
Suggesting Ghost Edges for a Smaller World

Manos Papagelis
University of Toronto

papaggel@cs.toronto.edu

Francesco Bonchi
Yahoo! Research

bonchi@yahoo-inc.com

Aristides Gionis
Yahoo! Research

gionis@yahoo-inc.com

ABSTRACT
Small changes in the network topology can have dramatic effects on
its capacity to disseminate information. In this paper, we consider
the problem of adding a small number of ghost edges in the network
in order to minimize the average shortest-path distance between
nodes, towards a smaller-world network. We formalize the prob-
lem of suggesting ghost edges and we propose a novel method for
quickly evaluating the importance of ghost edges in sparse graphs.
Through experiments on real and synthetic data sets, we demon-
strate that our approach performs very well, for a varying range of
conditions, and it outperforms sensible baselines.
Categories and Subject Descriptors [H.3.4]: Systems and Soft-
ware - Information networks
General Terms Algorithms, Peformance, Human Factors
Keywords Graph Augmentation, Social Networks, Small World

1. INTRODUCTION
The way that information disseminates in a social network de-

pends, to a great extent, on its topology. As a matter of fact, small
changes in the network topology can have dramatic effects on how
efficiently information spreads among individuals. In this paper,
we consider the problem of adding a small number of ghost edges,
i.e., edges between existing nodes in the graph that could exist
but have not yet been realized, with the objective of improving
the network efficiency of information propagation. While hav-
ing plenty of choices for measuring the network efficiency, we fo-
cus on a structural feature, namely the average all-pairs shortest
path distance L̄(G). Minimizing L̄(G) gives smaller-world net-
works [4], in which information can travel from one node to another
by traversing a smaller number of intermediate edges, and distin-
guishes an easily negotiable network from one which is inefficient,
with a network with shorter L̄(G) being more desirable. Now, let
G(V,E) be a connected undirected graph and assume that we are
allowed to augment G with a small number of edges. Note that,
adding edges in a network results in altering some of the shortest
paths for some pairs of nodes in the graph. It is worth noting that
while adding long-haul edges may bring a large gain in terms of
connectivity for some node pairs (the new shortest path connect-
ing them will be much shorter), long-haul edges are likely to affect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

(a) G = (V,E), |R| = k (b) Gaug = (V,E ∪R)

Figure 1: The problem: (a) the input consists of G and an inte-
ger k, (b) the augmented graph Gaug is a possible output. The
goal is to find the set of ghost edges R that minimizes L̄(Gaug).

the shortest path of only a few pairs. On the other hand, suggest-
ing short-haul, intra-community edges is likely to affect the shortest
path length of many node pairs, but the gain in connectivity for each
of them might be limited (the new shortest path connecting them
will not be much shorter). Therefore in trying to suggest edges to
be added to G we are facing an interesting trade-off. We are now
in position to formally define the problem of interest in this paper:

PROBLEM 1. Let G(V,E) be a connected, undirected graph,
and let L̄(G) be the average all-pairs shortest path length in G.
Let R ⊆ V × V \ E where |R| ≤ k be a set of candidate ghost
edges for augmentation. If Gaug = (V,E ∪ R) is the augmented
graph of G, then the objective is, given G and an integer k, to
determine the subset of edges R that minimizes L̄(Gaug).

This is a challenging problem, as traditional graph augmentation
problems, where we ask to find a minimum-cost set of edges to add
to a graph to satisfy a specified property, such as biconnectivity,
have been shown to be NP-complete [2, 7]. In the case that the
problem is considered with a hard limit on the number of edges to
be added, such as in [1, 5], authors observe a relation between the
single-source version of the problem, where we want to minimize
the largest distance from a given source vertex, and the well-known
k-median problem. In [1], the focus is on minimizing the diameter
of the network, while in [5] the suggested edges are all incident to
a single node. The problem draws connections, as well, to the link
revival problem [6]. Our methods can be adopted in a variety of
strategies for speeding up communication or increasing the relia-
bility of a network, and as such, can form the core component of
many interesting applications. To name a few, they can be used in
algorithms that suggest friends in a social network with the global
objective of bringing anyone closer enabling efficient information
dissemination or in algorithms that suggest new edges in a network
with the global objective of destroying its clustering structure.

2. ALGORITHMS
In this section, we describe algorithms that solve the problem of

interest; they take as input a graph G and a constant k and return a
set R of the top-k ghost edges for augmentation. Central to the al-
gorithms is the concept of the utility of an edge. Let Uxy represent
a measure of the utility of adding an edge (x, y) ∈ C = V ×V \E
inG. The measure of the utility Uxy represents the gain in decreas-
ing the average shortest path length of the network. To evaluate
Uxy , we need to recompute the shortest paths between all pairs of
vertices s, t ∈ V . This is because a previously shortest path con-
necting s, t may now need to include the newly added edge (x, y).
Let `(x, y) and `′(x, y) represent the length of the shortest path be-
tween x and y in G and Gaug respectively. It is easy to see that
addition of an edge (x, y) will always decrease the average short-
est path length of the network. We can compute the utility Uxy of
adding an edge (x, y) by summing up the differences in the shortest
path length of any pair s, t ∈ V in G and Gaug respectively:

Uxy =
∑

(s,t)∈V×V \E

(`(s, t)− `′(s, t))

2.1 Greedy Algorithm
We first describe a general greedy algorithm where all possible

candidate ghost edges are considered and an edge is selected in
each iteration that lowers the average shortest path length of the
graph as much as possible (locally optimal choice). The algorithm
operates in k rounds. In each round i, the algorithm determines the
edge with the highest utility and adds it to the set of the top-k edges
to be suggested for augmentation. Equivalently, this means that the
edge selected in round i is the one that minimizes the average short-
est path length in this round and for this graph. To find this edge,
the algorithm iterates over all candidate ghost edges e ∈ C and
estimates the associated utility Ue by adding the edge to the graph
and recomputing the new average shortest path length in the aug-
mented graph. Computation of the utility of each candidate ghost
edge takes O(n3) time (equivalent to running the Floyd-Warshall
algorithm one time), there are |C| = n(n − 1)/2 candidate ghost
edges to be considered in each round i, i.e., O(n2), and there are
k rounds, thus the Greedy algorithm takes O(kn2n3) or O(kn5)
time to complete. However, it is possible to omit k if instead of
computing the best ghost edge, one at a time, we use the already
computed edge utilities from the first iteration and determine the
best k ghost edges all at once (batch processing). While this variant
is expected to be faster, it will affect the quality of edges suggested,
as inclusion of a candidate ghost edge may lower the utility of a
subsequent ghost edge.

2.2 Heuristic Method
It’s easy to see, that in the general case the addition of an edge

(x, y) to G, alters the shortest path lengths for many pairs of ver-
tices (s, t) with s ∈ V and t ∈ V . However, a large number of the
shortest paths are not affected by the addition. Let us now make
a simplifying assumption that if pst =< x1, x2, ..., xn > is the
shortest path between s and t in G then both x and y belong in pst

(i.e., they are nodes in the existing shortest path between s and t)
(see Figure 2). The premise of our assumption is that at least as
good candidate ghost edges can still be found despite the fact that
we constrain the set of (s, t) pairs that depend on edge (x, y) to be
pairs that their existing (s, t)-shortest path inG passes through both
nodes x and y. Let this smaller set of (s, t) pairs that depend on a
candidate edge (x, y) be D(x, y). It’s easy to see that this assump-
tion does not always hold (see Figure 2), however, this assumption

Figure 2: The (s, t) pair would benefit from both the ghost edge
(x, y) and (x′, y′). But due to our simplifying assumption (s, t)
belongs to D(x, y) and not to D(x′, y′).

is unlikely to harm the final solution set. This is especially true in
the case of sparse graphs where the shortest paths between any two
nodes are more prominent. We show in the experimental evaluation
that our algorithm performs very well in practice. This assumption
suggests large savings in the computation of the utility Uxy , since
now we need to only sum up the differences in the shortest path
length of a much smaller set of pairs (s, t) ∈ D(x, y), as follows:

Uxy =
∑

(s,t)∈D(x,y)

(`(s, t)− `′(s, t))

=
∑

(s,t)∈D(x,y)

((`(s, x) + `(x, y) + `(y, t))

− (`(s, x) + `′(x, y) + `(y, t)))

=
∑

(s,t)∈D(x,y)

(`(x, y)− `′(x, y))

=
∑

(s,t)∈D(x,y)

(`(x, y)− 1)

Note that the utility Uxy eventually depends on two factors: (a)
the size of the set D(x, y) (i.e., the number of (s, t) shortest paths
affected by (x, y) in Gaug), and (b) the length `(x, y) in G (i.e.,
the shortest path length of x, y in G).

We are now in position to describe our heuristic algorithm (see
Algorithm 1) that can speed up the process of finding a good enough
solution to the problem by incrementally computing the utility Uxy

of each candidate edge. The algorithm first uses a modification
of the classic Johnson’s Algorithm that does not only provide the
lengths of the paths between all pairs of vertices, but also recon-
structs the actual path between any two endpoint vertices. The al-
gorithm works in O(n3) time and stores all (s, t) paths of G in
P . For each path p ∈ P the algorithm uses a δ-size window to
determine the x and y endpoints of a candidate edge (x, y) and in-
crementally updates its utilityUxy . Each time a ghost edge (x, y) is
encountered in a path p an increment equal to (δ−1) is contributed
to its total utility. Note that δ is a variable that defines the size of
the current δ-size window, and that for each path p ∈ P takes val-
ues that range from δ = 2 (i.e., consider ghost edges between not
adjacent nodes in G) to δ = l, where l is the length of the current
path p. It’s easy to see that the maximum δ to be considered in the
whole process will be equal to the diameter d of G, which is de-
fined as the longest shortest path between any two nodes in G, so
the range of values of δ is 2 ≤ δ ≤ d. In the end of the procedure,
for each candidate ghost edge (x, y) considered, the algorithm has
associated a utility value Uxy . Finally, the algorithm determines
the top-k candidate edges by sorting the edges on their Uxy value
and returning the first k.

Algorithm 1 takes O(n3) + O(n2L̄(G)L̄(G)) or just O(n3))
time to complete. First, it requires O(n3) time to find all paths in
G (equivalent to running the Floyd-Warshall algorithm one time).
Then for each path (i.e., O(n2)) needs to vary the δ-size of the
window (i.e, O(L̄(G))) and slide the window over the path p (i.e.,
O(L̄(G))).

Algorithm 1 Heuristic (G, k)

1: procedure HEURISTIC(G, k)
2: G: Social Graph G(V,E)
3: C: The set of candidate edges for addition
4: TopK ← ∅
5: C ← ∅
6: P = getAllPairsShortestPaths(G)
7: for all p ∈ P do
8: l = length(p)
9: /* Variable size of window */

10: for δ = 2 to l do
11: /* Slide a δ-size window over nodes of p */
12: for i = 0 to l − δ do
13: x = p[i]
14: y = p[i+ δ]
15: if (x, y) /∈ C then
16: Uxy = (δ − 1)
17: add < (x, y), Uxy > in C
18: else
19: update < (x, y), Uxy + (δ − 1) > in C
20: Sort C on the Uxy value descending
21: return Top− k in C

2.3 Heuristic Sampling-based Method
Our Heuristic algorithm is much faster than the Greedy algo-

rithm, but it’s still impractical for very large graphs as it requires
that all-pairs shortest paths can be efficiently computed (O(n3)).
In this section we describe a sampling-based variant of our heuris-
tic, based on the assumption that even a limited number of shortest
paths could provide a good approximation of the utility of each
edge Uxy . Our sampling method works as follows: we first uni-
formly sample Q sources Q = {q1, ..., qq}; then, starting from a
source qi, i = 1, ..., q, we execute the Dijkstra algorithm and com-
pute the single source shortest path tree from all qi to all nodes x in
the graph. Ideally, we would like to sample uniformly at random a
few shortest paths from the set of all available ones. However, the
way we perform the sampling is likely to introduce bias, as some
paths are more likely to exist in the shortest path trees of sampled
sources [3]. But, in our setting, we are only interested in suggesting
a few ghost edges with very high utility, and these edges are ex-
pected to be part of many shortest paths, so it’s expected that they
will be sufficiently represented in the sampled paths. We experi-
mentally assessed the effect of this bias and found it to be minor.
Once we have obtained a set of shortest paths using our sampling
method, we feed the Algorithm 1 (line 6). The rest of the algorithm
remains the same. The point is that the above computation is rela-
tively efficient, since instead of computing all-pairs shortest paths,
computes q times the single-source shortest-path Dijkstra. So the
overall running time is O(q(m+ nlogn)).

3. EXPERIMENTAL EVALUATION
For the needs of our experimental evaluation we consider both

real (karate, dolphins, football, netscience, yeast) and synthetic
(ba-s, ba-m, ba-l) network topologies that represent connected, undi-
rected, unweighted graphs (Table 1). We assess the performance of
the various methods according to accuracy (how well a method
suggests a set of k ghost edges) and efficiency (how fast a method
suggests a set of k ghost edges) measures. To assess the accuracy
we define a gain metric, which expresses the percentage change
of L̄(G) before and after augmention. To assess the efficiency we
measure the execution time, in milliseconds. Given G and k, we
assess the performance of the following methods:

Table 1: Networks
Name Nodes Edges Ghost Edges Density L(G)
karate 34 78 483 0.139 2.408
dolphins 62 159 1732 0.084 3.357
football 115 616 5939 0.093 2.508
netscience 379 914 70717 0.012 6.042
yeast 2224 7049 2464927 0.003 4.376
ba-s 50 49 1176 0.040 4.640
ba-m 500 499 124251 0.004 7.398
ba-l 1000 999 498501 0.002 8.132

Greedy-S: This is the greedy method described in paragraph 2.1.
Greedy-B: This is the batch variant of the Greedy-S method.
Heuristic: This is our heuristic method described in Algorithm 1.
Random: This is a baseline method that randomly selects k ghost
edges to add in G.
Rand Star: This is a more sensible baseline method that selects k
ghost edges to add in G that resemble the topology of a star. The
intuition behind this method is that stars are network topologies
with very small average shortest path distance [5].

We evaluate the accuracy and efficiency of our heuristic method
against the greedy methods, for a varying range of network topolo-
gies and number of ghost edges k to be added. More specifically,
we experiment with karate, dolphins, football and ba-s and we want
to suggest 1, 5, 10 and 20 ghost edges. We had to limit our ex-
periments on very small networks; this is because Greedy-S is ex-
tremely slow as we discuss below.

Accuracy: Figure 3 presents the accuracy results for the various
networks. In all instances, Greedy-S performs better than any other
method; this is because it evaluates any of the k ghost edges one
at a time. Even if this method is still suboptimal, it ensures that at
each iteration the correct utility for each of the subsequent ghost
edges is computed, taking into consideration the previously sug-
gested edges. As such, it avoids suggesting ghost edges that are
gainful for overlapping sets of st-shortest paths. On the other hand,
Random performs poorly in all instances, as expected, and forms a
baseline for the performance of the other methods. The accuracy
performance of the rest three methods, Greedy-B, Heuristic, Rand
Star is comparable. They all perform worse than Greedy-S, and out-
perform Random. However, from the three, Rand Star, is inconsis-
tent, as its performance largely depends on the random process with
which the center node and its incident edges are selected. Overall,
in terms of accuracy, the performance of Heuristic is always com-
parable and even better than that of the Greedy-B method. On an-
other point it is important to note that the difference between the
performance of Greedy-S and the other methods is becoming more
evident as the number of ghost edges to be added, k, is increasing.
This is to be expected; as all the other methods suggest edges on a
batch way, the larger the number of suggested edges is, the larger
the likelihood that these edges share overlapping st-shortest paths
will be, rendering the overall gain to be smaller.

Efficiency: Table 2 presents the efficiency results for the various
networks. Note that, for all methods other than the Greedy-S it’s
enough to report only one value for each network, since these meth-
ods will evaluate the utility of all edges only once. On the other
hand, for the case of Greedy-S we report values for all different in-
stantiations of k (i.e., Greedy-S-1, Greedy-S-5, Greedy-S-10, Greedy-
S-20). It becomes obvious from Table 2 that Greedy-S is very inef-
ficient, as it suggests one edge at a time, and in fact, it is (almost) k
times slower than Greedy-B. More importantly, our method, Heuris-
tic, runs multitude times faster than Greedy-B. The gain in effi-

Figure 3: Heuristic Performance: Accuracy

Table 2: Heuristic Performance: Efficiency
Method karate dolphins football ba-s
Greedy-S-1 3288 39931 809550 12745
Greedy-S-5 16412 205175 4046788 62284
Greedy-S-10 32372 403252 8094511 127333
Greedy-S-20 65359 816703 16191000 257063
Greedy-B 3891 55203 956579 13188
Heuristic 47 110 375 32
Random 2 2 2 2
Rand Star 2 2 2 2

Table 3: Efficiency of Heuristic in Figure 5 (msec)
dolphins netscience yeast ba-s ba-m ba-l

63 3156 133078 31 4828 25078

ciency is due to the fact that, while Greedy-B will need to compute
the utility of all possible ghost edges, Heuristic will constrain the
search space and look for ghost edges that connect nodes of already
existing shortest paths. As such, our method suggests huge savings
in the computation of the importance of ghost edges.

Heuristic Sampling-based (HSB) Performance: We have demon-
strated that Heuristic is much faster than Greedy-S and Greedy-B,
while maintaining high levels of accuracy. Now, we assess the
performance of the sampling based variant of our heuristic HSB
against the Heuristic method that serves as the ground truth and the
Random method that serves as the baseline for our sampling based
method. We experiment in real and synthetic networks of varying
size and for varying number of ghost edges to be added, as well
as, varying sample size. In particular, for each network, we experi-
ment with sample sizes of 10%, 20% and 30% of the total nodes in
network that define the methods HSB (10%), HSB (20%) and HSB
(30%) respectively. Figure 4 presents the accurracy results for the
various instances of real and synthetic networks when adding 5%
of the total number of ghost edges. In all cases, HSB has a better
accuracy than Random and it’s accuracy is slightly lower than the
accuracy of Heuristic. Moreover, the accuracy of HSB increases
with the sample size; this behavior is expected, as more shortest
paths are evaluated in larger samples. Figure 5 presents the effi-
ciency results for the various methods in varying networks. Note
that for demonstration issues, we report on the relative time, where
the execution time of the Heuristic represents the time of the slower
method. We also report the actual execution times of Heuristic in
Table 3 to complement Figure 5. For example, while the Heuristic
method requires almost 25sec for suggesting ghost edges in the ba-l
network, HSB-10 requires less than 5sec (i.e., less than 20% rela-

Figure 4: HSB Performance: Accuracy

Figure 5: HSB Performance: Efficiency
tive time). Overall, HSB can be used to boost the performance of
Heuristic, without duly affecting its accuracy, and as such, it’s the
method we propose to use for suggesting edges in larger networks.

4. REFERENCES
[1] E. D. Demaine and M. Zadimoghaddam. Minimizing the

diameter of a network using shortcut edges. In SWAT, 2010.
[2] K. P. Eswaran and R. E. Tarjan. Augmentation problems.

SIAM J. Comput., 5(4), 1976.
[3] S. Kandula and R. Mahajan. Sampling biases in network path

measurements and what to do about it. In IMC, 2009.
[4] J. Kleinberg. The small-world phenomenon: an algorithm

perspective. In STOC, 2000.
[5] A. Meyerson and B. Tagiku. Minimizing average shortest path

distances via shortcut edge addition. In APPROX-RANDOM,
2009.

[6] Y. Tian, Q. He, Q. Zhao, X. Liu, and W.-c. Lee. Boosting
social network connectivity with link revival. In CIKM, 2010.

[7] T. Watanabe and A. Nakamura. Edge-connectivity
augmentation problems. J. Comput. Syst. Sci., 35, 1987.

