for

10: return Count

11: end procedure

4.2.2 Using the Same Sample

An alternate approach is to draw a sample S only once, and
reuse the same sample to estimate the aggregate counts for
each item x 2 X. We refer to this algorithm as EvalBatch
because it evaluates a batch of items at each visit to a
sampled node. Algorithm 3 presents the pseudocode for
this case. Clearly, this approach will be much faster, since
we need to compute only one sample. Note however, that
though practical, this process is flawed since the same
sample is reused for a set of items, which are likely to
exhibit strong correlations, i.e., a bad sample can affect the
counts of all jXj items. This phenomenon is well studied in
statistics, and is known as simultaneous statistical inference
(see [8]). The classical solution proposed in [8] is to make
Bonferroni corrections to ensure that the estimated counts
of the items fall within their confidence intervals. A similar
problem also arises in sampling-based approximate query
answering techniques. For example, popular approaches in
approximate query answering is to precompute a sample
and use the same sample to answer a stream of aggregation
queries (see [9]). Likewise, due to practical considerations,
our proposed approach is to also reuse the same drawn
sample for estimating the counts of all returned items. We
experimentally evaluate the impact of such correlations and
results indicate that in practice, the errors in the approx-
imations are not unduly severe.

Algorithm 3. Counts Estimation—Same Sample

1: procedure EVALBATCH(v; d; C; n;X)

2: S array of size n

3: Count array of size jXj
4: S ¼ SampleDynðv; n; d; CÞ
5: for all i 2 S do

6: for all x 2 X do

7: Count½x� ¼ Count½x� þ countix
8: end for

9: end for

10: return Count

11: end procedure

4.3 Cost Analysis

Our sampling algorithms provide an alternative to perform-
ing an exhaustive search or crawling on the network of a user
using a depth-first-search or breadth-first-search. Both DFS

and BFS assume that there is a designated initiator node
from which the search starts and define a DFS or BFS tree.
At the end, nodes at distance d from the initiator appear at
level d of the tree. In this paragraph, we present we simple
cost model that helps to analyze and compare the complex-
ity of our basic sampling algorithms to that of crawling.

4.3.1 Cost Model

Let DdðvÞ ¼ ðN;EÞ be the neighborhood of a user v at depth
d, where N is the set of nodes and E the set of links in the
network. Nodes are autonomous in that they perform their
computation and communicate with each other only by
sending messages. Each node is unique and has local
information, such as the identity of each of its neighbors.
We assume that each node handles messages from and to
neighbors and performs local computations in zero time,
meaning that communication delays outweigh local com-
putations on the nodes. The same assumption is made by
Makki and Havas [10]. We evaluate the complexity of our
algorithms using standard complexity measures. The
communication complexity is the total number of messages
sent, while the time complexity is given by the maximum
time elapsed from the beginning to the termination of the
algorithm. We assume that delivering a message over a link
corresponds to traversing an edge to visit a node, a hop, and
that delivering a message over a link (i.e., performing a hop)
requires at most one unit of time. Therefore, for our
algorithms, we use as a surrogate for both communication
and time costs the number of hops performed during the
execution of the algorithm.

Table 2 presents the communication and time complex-
ities of the algorithms. Note that both DFS and BFS
algorithms require at least one message to be sent on each
edge, yielding a communication and time complexity of at
least OðEÞ [11], [12]. On the other hand, our sampling
algorithm has communication and time complexity of
Oðn=ps � dÞ, where d is at most the length of each random
walk (i.e., the number of hops per random walk) and n=ps is
the expected number of random walks required to collect a
uniform sample of size n as shown in Lemma 4. Given that
typically n� N and assuming an appropriate value for
parameter C as discussed before, our sampling algorithm is
expected to outperform both DFS and BFS algorithms for
both the communication and time complexities. We give
examples of performance on typical networks in the
experimental section.

5 EXPERIMENTAL EVALUATION

Having presented our sampling methods and algorithms
we now turn to evaluation. For the needs of our experi-
ments we make a case of a social search application. Let G
be a graph depicting connections between users in a social

PAPAGELIS ET AL.: SAMPLING ONLINE SOCIAL NETWORKS 669

TABLE 2
Algorithm Complexity

network, where each node in the graph represents a user.
For each user we assume availability of a clickthrough log
accumulated over time via browsing. The log, in its most
simple form, at node v, has the form ðq; urlq; countvurlq Þwhere
q is a query, urlq is the url clicked as a result of q and
countvurlq is the number of times urlq has been clicked by v. A
few years ago, it would be difficult to assume that such
a log exists due to privacy issues. However, recently, a
number of Web2.0 services gather such kind of information.
The most notable example might be Google’s web history
service.1 But also, Bing’s and Facebook’s attempts to
incorporate in search results a feature that shows you the
opinion of your friends as it relates to that search, through
the Facebook Instant Personalization feature.2 Therefore, is
reasonable to assume existence of such information. Now,
consider the scenario where a query q is submitted to a
popular search engine by a user v and a set of urls rqv is
returned. A social search algorithm would try to persona-
lize this result. Intuitively, an algorithm might collect
information from v’s social network and use this informa-
tion to rerank the results according to a reranking strategy.
Using G and starting at v we can obtain the total count of
the number of times that each url urlq 2 rqv has been clicked
by consulting the neighborhood of v at some specific depth
(number of hops) d. Then a re-ranking r0qv of rqv is possible
that incorporates the behavior of the users with which v has
some social relationship.

5.1 Description of Data Sets

For the needs of our experimental evaluation, we consider
real and synthetic network topologies along with real and
synthetic user search history logs (i.e., clickthrough data). To
come up with social search logs suitable for our experiments
we had to combine these sources. Below we provide details
on data characteristics and the data collection process.

Network Topologies. In our experiments, we consider
one real and two synthetic network topologies. The real
network topology, epinions-net, is an instance of the
Epinions’3 real graph. The first synthetic topology, uni-
form-net, simulates a uniform random network topology,
while the second synthetic topology, prefatt-net, simulates a
preferential attachment network topology. When generat-
ing the synthetic networks, we set the parameters of the
graph generators so that the formed networks have similar
number of vertices and edges to the real network of
Epinions (The JUNG4 tool has been used to generate the
networks.). Note however that since they are not based on
the same model they depict different topology character-
istics, such as average path length, clustering coefficient,
and degree distribution. Our objective is to study the
application of our sampling-based algorithms under di-
verse assumptions of network connectivity and stress any
interesting differentiation on performance due to network
topology. Table 3 summarizes the characteristics of the
three networks we consider.

User search history logs. We experiment with real and

synthetic user search history logs. For the needs of our

experiments we create real_log by randomly selecting 75,888

users from the AOL data set along with their search history

logs (about 4M queries, 3M urls) [13]. The synthetic log,

synth_log, consists of the same users as the real_log but we

populate user’s history logs with high numbers of queries

and url counts. A summary of these logs is provided in

Table 4.
Formation of final data sets. Thus far, we have come up

with proper network topologies and user search history
logs. In order to generate suitable final data sets for our
experiments we randomly map each of the 75,888 AOL
users in a search history log to the 75,888 nodes of a network
topology. Note that since the focus of our work is on
performance we do not require that “similar” users are
placed in adjacent network nodes. Thus, we do not care for
any semantics of the data destroyed, such as the fact that
friends may have similar interests and so. The objective of
our work is to efficiently collect information in social
networks. In doing so, we consider all users in the network
to be equal, independently on whether they lie a few or
many hops away from the initiator node. In a real setting,
one may make use of such semantics to design a better
reranking algorithm, but this is orthogonal to the objective
of this paper.

5.2 Evaluation Metrics

We assess the performance of our algorithms according to

accuracy and efficiency measures. Accuracy concerns how

well our sampling framework estimates the exact count of a

url or the ordering of a set of urls in the vicinity of a user. To

assess the accuracy in the first case we use the Relative Error

(RE) metric, which is usually employed to express accuracy

of an estimate. Formally, the relative error between an exact

value y and an estimated value ŷ is given by

RE ¼ y	 ŷ
y

����
����:

To assess the accuracy in the second case we employ two

metrics that are usually considered for comparison of

ranked lists, the Normalized Spearman’s Footrule Distance

and the Precision at k. Spearman’s Footrule Distance measures

the distance between two ranked lists. Formally, given two

full lists r0 and r that rank items of the set r, their Spearman

Footrule Distance is given by

670 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

TABLE 3
Network Topologies

TABLE 4
User Search History Logs

1. Google Web History. http://www.google.com/psearch.
2. Facebook Instant Personalization.
http://www.facebook.com/instantpersonalization.
3. Epinions.com is a general consumer review site.
4. JUNG. http://jung.sourceforge.net.

F ðr; r0Þ ¼
X

e2r
jr0ðeÞ 	 rðeÞj:

After dividing this number by the maximum value ð12Þjrj
2,

one can obtain a normalized value of the footrule distance,
which is always between 0 and 1. Precision at k (P@K)
measures the precision at a fixed number of retrieved items
(i.e., top k) of the ordered list r0 and the ordered list r.
Assume TopK and TopK0 are the retrieved items of r and r0,
respectively, then the precision at k is defined as:

P@K ¼ jTopK
0 \ TopKj
k

:

Efficiency concerns the cost of our sampling framework. To
assess the efficiency of our sampling algorithms we use as a
surrogate for cost the number of hops in the random walks
performed to obtain n samples from the network. Formally,
the cost of the sampling is

Cost ¼ #HOPS:

5.3 Experimental Results

5.3.1 Sampling Accuracy

In Section 3, we have seen that performing random walks by
selecting each outgoing edge with equal probability shall
pick leaf nodes in a biased manner. This is because some
leaves, e.g., leaves that are close to the root, are more likely to
be destinations of random walks than other leaves. In our
first set of experiments, we explore the effect of this bias in
the sampling accuracy and compare the performance of the
aforementioned naive sampling method, say Naive, to our
sampling method, EvalSingle. To determine the accuracy
performance of the sampling methods, we design experi-
ments that aim to estimate the count of a predetermined url
in the network of a user. More specifically, we first determine
a target url by submitting a query q to a search engine, such as
Google, and obtaining the top url. Then, we apply EvalSingle
or Naive to quickly compute an estimate of its count inDdðvÞ.
The process is repeated many times for different queries
(typically 100 random queries) and users (typically 100 ran-
dom users) and at each iteration the relative error of the
estimated url count to the exact url count is computed. We
report the average value over all instances. Note that the exact
url count can be easily obtained by exhaustively crawling the
neighborhood of a user, using a breadth-first-search or
depth-first-search algorithm, and aggregating the occur-
ences of the targeted url. We experiment for variable network
topology and sample size n. Fig. 6 presents the results for
network depths d ¼ 4 and d ¼ 5, respectively. Let us first
focus on the behavior of EvalSingle alone and then turn to the
comparison of the sampling methods. In all topologies
EvalSingle is able to estimate the targeted values with a very
small relative error (always smaller than 15 percent).
Furthermore, for a fixed network depth d the sampling
accuracy of EvalSingle increases with the sample size n (i.e.,
the average relative error decreases for larger sample sizes)
and for a fixed sample size n the sampling accuracy
decreases as d increases. The observed behavior is in
accordance with theory. The total populationN (from which
we sample) increases with the network depth d (d
 N) and
from the Theorem 1 is true that the sampling standard error

is proportional to the total population N (sd
 N) and
inversely proportional to the number of samples (sd
 1

n). In
the case of the synthetic network topologies, for a fixed depth
d and fixed sample size S the sampling accuracy in the
uniform-net is better than the one in the prefatt-net. This can be
explained by the fact that the preferential model has a
systematically shorter average path length than the random
graph model [14]. As a result, for a fixed depth d the average
total population N of the prefatt-net is larger than the one of
the uniform-net. SinceN is larger in prefatt-net than in uniform-
net for a fixed d the standard error will also be larger
according to Theorem 1 (sd
 N). In the case of the real
network topology (epinions-net with real_log) the sampling
accuracy results are not directly compared to the results in
the synthetic data. This is due to the fact that the exact url
counts in the real data are much smaller and leverage the
sampling performance. As a result, even if trends are
identical to the ones observed in the synthetic data, slightly
larger absolute errors are demonstrated. Now, going back to
the comparison of the two sampling methods we see in Fig. 6
that in all topologies and for all network depths and sample
sizes, EvalSingle considerably outperforms Naive. This
suggests huge savings in accuracy. The reason for which
Naive performs so poor is that in the computations it utilizes
more and more of the same sampled users, turning the
estimator to be biased toward these sampled users. Remind
that sampling is performed with replacement, thus, the same
node can be selected in more than one random walks. On the
other hand, EvalSingle succeeds in selecting samples in a
near-uniform way, avoiding to a large extent selection of
previously selected nodes. For example, if a sample set of size
n is requested, then the number of distinct samples in the
sample set formed by Naive should typically be much lower
than the number of distinct samples in the sample set formed
by EvalSingle. This effect is demonstrated in Fig. 7, where the
number of distinct samples in the sample sets formed by
Naive and EvalSingle is showed, for d ¼ 4 and d ¼ 5,
respectively. Clearly, EvalSingle succeeds on considerably
alleviating the bias of Naive by selecting more distinct
samples into the sample sets. This is true for all network
topologies tested and for variable sample sizes.

5.3.2 Sampling Cost

EvalSingle performs considerably better in terms of accuracy
than a naive sampling method, but as many of the
performed random walks end up rejecting a selected leaf
node, it can be expensive. In this experiment, we evaluate
the cost of our sampling method against the naive sampling
method and against the cost of crawling the entire
neighborhood of a user. As discussed in Section 3, we use
as a surrogate for cost the number of hops that the algorithm
needs to perform before it ends. Crawling of the entire
neighborhood of a user can be performed with either of the
depth-first-search or breadth-first-search algorithms. As
DFS and BFS have the same performance—linear to the
size of the graph—we report only the cost for DFS, which is
equal to the number of edges in the spanning tree that has
the user as root and extends to a limited depth d. We
experiment for variable network topology, network depth d
and sample size n. Results are shown in Fig. 8, where a

PAPAGELIS ET AL.: SAMPLING ONLINE SOCIAL NETWORKS 671

balance of our sampling method between the naive
sampling and the exhaustive crawling methods is illu-
strated. In all topologies and for all network depths and
sample sizes, the performance of the naive sampling is
better. This is expected, as the naive sampling sacrifices
accuracy for efficiency. On the other hand, our sampling
method retains high accuracy while at the same time
performs considerably better than the exhaustive method in
all settings and, as such, suggests huge savings in efficiency.
The savings of the sampling method are greater for larger
network sizes, where the number of nodes is also larger;
savings are greater, as well, when smaller sample sizes are
needed, since fewer random walks are required to form the
sample. This is true for all network topologies. For the rest
of the experimental evaluation we set the parameter d ¼ 4.
This is a reasonable choice for our research. For d ¼ 1 and
d ¼ 2 the network populations are small and sampling is
not needed. For d ¼ 4 we are able to reach almost all nodes
in the networks we examine, thus, there is no need to
consider d ¼ 5 or larger. Between d ¼ 3 and d ¼ 4 we choose
d ¼ 4 that will increase the network population and there-
fore make the approximation problem harder.

5.3.3 Batch Sampling Effect

In Section 4, we discussed how sampling can be used to
estimate the popularity (ordering) of a set of items X in the
network of a user and introduced the idea of using the
same sample for estimating the count for each item (instead
of using a fresh sample for each item). This method is much

faster as it needs to compute only one sample and
computes estimates for all urls at once (batch processing).
However, it is also flawed since the same sample is reused
for a set of urls, which are likely to exhibit strong
correlations. In this set of experiments, we evaluate the
impact of such correlations for both the naive sampling and
our sampling method. In particular, we compare the
accuracy of NaiveSingle to NaiveBatch and the accuracy of
EvalSingle to EvalBatch. These algorithms represent the
single and the batch way of estimating the ordering of a set
of items, using the naive sampling and our sampling
method, respectively. Accuracy results reported are average
relative errors over a number of runs for random users and
queries. At each run a set of top-k urls is determined, where
k ¼ 10, by submitting a query q to Google and retrieving the
top-k results. Then, EvalSingle, EvalBatch, NaiveSingle, and
NaiveBatch compute the estimates of the url counts. The
estimates are then compared to the exact counts to find the
relative error of each method. Fig. 9 presents the results of
the experiment for the naive sampling and our sampling
method, respectively. For each method, we experiment for a
synthetic network (prefatt-net with synth_log) and a real
network (prefatt-net with synth_log) for network depth d ¼ 4
and variable sample size n. Results for both synthetic and
real network topologies show that NaiveBatch has similar
behavior to NaiveSingle and EvalBatch has similar behavior
to EvalSingle, which indicates that using the same sample
for evaluating url counts has a low effect in the sampling
accuracy. This small effect is more obvious in the case of the

672 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

Fig. 7. Sampling Accuracy: EvalSingle versus Naive, # Distinct Samples.

Fig. 6. Sampling Accuracy: EvalSingle versus Naive, RE.

real network topology (epinions-net with real_log). This can
be explained by the fact that the real data might exhibit
some sort of correlation in the urls (while, in the synthetic
topologies, we tried to avoid any data correlation by
assigning queries and urls to users randomly). As afore-
mentioned, the sampling accuracy results in the real data
are not directly comparable to the results in the synthetic
data. This is due to the fact that the url counts in the real
data are much smaller and leverage the sampling perfor-
mance. As a result, even if trends are similar to the ones
observed in the synthetic data, larger absolute errors are
demonstrated. Note, as well, that in the case of synthetic
networks we only present the results for prefatt-net and omit
the details for uniform-net. This is because similar trends
were demonstrated over the two synthetic network
topologies. The preferential attachment model is favored
since it widely exists in the social information networks of
interest and is also more challenging for our sampling
methods. From now on, whenever similar trends are
demonstrated between the two synthetic network topolo-
gies, we only present the results for prefatt-net due to space
constraints. Since the errors in the computation of estimates
that are due to the use of the same sample are not unduly
severe, our proposed approach is to use batch sampling for
estimating the counts of many urls at once, which is more
efficient. Fig. 9 illustrates as well how EvalBatch behaves
better than NaiveBatch, where as the number of samples
increases, EvalBatch becomes more accurate; this is no true

for NaiveBatch. We further investigate the accuracy of
EvalBatch and NaiveBatch in estimating the ordering of
items in the next paragraph.

5.3.4 Ordering Accuracy

The end objective of our method is to approximate the
ordering of a set of urls in a user’s neighborhood and not
necessarily their exact counts. In this set of experiments we
assess the ordering accuracy of the batch sampling
algorithms. Formally, for each query q we retrieve the
top-k urls returned by a search engine, such as Google. Let
this set of urls be rq. For a given user v and network depth d
we first compute the ordering rqv of these urls in the DdðvÞ
of v according to their exact counts. Then, we apply any of
the batch sampling methods (NaiveBatch or EvalBatch) to
estimate the url counts of each urlq 2 rq and come up with
an approximate ordering r0qv . The two lists, rqv and r0qv , are
then compared using the Normalized Spearman’s Footrule
Distance and the Precision at k metrics. Results are averaged
over a number of random users and queries. Fig. 10
illustrates the accuracy performance of NaiveBatch and
EvalBatch in estimating the correct order of the top-k urls,
where k ¼ 10. For each method we report the Normalized
Spearman’s Footrule Distance between the exact and the
approximate ordering. We make cases of a synthetic
network (prefatt-net with synth_log) and a real network
(epinions with real_log) for d ¼ 4 and variable sample size n.
In all cases and in both networks, EvalBatch ourperfoms

PAPAGELIS ET AL.: SAMPLING ONLINE SOCIAL NETWORKS 673

Fig. 9. Batch sampling effect: naive sampling (left), our sampling (right).

Fig. 8. Sampling cost: Naive versus EvalSingle versus Crawling.

NaiveBatch the distance is smaller, signifying a more
accurate sampling method. Moreover, as the sample size
increases EvalBatch the distance decreases, for both network
types, which means that our sampling method becomes
increasingly more accurate. NaiveBatch tends to behave
better for larger sample sizes, as well, but this is an artifact
of the number of unique users that is able to sample during
the sampling process, as such its behavior is not always
expected. We further illustrate the accuracy performance of
the two methods in correctly estimating the top-k items in
the lists. We report on the Precision at k (P@K) of the two
methods in the case of a synthetic and a real network
(See Fig. 11) for d ¼ 4 and variable sample size n. In all cases
and for both networks, EvalBatch ourperfoms NaiveBatch as
it is able to retain higher precision, which increases as well
with the size of the sample. Note, again, that in the case of
the real network topology (epinions-net with real_log) the
ordering accuracy results are not directly comparable to the
results in the synthetic network. This is due to the fact that
the exact url counts in the real data are much smaller and
leverage the sampling performance. As a result, even if
trends are identical to the ones observed in the synthetic
data, slightly worse performance of the ordering accuracy is
demonstrated in the course of both metrics.

6 RELATED WORK

Our work is related to work on sampling large graphs via
random walks. Generating a uniform random subset of nodes
of a graph via random walks is a well studied problem; it
frequently arises in the analysis of convergence properties
of Markov chains (e.g., see [15], [16], [17], [18]) or the
problem of sampling a search engine’s index [19], [20]. The
basic idea is to start from any specific node, say v, and
initiate a random walk by proceeding to neighbors selected
at random at every iteration. Let the probability of reaching
any node u after k steps of this walk be pðuÞ. It is known that
if k is suitably large (the value of k depends on the
topological properties of the graph), this probability
distribution is stationary (i.e., it does not depend on the
starting node). However, this stationary distribution is not
uniform; the probability associated with each node is
inversely related to its degree in the graph. This stationary
distribution can be made uniform using techniques such as
the Metropolis Hastings algorithm (see [21]), or using

rejection sampling (where, after reaching a final node, the
node is included in the sample with probability inversely
proportional to its degree). This process can be repeated to
obtain random samples of a desired size. Similar ap-
proaches have been employed in [22] where Hastings
describes sampling-based methods to efficiently collect
information from users in a social graph and in [23] where
sampling techniques are used to collect unbiased samples of
Facebook. Likewise, in [24] Katzir et al. design algorithms
for estimating the number of users in large social networks
via biased sampling, and in [25] sampling methods are
proposed to approximate community structures in a social
network. Our research presents ways to improve upon
these generic random walk methods on graphs by lever-
aging the fact that we need to sample from the neighbor-
hood of a node v (i.e., a few links away from v).

Our work is also related to work on personalized and social
search. The premise of personalized search is that by
tailoring search to the individual improved result accuracy
may be brought off. A vast amount of literature on search
personalization reveals significant improvement over tradi-
tional web search. In [26], the CubeSVD approach was
developed to improve Web search by taking into account
clickthrough data of the type “user, query, url.” Further
studies showed that taking into account such data and
building statistical models for user behavior can signifi-
cantly improve the result ranking quality [27], [28]. Other
approaches exist, as well, that utilize some notion of
relevance feedback to rerank web search results [29], [30].
Social search informed by online social networks has
actually gained attention as an approach toward persona-
lized search. In a sense, utilizing information from one’s
social environment to improve on user satisfaction is a form
of “extended” personalization, with the extent being
defined as a function of the neighborhood of an individual
in the network. Many ideas have been suggested to realize
online social search; from search engines that utilize
humans to filter the search results [31], to systems that
utilize real-time temporal correlations of user web history
logs [32], [33], to tag-based social search systems [34].
Analyses suggest that integration of social search models
improves the overall search experience. Our research is
complementary as we aim to offer performance improve-
ments, via sampling, to the process of collecting information
from user logs by exploring the graph structure offered by a
social network.

7 CONCLUSIONS

Our research suggests methods for quickly collecting
information from the neighborhood of a user in a dynamic
social network when knowledge of its structure is limited
or not available. Our methods resort to efficient approx-
imation algorithms based on sampling. By sampling we
avoid visiting all nodes in the vicinity of a user and thus
attain improved performance. The utility of our approach
was demonstrated by running experiments on real and
synthetic data sets. Further, we showed that our algorithms
are able to efficiently estimate the ordering of a list of items
that lie on nodes in a user’s network providing support to
ranking algorithms and strategies. Despite its competence,

674 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

Fig. 10. Ordering accuracy: distance between lists.

our work inherits limitations of the sampling method itself

and is expected to be inefficient for quantities with very low

selectivity. A similar problem arises in approximately

answering aggregation queries using sampling. Solutions

there rely on weighted sampling based on workload

information [35]. However, in our context where data

stored at each node are rapidly changing this method is not

directly applicable. Our algorithms assume that informa-

tion for each user in a network, such as web history logs, is

available. Access to personal information infringes on user

privacy and, as such, privacy concerns could serve as a

major stumbling block toward acceptance of our algo-

rithms. Systems that utilize our algorithms should adhere

to the social translucence approach to designing social

systems that entail a balance of visibility, awareness of

others, and accountability [36].

REFERENCES

[1] A. Mislove, K.P. Gummadi, and P. Druschel, “Exploiting Social
Networks for Internet Search,” Proc. Fifth Workshop Hot Topics in
Networks (HotNets), 2006.

[2] W.G. Cochran, Sampling Techniques, third ed. John Wiley, 1977.
[3] D.E. Knuth, “Estimating the Efficiency of Backtrack Programs,”

Math. of Computation, vol. 29, no. 129, pp. 121-136, 1975.
[4] G. Cornujols, M. Karamanov, and Y. Li, “Early Estimates of the

Size of Branch-and-Bound Trees,” INFORMS J. Computing, vol. 18,
pp. 86-96, 2006.

[5] P. Kilby, J. Slaney, S. Thiébaux, and T. Walsh, “Estimating Search
Tree Size,” Proc. Nat’l Conf. Artificial Intelligence (AAAI), 2006.

[6] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman,
“Dynamic Restart Policies,” Proc. 18th Nat’l Conf. Artificial
Intelligence (AAAI), 2002.

[7] L. Katzir, E. Liberty, and O. Somekh, “Estimating Sizes of Social
Networks via Biased Sampling,” Proc. 20th Int’l Conf. World Wide
Web (WWW), 2011.

[8] R.G. Miller, Simultaneous Statistical Inference. Springer Verlag, 1981.
[9] M.N. Garofalakis and P.B. Gibbons, “Approximate Query Proces-

sing: Taming the Terabytes,” Proc. 27th Int’l Conf. Very Large Data
Bases, Nov. 2001.

[10] S.A.M. Makki and G. Havas, “Distributed Algorithms for Depth-
First Search,” Information Processing Letters, vol. 60, no. 1, pp. 7-12,
1996.

[11] T.-Y. Cheung, “Graph Traversal Techniques and the Maximum
Flow Problem in Distributed Computation,” IEEE Trans. Software
Eng., vol. SE-9, no. 4, pp. 504-512, July 1983.

[12] B. Awerbuch and R.G. Gallager, “A New Distributed Algorithm to
Find Breadth First Search Trees,” IEEE Trans. Information Theory,
vol. 33, no. 3, pp. 315-322, May 1987.

[13] C.T.G. Pass and A. Chowdhury, “A Picture of Search,” Proc. First
Int’l Conf. Scalable Information Systems (InfoScale), 2006.

[14] R. Albert and I. Barabasi, “Statistical Mechanics of Complex
Networks,” Modern Physics Rev., vol. 74, p. 47, 2002.

[15] C. Gkantsidis, M. Mihail, and A. Saberi, “Random Walks in Peer-
to-Peer Networks: Algorithms and Evaluation,” Performance
Evaluation, vol. 63, no. 3, pp. 241-263, 2006.

[16] M. Ajtai, J. Komlos, and E. Szemeredi, “Deterministic Simulation
in Logspace,” Proc. 19th Ann. ACM Symp. Theory of Computing
(STOC), 1987.

[17] R. Impagliazzo and D. Zuckerman, “How to Recycle Random
Bits,” Proc. 30th Ann. Symp. Foundations of Computer Science
(FOCS), 1989.

[18] D. Gillman, “A Chernoff Bound for Random Walks on Expander
Graphs,” SIAM J. Computing, vol. 27, no. 4, pp. 1203-1220, 1998.

[19] Z. Bar-Yossef and M. Gurevich, “Random Sampling from a Search
Engine’s Index,” Proc. 15th Int’l Conf. World Wide Web (WWW),
2006.

[20] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz,
“Approximating Aggregate Queries About Web Pages via
Random Walks,” Proc. 26th Int’l Conf. Very Large Data Bases
(VLDB), 2000.

[21] W. Hastings, “Monte Carlo Sampling Methods Using Markov
Chains and Their Applications,” Biometrika, vol. 57, no. 1, pp. 97-
109, 1970.

[22] G. Das, N. Koudas, M. Papagelis, and S. Puttaswamy, “Efficient
Sampling of Information in Social Networks,” Proc. ACM Work-
shop Search in Social Media (SSM), 2008.

[23] M. Gjoka, M. Kurant, C.T. Butts, and A. Markopoulou, “Walking
in Facebook: A Case Study of Unbiased Sampling of Osns,” Proc.
INFOCOM, 2010.

[24] L. Katzir, E. Liberty, and O. Somekh, “Estimating Sizes of Social
Networks via Biased Sampling,” Proc. 20th Int’l Conf. World Wide
Web (WWW), 2011.

[25] A.S. Maiya and T.Y. Berger-Wolf, “Sampling Community Struc-
ture,” Proc. 19th Int’l Conf. World Wide Web (WWW), 2010.

[26] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen, “Cubesvd: A
Novel Approach to Personalized Web Search,” Proc. 14th Int’l
Conf. World Wide Web (WWW), 2005.

[27] J. Teevan, S.T. Dumais, and E. Horvitz, “Personalizing Search via
Automated Analysis of Interests and Activities,” Proc. 28th Ann.
Int’l ACM SIGIR Conf. Research and Development in Information
Retrieval (SIGIR), 2005.

[28] E. Agichtein, E. Brill, and S. Dumais, “Improving Web Search
Ranking by Incorporating User Behavior Information,” Proc. 29th
Ann. Int’l ACM SIGIR Conf. Research and Development in Information
Retrieval (SIGIR), 2006.

[29] Z. Dou, R. Song, and J.-R. Wen, “A Large-Scale Evaluation and
Analysis of Personalized Search Strategies,” Proc. 16th Int’l Conf.
World Wide Web (WWW), 2007.

[30] Q. Wang and H. Jin, “Exploring Online Social Activities for
Adaptive Search Personalization,” Proc. 19th ACM Int’l Conf.
Information and Knowledge Management (CIKM), 2010.

[31] D. Horowitz and S.D. Kamvar, “The Anatomy of a Large-Scale
Social Search Engine,” Proc. 19th Int’l Conf. World Wide Web
(WWW), 2010.

[32] A. Papagelis, M. Papagelis, and C.D. Zaroliagis, “Iclone: Towards
Online Social Navigation,” Proc. ACM 19th Conf. Hypertext and
Hypermedia (HT), 2008.

PAPAGELIS ET AL.: SAMPLING ONLINE SOCIAL NETWORKS 675

Fig. 11. Ordering accuracy: precision at K for synthetic (left) and real (right) network.

[33] A. Papagelis, M. Papagelis, and C. Zaroliagis, “Enabling Social
Navigation on the Web,” Proc. IEEE/WIC/ACM Int’l Conf. Web
Intelligence and Intelligent Agent Technology (WI-IAT), 2008.

[34] R. Wetzker, C. Zimmermann, C. Bauckhage, and S. Albayrak, “I
Tag, You Tag: Translating Tags for Advanced User Models,” Proc.
ACM Third Int’l Conf. Web Search and Data Mining (WSDM), 2010.

[35] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V.R. Narasayya,
“Overcoming Limitations of Sampling for Aggregation Queries,”
Proc. 17th Int’l Conf. Data Eng. (ICDE), 2001.

[36] T. Erickson and W.A. Kellogg, “Social Translucence: An Approach
to Designing Systems that Support Social Processes,” ACM Trans.
Computer-Human Interaction, vol. 7, no. 1, pp. 59-83, 2000.

Manos Papagelis received the BSc and MSc
degrees from the University of Crete, in Greece.
During the graduate studies, he was also
affiliated with the Institute of Computer Science,
FORTH, in Greece, working as a research
fellow. Currently, he is working toward the
PhD degree at the University of Toronto. His
research interests include social media, data
mining and knowledge discovery, databases,
search, recommendation algorithms and trust,

and computational social science.

Gautam Das received the PhD degree in
computer science from the University of Wiscon-
sin, Madison, in 1990. He is a professor in the
Computer Science and Engineering Department,
University of Texas, Arlington. Before joining UT-
Arlington, he held positions at Microsoft Re-
search, Compaq Corporation, and the University
of Memphis. His research interests include data
mining and knowledge discovery, databases,
algorithms, and computational geometry. His

research has been supported by the US National Science Foundation
(NSF), US Office of Naval Research (ONR), and industries including
Microsoft, Nokia, and Cadence. He is a member of the IEEE.

Nick Koudas received the bachelor’s degree
from the University of Patras, Greece, the MSc
degree from the University of Maryland at
College Park, and the PhD degree from the
University of Toronto. He is a faculty member
in the Computer Science Department at the
University of Toronto. He holds more than
20 patents, and has published more than
100 research publications in the areas of
database systems, text analytics, and informa-

tion mining. He serves on the editorial review boards of four scientific
journals related to data management systems and data analysis.
Before joining U of T, he was a member of AT&T’s research
laboratories’ technical staff. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

676 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

