EECS6414: **Data Analytics & Visualization**

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University - http://www.mmds.org

What is Data Analytics?

Data contains value and knowledge

Data Analytics

- But to extract the knowledge data needs to be
 - Stored
 - Managed

Data Analytics ≈ Data Mining ≈ Big Data ≈ Predictive Analytics ≈ Data Science

what is data analytics?

Objective of Data Analysis

- Input: lots of data
- Output: patterns and models that are:
 - Valid: hold on new data with some certainty
 - Useful: should be possible to act on the item
 - Unexpected: non-obvious to the system
 - Understandable: humans should be able to interpret the pattern

Types of Data Analysis

Descriptive methods

- Find human-interpretable patterns that describe the data
 - Example: Clustering (e.g., find communities of interest)

Predictive methods

- Use some variables to predict unknown or future values of other variables
 - Example: Recommendations (e.g., suggest new friends in a social network)

Data Analytics: Cultures

Data analysis overlaps with:

- Databases: Large data, simple queries
- Machine learning: Large data, complex models
- CS Theory: (Randomized) Algorithms

Different cultures:

- To a DB person, data analysis is an extreme form of analytic processing – queries that examine large amounts of data
 - Result is the query answer
- To a ML person, data analysis is the inference of models
 - Result is the parameters of the model

Demand for Data Analytics

Growing market revenue of Big Data Analytics in billion U.S. dollars from the year 2011 to 2027

What Type of Data?

enterprise infrastructure technologie infrastructure don score cards e text mining metrics pplic tions tions tion t

Text Data

Network Data

Multivariate Data

Networks Analytics – Review

The "Age of Networks"

Technological

Social

Biological

why should we care about networks?

Why Networks? Why Now?

Universal language for describing complex data

- Networks from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields
 - Computer Science, Social science, Physics, Economics, Statistics, Biology
- Data availability (/computational challenges)
 - Web/mobile, bio, health, and medical
- Impact!
 - Social networking, Social media, Brain, Drug design
 - We will never understand these systems unless we understand the networks behind them!

how do we reason about networks?

Reasoning About Networks

How do we reason about networks?

- Empirical: Study network data to find organizational principles
- Mathematical models: Probabilistic, graph theory
- Algorithms: Methods for analyzing graphs

Networks: Structure & Process

What do we study in networks?

- Structure and evolution
 - What is the structure of a network?
 - Why and how did it become to have such structure?

Processes and dynamics

 Networks provide "skeleton" for spreading of information, behavior, diseases

What We Have Covered?

basic graph theory

- graphs, networks
- bow-tie structure

network measurements

- degree distributions, power-laws
- shortest paths, clustering coefficient

network models

- Erdos-Renyi model
- small-world model
- configuration model
- scale-free networks

models of evolving graphs

- preferential attachment model
- microscopic/macroscopic evolution of networks
- forest-fire model

community structure in networks

- Strength of weak ties, structural holes
- community detection, Girvan-Newman algorithm
- graph partitioning, graph cuts, conductance
- spectral graph theory, spectral graph clustering
- overlapping communities in networks

link analysis

- web search
- hubs and authorities (HITS)
- PageRank, topic-sensitive PageRank

link prediction

- neighborhood-based methods
- node proximity based methods
- supervised learning models, FB's "PYMK", Twitter's "WtF"

cascading behavior in networks

- Granovetter's model, threshold model
- game theoretic model
- epidemic model on trees
- disease spreading models (SIR, SIS, SIRS)
- independent cascade model
- Influence maximization
- outbreak detection

data visualization

- visual variables (Jacques Bertin's)
- perception & cognition
- pre-attentive vs attentive processing
- gestalt principles
- principles of graphical excellence (Tufte's)
- a taxonomy of representation
- visual elements intro (charts, graphs, maps)

How It All Fits Together

Small-World Phenomena

Properties:

- Six degrees of separation
 - Networks have small diameters
- Edges in the networks cluster
 - Large clustering coefficient

Models:

- Erdös-Renyi model
 - Baseline model for networks
- The Small-World model
 - Small diameter and clustered edges

Algorithms:

- Link analysis in networks
 - PageRank algorithm; link prediction

Scale-Free Networks

Properties:

- Power-law degrees
 - Degrees are heavily skewed

Network resilience

Networks are resilient to random attacks

Models:

- Preferential attachment
 - Rich get richer

Algorithms:

- Hubs and Authorities
 - Recursive: $a_i = \sum_{j \to i} h_j$, $h_i = \sum_{i \to j} a_j$

PageRank

Recursive formulation, Random jumps

Community Detection

Properties:

- Strength of weak ties
- Core-periphery structure

Models:

- Community-affinity model
- Algorithms:
 - Spectral Clustering
 - Girvan-Newman (Betweeness centrality)
 - Modularity: #edges within group E[#edges within group]
 - Clique Percolation Method
 - Overlapping communities

Network Diffusion

Properties:

- Node-to-node influence
- Node threshold
- Cascade spread
- Models:
 - Game theoretic model:
 - Payoffs, Competing products
 - Independent Cascade Model
 - Each node infects a neighbor with some probability

0.3

0.3

0.4

0.3

Map of Superpowers

Social media analytics

Viral marketing

Predicting epidemics: Ebola

Interactions of human diseases

Drug design

Data Visualization – Review

Why Visualize Data?

Summary statistics for all four datasets

- avg(x) = 9
- avg(y) = 7.50
- Var(x) = 11
- Var(y) = 4.12
- Correlation(x,y) = 0.816
- A linear regression line:
 y = 0.5x + 3

Always plot your data!

Anscombe's Quartet

Anscombe, F. (1973). Graphs in statistical analysis. American Statistician, 27:17--21.

Jacques Bertin's Visual Variables

Jacques Bertin proposed an original set of "retinal variables" in Semiology of Graphics (1967)

Perception & Cognition

Image: Ware, Colin. Visual thinking: For design. Morgan Kaufmann, 2010

- perception is fragmented
- eyes are constantly scanning and constructing reality

The "Door Study"*

https://www.youtube.com/embed/FWSxSQsspiQ

* Daniel J. Simons and Daniel T. Levin. 1998. "Failure to detect changes to people during a real world interaction." Psychonomic Bulletin and Review. 5: 644–669.

Pre-attentive vs Attentive Processing

PRE-ATTENTIVE PROCESSING

- bottom-up
- fast, automatic
- instinctive
- efficient
- multitasks

ATTENTIVE PROCESSING

- top-down
- slow, deliberate
- focused
- singe-task

goal of information design

- help humans process information as efficiently as possible
- make as much use of pre-attentive processing as possible

Gestalt Principles

- **Figure/Ground**
- Proximity
- Similarity
- Symmetry
- Continuity
- Closure

Gestalt Principles

Good Figure

Objects groupped together tend to be perceived as a single figure. Tendency to simplify.

Proximity

Objects tend to be grouped together if they are close to each other.

Similarity

Objects tend to be grouped together if they are similar.

Continuation

When there is an intersection between two or more objects, people tend to perceive each object as a single uninterrupted object.

Closure

Visual connection or continuity between sets of elements which do not actually touch each other in a composition.

Symmetry

The object tend to be perceived as symmetrical shapes that form around their center.

What Makes a Good Visualization?

https://informationisbeautiful.net/visualizations/what-makes-a-good-data-visualization/

Data Types

Information Visualization Taxonomy

Visual Elements

Use of **visual elements** like charts, graphs, and maps to see and understand trends, outliers, and patterns in data

What's Next?

What's Next?

Project presentation

- Wed, Apr 3rd
 - 10 minutes (7 min presentation + 3 min QA)
 - Submit electronically your presentation (PPTX and PDF)
 - See course website for more info

Project final report

Sun, Apr 7th Midnight (11:59PM) Pacific Time

- Submit electronically your report (PDF) and code (zip)
- see course website for more info

What Next?

Related conferences / Journals:

Conferences

- **DSAA**: IEEE Data Science and Advanced Analytics
- KDD: ACM Conf. on Knowledge Discovery & Data Mining
- WWW: ACM World Wide Web Conference
- WSDM: ACM Web search and Data Mining
- ICDM: IEEE International Conference on Data Mining
- ICWSM: AAAI Int. Conf. on Web-blogs & Social Media
- Complex Networks: Int. Conf. on Complex Networks

Journals

- Complex Networks: Journal of Complex Networks
- **TKDD:** ACM Transactions on Knowledge Discovery from Data
- TKDE: IEEE Transactions on Knowledge and Data Engineering

You have worked a lot...

...and (hopefully) learned a lot!

thank you & happy holidays

course evaluations ③