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 Network Communities
 Community Detection
 Method 1: Girvan-Newman
 Method 2: Modularity Optimization

 Community Detection
 Graph Cuts 
 Spectral Clustering

 Network Profiling
 Communities: Issues and Questions





 We often think of networks “looking” 
like this:

 What lead to such a conceptual picture?



 How information flows through the network?

 What structurally distinct roles do nodes play?

 What roles do different links (short vs. long) play?

 How people find out about new jobs?

 Mark Granovetter, part of his PhD in 1960s

 People find the information through personal contacts

 But: Contacts were often acquaintances
rather than close friends

 This is surprising: One would expect your friends to 
help you out more than casual acquaintances

 Why is it that acquaintances are most helpful?



 Granovetter makes a connection between 
social and structural role of an edge

 First point: Structure
 Structurally embedded edges are socially strong

 Long-range edges spanning different parts of the 
network are socially weak

 Second point: Information
 Long-range edges allow you to gather information 

from different parts of the network and get a job

 Structurally embedded edges are 
heavily redundant in terms of 
information access
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 Granovetter’s theory leads to the following 
conceptual picture of networks

Strong ties

Weak ties



 Granovetter’s theory 
suggest that networks 
are composed of 
tightly connected 
sets of nodes

 Network communities:

 Sets of nodes with lots of connections inside and 
few to outside (the rest of the network)

Communities, clusters, 
groups, modules



 How to automatically 
find such densely 
connected groups of 
nodes?

 Ideally such automatically 
detected clusters would 
then correspond to real 
groups

 For example:
Communities, clusters, 

groups, modules



 Zachary’s Karate club network:

 Observe social ties and rivalries in a university karate club

 During his observation, conflicts led the group to split

 Split could be explained by a minimum cut in the network



Nodes: Teams
Edges: Games played

Can we identify 
node groups?
(communities, 

modules, clusters)



NCAA conferences

Nodes: Teams
Edges: Games played



Nodes: Users
Edges: Friendships

Can we identify 
social communities?



High school Company

Stanford (Squash)

Stanford (Basketball)

Social communities
Nodes: Users
Edges: Friendships



Nodes: Proteins
Edges: Interactions

Can we identify 
functional modules?



Functional modules

Nodes: Proteins
Edges: Interactions



How to find communities?

We will work with undirected (unweighted) networks



 Edge betweenness: Number of 
shortest paths passing over the edge

 Intuition:

Edge strengths (call volume) 
in a real network

Edge betweenness
in a real network

b=16
b=7.5



 Divisive hierarchical clustering based on the 
notion of edge betweenness:

Number of shortest paths passing through the edge

 Girvan-Newman Algorithm:
 Undirected unweighted networks

 Repeat until no edges are left:

 Calculate betweenness of edges

 Remove edges with highest betweenness

 Connected components are communities

 Gives a hierarchical decomposition of the network

[Girvan-Newman ‘02]



Need to re-compute 

betweenness at 

every step
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Step 1: Step 2:

Step 3: Hierarchical network decomposition:



Communities in physics collaborations 



 Zachary’s Karate club: 
Hierarchical decomposition



1. How to compute betweenness?
2. How to select the number of 

clusters?



 Want to compute 
betweenness of 
paths starting at 
node 𝑨

 Breadth first search 
starting from 𝑨:
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 Count the number of shortest paths from 
𝑨 to all other nodes of the network:



 Compute betweenness by working up the 
tree: If there are multiple paths count them 
fractionally

1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:

•Add edge flows:

-- node flow = 

1+∑child edges 

-- split the flow up 

based on the parent 

value

• Repeat the BFS 

procedure for each 

starting node 𝑈



 Compute betweenness by working up the 
tree: If there are multiple paths count them 
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The algorithm:

•Add edge flows:

-- node flow = 

1+∑child edges 

-- split the flow up 

based on the parent 

value
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starting node 𝑈



1. How to compute betweenness?
2. How to select the number of 

clusters?



 Communities: sets of 
tightly connected nodes

 Define: Modularity 𝑸

 A measure of how well 
a network is partitioned 
into communities

 Given a partitioning of the 
network into groups 𝒔 𝑺:

Q  ∑s S [ (# edges within group s) –

(expected # edges within group s) ]

Need a null model!



 Given real 𝑮 on 𝒏 nodes and 𝒎 edges, 
construct rewired network 𝑮’

 Same degree distribution but 
random connections

 Consider 𝑮’ as a multigraph

 The expected number of edges between nodes 

𝒊 and 𝒋 of degrees 𝒌𝒊 and 𝒌𝒋 equals to: 𝒌𝒊 ⋅
𝒌𝒋

𝟐𝒎
=

𝒌𝒊𝒌𝒋

𝟐𝒎

 The expected number of edges in (multigraph) G’:

 =
𝟏

𝟐
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𝟐
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𝑢∈𝑁

𝑘𝑢 = 2𝑚

Note:



 Modularity of partitioning S of graph G:

 Q  ∑s S [ (# edges within group s) –

(expected # edges within group s) ]

 𝑸 𝑮, 𝑺 =
𝟏

𝟐𝒎
σ𝒔∈𝑺σ𝒊∈𝒔σ𝒋∈𝒔 𝑨𝒊𝒋 −

𝒌𝒊𝒌𝒋

𝟐𝒎

 Modularity values take range [−1,1]

 It is positive if the number of edges within 
groups exceeds the expected number

 0.3-0.7<Q means significant community structure

Aij = 1 if ij, 

0 else
Normalizing cost.: -1<Q<1



 Modularity is useful for selecting the 
number of clusters:

Why not optimize Modularity directly?

Q





 Let’s split the graph into 2 communities!
 Want to directly optimize modularity!

 max
𝑆

𝑄 𝐺, 𝑆 =
1

2𝑚
σ𝑠∈𝑆σ𝑖∈𝑠σ𝑗∈𝑠 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚

 Community membership vector s:

 si = 1 if node i is in community 1
-1 if node i is in community -1

 𝑄 𝐺, 𝑠 =
1

2𝑚
σ𝑖∈𝑁σ𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚

𝑠𝑖𝑠𝑗+1

2

=
1

4𝑚
σ𝑖,𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑠𝑖𝑠𝑗

𝑠𝑖𝑠𝑗 + 1

2
=

1.. if si=sj

0.. else



 Define:

 Modularity matrix: 𝑩𝒊𝒋 = 𝑨𝒊𝒋 −
𝒌𝒊𝒌𝒋

𝟐𝒎

 Membership: 𝒔 = {−𝟏,+𝟏}

 Then: 𝑄 𝐺, 𝑠 =
1

4𝑚
σ𝑖∈𝑁σ𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑠𝑖𝑠𝑗

=
1

4𝑚
σ𝑖,𝑗∈𝑁𝐵𝑖𝑗𝑠𝑖𝑠𝑗

=
1

4𝑚
σ𝑖 𝑠𝑖 σ𝑗𝐵𝑖𝑗𝑠𝑗 =

1

4𝑚
𝑠𝑇𝐵𝑠

 Task: Find s{-1,+1}n that maximizes Q(G,s)

= 𝑩𝒊⋅ ⋅ 𝒔

Note: each row/col of B
sums to 0: σ𝒋𝑨𝒊𝒋 = 𝒌𝒊, 

σ𝒋
𝒌𝒊𝒌𝒋

𝟐𝒎
= 𝒌𝒊σ𝒋

𝒌𝒋

𝟐𝒎
= 𝒌𝒊



 Symmetric matrix A
 That is positive semi-definite:
𝑨 = 𝑼 ⋅ 𝑼𝑻

 Then solutions 𝝀, 𝒙 to equation 𝑨 ⋅ 𝒙 = 𝜆 ⋅ 𝒙 :
 Eigenvectors 𝒙𝒊 ordered by the magnitude of their 

corresponding eigenvalues 𝜆𝑖 (𝜆1 ≤ 𝜆2… ≤ 𝜆𝑛)

 𝒙𝒊 are orthonormal (orthogonal and unit length)

 𝒙𝒊 form a coordinate system (basis)

 If 𝑨 is positive-semidefinite: 𝜆𝑖 ≥ 0 (and they always exist)
 Eigen Decomposition theorem: Can rewrite matrix 
𝑨 in terms of its eigenvectors and eigenvalues: 𝑨 =
σ𝒊𝒙𝒊 ⋅ 𝜆𝑖 ⋅ 𝒙𝒊

𝑻



 Rewrite: 𝑄 𝐺, 𝑠 =
1

4𝑚
𝑠T𝐵𝑠 in terms of its 

eigenvectors and eigenvalues:

= sT 

𝑖=1

𝑛

𝑥𝑖𝜆𝑖𝑥𝑖
𝑇 𝑠 =

𝑖=1

𝑛

𝑠𝑇𝑥𝑖𝜆𝑖𝑥𝑖
𝑇𝑠 =

𝑖=1

𝑛

𝑠𝑇x𝑖
2𝜆𝑖

 So, if there would be no other constraints on 𝒔
then to maximize 𝑸, we make 𝒔 = 𝒙𝒏
 Why? Because 𝝀𝒏 ≥ 𝝀𝒏−𝟏 ≥ ⋯

 Remember 𝒔 has fixed length!

 Assigns all weight in the sum to 𝝀𝒏 (largest eigenvalue)
 All other 𝒔𝑻𝒙𝒊 terms are zero because of orthonormality

s

x1

x2



 Let’s consider only the first term in the 
summation (because 𝝀𝒏 is the largest):
max
𝑠

𝑄 𝐺, 𝑠 = σ𝑖=1
𝑛 𝑠𝑇𝑥𝑖

2𝜆𝑖 ≈ 𝑠𝑇𝑥𝑛
2𝜆𝑛

 Let’s maximize: σ𝒋=𝟏
𝒏 𝒔𝒋 ⋅ 𝒙𝒏,𝒋 where sj{-1,+1} 

 To do this, we set:

 𝒔𝒋 = ൝
+𝟏
−𝟏

𝒊𝒇 𝒙𝒏,𝒋 ≥ 𝟎 (j−th coordinate of 𝒙𝒏 ≥ 𝟎)

𝒊𝒇 𝒙𝒏,𝒋 < 𝟎 (j−th coordinate of 𝒙𝒏 < 𝟎)

 Continue the bisection hierarchically



 Fast Modularity Optimization Algorithm:

 Find leading eigenvector 𝒙𝒏 of modularity matrix B

 Divide the nodes by the signs of the elements of 𝒙𝒏
 Repeat hierarchically until:

 If a proposed split does not cause modularity to increase, 
declare community indivisible and do not split it

 If all communities are indivisible, stop

 How to find 𝒙𝒏? Power method!

 Start with random v(0), repeat :

 When converged (v(t) ≈ v(t+1)), set xn = v(t)
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 Girvan-Newman:

 Based on the “strength of weak ties”

 Remove edge of highest betweenness

 Modularity:

 Overall quality of the partitioning of a graph

 Use to determine the number of communities

 Fast modularity optimization:

 Transform the modularity optimization to a 
eigenvalue problem





 Graph Partitioning
 Graph Cuts
 Spectral Clustering



 Undirected graph 𝑮(𝑽, 𝑬):

 Bi-partitioning task:

 Divide vertices into two disjoint groups 𝑨,𝑩

 Questions:
 How can we define a “good” partition of 𝑮?

 How can we efficiently identify such a partition?
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 What makes a good partition?

 Maximize the number of within-group 
connections

 Minimize the number of between-group 
connections
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A B

 Express partitioning objectives as a function 
of the “edge cut” of the partition

 Cut: Set of edges with only one vertex in a 
group:

cut(A,B) = 2
1

3

2

5

4
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 Criterion: Minimum-cut
 Minimize weight of connections between groups

 Degenerate case:

 Problem:
 Only considers external cluster connections

 Does not consider internal cluster connectivity

arg minA,B cut(A,B)

“Optimal” cut

Minimum cut



 Since the minimum cut does not always yield 
good results we need extra constraints to 
make the problem meaningful

 Graph Bisection

 Partition the graph into two equal sets of nodes

 Kernighan-Lin algorithm

 Start with random equal partitions

 Swap nodes to improve some quality metric (e.g., 
cut, modularity, etc)



Criterion: Ratio-cut
Normalize cut by the size of the groups

Ratio-cut=
Cut(U,V−U)

|𝑈|
+ 
Cut(U,V−U)

|𝑉−𝑈|



Criterion: Normalized-cut
Connectivity between groups relative to the 
density of each group

𝑣𝑜𝑙(𝑈): total weight of the edges with at least 
one endpoint in 𝑈: 𝑣𝑜𝑙 𝑈 = σ𝑖∈𝑈 𝑑𝑖

Why use these criteria?

 Produce more balanced partitions

50

Normalized-cut=
Cut(U,V−U)

𝑉𝑜𝑙(𝑈)
+ 

Cut(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)



Normalized-Cut(Red) = 
1

1
+ 

1

27
=

28

27

Normalized-Cut(Green) = 
2

12
+ 

2

16
=

14

48

Ratio-Cut(Red) = 
1

1
+ 

1

8
= 
9

8

Ratio-Cut(Green) = 
2

5
+ 

2

4
= 

18

20

Red is Min-Cut

Minimizing Normalized-
cut is even better for 
Green due to density



Which of the three cuts has the best 
(min, normalized, ratio) cut?



 Criterion: Conductance [Shi-Malik, ’97]

 Connectivity between groups relative to the 
density of each group

𝒗𝒐𝒍(𝑨): total weight of the edges with at least 
one endpoint in 𝑨: 𝒗𝒐𝒍 𝑨 = σ𝒊∈𝑨𝒌𝒊

 Why use this criterion?

 Produces more balanced partitions

 How do we efficiently find a good partition?

 Problem: Computing optimal cut is NP-hard

[Shi-Malik]



 Ratio-cut and normalized-cut can be 
reformulated in matrix format and solved 
using spectral clustering





 Three basic stages:

 1) Pre-processing

 Construct a matrix representation of the graph

 2) Decomposition

 Compute eigenvalues and eigenvectors of the matrix

 Map each point to a lower-dimensional representation 
based on one or more eigenvectors

 3) Grouping

 Assign points to two or more clusters, based on the new 
representation

 But first, let’s define the problem



 A: adjacency matrix of undirected G

 Aij =1 if (𝒊, 𝒋) is an edge, else 0

 x is a vector in n with components (𝒙𝟏, … , 𝒙𝒏)

 Think of it as a label/value of each node of 𝑮

 What is the meaning of A x?

 Entry yi is a sum of labels xj of neighbors of i



 Spectral Graph Theory:
 Analyze the “spectrum” of matrix representing 𝑮

 Spectrum: Eigenvectors 𝒙𝒊 of a graph, ordered by the 
magnitude (strength) of their corresponding 
eigenvalues 𝝀𝒊:

 Spectral clustering: use the eigenvectors of A or 
graphs derived by it (mostly graph Laplacian)

𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

Note: We sort 𝝀𝒊 in ascending (not descending) order!



 Adjacency matrix (A):
 n n matrix

 A=[aij], aij=1 if edge between node i and j

 Important properties: 
 Symmetric matrix

 Eigenvectors are real and orthogonal
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1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0



 Degree matrix (D):
 n n diagonal matrix

 D=[dii], dii = degree of node i
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1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2



 Laplacian matrix (L):

 n n symmetric matrix

 Laplacian matrix L important properties:

 Eigenvalues are non-negative real numbers

 Eigenvectors are real and orthogonal

𝑳 = 𝑫 − 𝑨
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1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2
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 Three basic stages:

 1) Pre-processing

 Construct a matrix representation of the graph

 2) Decomposition

 Compute eigenvalues and eigenvectors of the matrix

 Map each point to a lower-dimensional representation 
based on one or more eigenvectors

 3) Grouping

 Assign points to two or more clusters, based on the new 
representation



 1) Pre-processing:
 Build Laplacian

matrix L of the 
graph

 2)
Decomposition:
 Find eigenvalues 

and eigenvectors x
of the matrix L

 Map vertices to 
corresponding 
components of 2

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

= X =

How do we now 
find the clusters?
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1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



 3) Grouping:
 Sort components of reduced 1-dimensional vector
 Identify clusters by splitting the sorted vector in two

 How to choose a splitting point?
 Naïve approaches: 
 Split at 0 or median value

 More expensive approaches:
 Attempt to minimize normalized cut in 1-dimension 

(sweep over ordering of nodes induced by the eigenvector)

-0.66

-0.35

-0.34

0.33

0.62

0.31 Split at 0:

Cluster A: Positive points

Cluster B: Negative points
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Components of x1
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 How do we partition a graph into k clusters?

 Two basic approaches:

 Recursive bi-partitioning [Hagen et al., ’92]

 Recursively apply bi-partitioning algorithm in a 
hierarchical divisive manner

 Disadvantages: Inefficient, unstable

 Cluster multiple eigenvectors [Shi-Malik, ’00]

 Build a reduced space from multiple eigenvectors

 Commonly used in recent papers

 A preferable approach…





 Use several of the eigenvectors to partition the 
graph

 If we use m eigenvectors, and set a threshold for 
each, we can get a partition into 2m groups, each 
group consisting of the nodes that are above or 
below threshold for each of the eigenvectors, in 
a particular pattern.
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If we use both the 2nd and 3rd eigenvectors:
• nodes 2 and 3 (positive in both)
• nodes 5 and 6 (negative in 2nd, positive in 3rd)
• nodes 1 and 4 alone

Note that while each eigenvector tries to produce a minimum-sized cut,
successive eigenvectors have to satisfy more and more constraints => the cuts
progressively worse.



 Approximates the optimal cut [Shi-Malik, ’00]
 Can be used to approximate optimal k-way normalized 

cut
 Emphasizes cohesive clusters
 Increases the unevenness in the distribution of the data
 Associations between similar points are amplified, 

associations between dissimilar points are attenuated
 The data begins to “approximate a clustering”

 Well-separated space
 Transforms data to a new “embedded space”, 

consisting of k orthogonal basis vectors
 Multiple eigenvectors prevent instability due to 

information loss



 METIS:
 Heuristic but works really well in practice
 http://glaros.dtc.umn.edu/gkhome/views/metis

 Graclus:
 Based on kernel k-means
 http://www.cs.utexas.edu/users/dml/Software/graclus.html

 Louvain:
 Based on Modularity optimization
 http://perso.uclouvain.be/vincent.blondel/research/louvain.html

 Clique percolation method:
 For finding overlapping clusters
 http://angel.elte.hu/cfinder/

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.cs.utexas.edu/users/dml/Software/graclus.html
http://perso.uclouvain.be/vincent.blondel/research/louvain.html
http://angel.elte.hu/cfinder/




 How should we think about large scale 
organization of clusters in networks?

 Finding: Community Structure



 How community-like is a set of nodes?
 A good cluster S has

 Many edges internally

 Few edges pointing outside

 What’s a good metric: 
Conductance

Small conductance corresponds to good clusters
(Note |S| < |V|/2)
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 Define:
Network community profile (NCP) plot

Plot the score of best community of size k

Community size, log k

log Φ(k)

k=5 k=7

[WWW ‘08]

k=10

(Note |S| < |V|/2)



• Run the favorite clustering method
• Each dot represents a cluster
• For each size find “best” cluster

Cluster size, log k
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Spectral
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 Meshes, grids, dense random graphs:

d-dimensional meshes California road network

[WWW ‘08]



 Collaborations between scientists in networks 
[Newman, 2005]

Community size, log k
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[WWW ‘08]

Dips in the conductance graph correspond to the 
"good" clusters we can visually detect



Typical example: General Relativity collaborations
(n=4,158, m=13,422)

[Internet Mathematics ‘09]



[Internet Mathematics ‘09]

-- Rewired graph

-- Real graph



Φ
(k

),
 (s

co
re

)

k, (cluster size)

Better and 
better clusters

Clusters get worse 
and worse

Best cluster has 
~100 nodes



LiveJournal

Spectral

Metis

[WWW ‘09]





Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different 
from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized

103
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How many clusters?

Four ClustersTwo Clusters

Six Clusters



 Some issues with community detection:

 Many different formalizations of clustering 
objective functions 

 Objectives are NP-hard to optimize exactly

 Methods can find clusters that are 
systematically “biased”

 Questions:

 How well do algorithms optimize objectives?

 What clusters do different methods find?



 Single-criterion:
 Modularity: m-E(m)

 Edges cut: c
 Multi-criterion:
 Conductance: c/(2m+c)

 Expansion: c/n

 Density: 1-m/n2

 CutRatio: c/n(N-n)

 Normalized Cut: c/(2m+c) + c/2(M-m)+c

 Flake-ODF: frac. of nodes with more than ½ edges 
pointing outside S

S

n: nodes in S
m: edges in S
c: edges pointing   

outside S

[WWW ‘09]



Many algorithms to implicitly or explicitly 
optimize objectives and extract communities:

 Heuristics:

 Girvan-Newman, Modularity optimization:
popular heuristics

 Metis: multi-resolution heuristic [Karypis-Kumar ‘98]

 Theoretical approximation algorithms:

 Spectral partitioning

[WWW ‘09]



500 node communities from Spectral: 

500 node communities from Metis: 

[WWW ‘09]



 Metis gives sets with better 
conductance

 Spectral gives tighter and 
more well-rounded sets

Conductance of  bounding cut

Spectral

Disconnected Metis

Connected Metis

[WWW ‘09]

Diameter of the cluster

External / Internal conductance
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Observations:
 All measures are 

monotonic
 Modularity 

 prefers large 
clusters

 Ignores small 
clusters

[WWW ‘09]



 All qualitatively 
similar

 Observations:
 Conductance, 

Expansion, Norm-
cut, Cut-ratio are 
similar

 Flake-ODF prefers 
larger clusters

 Density is bad
 Cut-ratio has high 

variance

[WWW ‘09]


