
Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas,
Univ. of Ioannina for slides

 Network Communities
 Community Detection
 Method 1: Girvan-Newman
 Method 2: Modularity Optimization

 Community Detection
 Graph Cuts
 Spectral Clustering

 Network Profiling
 Communities: Issues and Questions

 We often think of networks “looking”
like this:

 What lead to such a conceptual picture?

 How information flows through the network?

 What structurally distinct roles do nodes play?

 What roles do different links (short vs. long) play?

 How people find out about new jobs?

 Mark Granovetter, part of his PhD in 1960s

 People find the information through personal contacts

 But: Contacts were often acquaintances
rather than close friends

 This is surprising: One would expect your friends to
help you out more than casual acquaintances

 Why is it that acquaintances are most helpful?

 Granovetter makes a connection between
social and structural role of an edge

 First point: Structure
 Structurally embedded edges are socially strong

 Long-range edges spanning different parts of the
network are socially weak

 Second point: Information
 Long-range edges allow you to gather information

from different parts of the network and get a job

 Structurally embedded edges are
heavily redundant in terms of
information access

a
b

S

Weak
S

S

W

Strong

S

 Granovetter’s theory leads to the following
conceptual picture of networks

Strong ties

Weak ties

 Granovetter’s theory
suggest that networks
are composed of
tightly connected
sets of nodes

 Network communities:

 Sets of nodes with lots of connections inside and
few to outside (the rest of the network)

Communities, clusters,
groups, modules

 How to automatically
find such densely
connected groups of
nodes?

 Ideally such automatically
detected clusters would
then correspond to real
groups

 For example:
Communities, clusters,

groups, modules

 Zachary’s Karate club network:

 Observe social ties and rivalries in a university karate club

 During his observation, conflicts led the group to split

 Split could be explained by a minimum cut in the network

Nodes: Teams
Edges: Games played

Can we identify
node groups?
(communities,

modules, clusters)

NCAA conferences

Nodes: Teams
Edges: Games played

Nodes: Users
Edges: Friendships

Can we identify
social communities?

High school Company

Stanford (Squash)

Stanford (Basketball)

Social communities
Nodes: Users
Edges: Friendships

Nodes: Proteins
Edges: Interactions

Can we identify
functional modules?

Functional modules

Nodes: Proteins
Edges: Interactions

How to find communities?

We will work with undirected (unweighted) networks

 Edge betweenness: Number of
shortest paths passing over the edge

 Intuition:

Edge strengths (call volume)
in a real network

Edge betweenness
in a real network

b=16
b=7.5

 Divisive hierarchical clustering based on the
notion of edge betweenness:

Number of shortest paths passing through the edge

 Girvan-Newman Algorithm:
 Undirected unweighted networks

 Repeat until no edges are left:

 Calculate betweenness of edges

 Remove edges with highest betweenness

 Connected components are communities

 Gives a hierarchical decomposition of the network

[Girvan-Newman ‘02]

Need to re-compute

betweenness at

every step

49
33

12
1

Step 1: Step 2:

Step 3: Hierarchical network decomposition:

Communities in physics collaborations

 Zachary’s Karate club:
Hierarchical decomposition

1. How to compute betweenness?
2. How to select the number of

clusters?

 Want to compute
betweenness of
paths starting at
node 𝑨

 Breadth first search
starting from 𝑨:

0

1

2

3

4

 Count the number of shortest paths from
𝑨 to all other nodes of the network:

 Compute betweenness by working up the
tree: If there are multiple paths count them
fractionally

1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:

•Add edge flows:

-- node flow =

1+∑child edges

-- split the flow up

based on the parent

value

• Repeat the BFS

procedure for each

starting node 𝑈

 Compute betweenness by working up the
tree: If there are multiple paths count them
fractionally

1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:

•Add edge flows:

-- node flow =

1+∑child edges

-- split the flow up

based on the parent

value

• Repeat the BFS

procedure for each

starting node 𝑈

1. How to compute betweenness?
2. How to select the number of

clusters?

 Communities: sets of
tightly connected nodes

 Define: Modularity 𝑸

 A measure of how well
a network is partitioned
into communities

 Given a partitioning of the
network into groups 𝒔 𝑺:

Q ∑s S [(# edges within group s) –

(expected # edges within group s)]

Need a null model!

 Given real 𝑮 on 𝒏 nodes and 𝒎 edges,
construct rewired network 𝑮’

 Same degree distribution but
random connections

 Consider 𝑮’ as a multigraph

 The expected number of edges between nodes

𝒊 and 𝒋 of degrees 𝒌𝒊 and 𝒌𝒋 equals to: 𝒌𝒊 ⋅
𝒌𝒋

𝟐𝒎
=

𝒌𝒊𝒌𝒋

𝟐𝒎

 The expected number of edges in (multigraph) G’:

 =
𝟏

𝟐
σ𝒊∈𝑵σ𝒋∈𝑵

𝒌𝒊𝒌𝒋

𝟐𝒎
=

𝟏

𝟐
⋅
𝟏

𝟐𝒎
σ𝒊∈𝑵𝒌𝒊 σ𝒋∈𝑵𝒌𝒋 =

 =
𝟏

𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎

j

i

𝑢∈𝑁

𝑘𝑢 = 2𝑚

Note:

 Modularity of partitioning S of graph G:

 Q ∑s S [(# edges within group s) –

(expected # edges within group s)]

 𝑸 𝑮, 𝑺 =
𝟏

𝟐𝒎
σ𝒔∈𝑺σ𝒊∈𝒔σ𝒋∈𝒔 𝑨𝒊𝒋 −

𝒌𝒊𝒌𝒋

𝟐𝒎

 Modularity values take range [−1,1]

 It is positive if the number of edges within
groups exceeds the expected number

 0.3-0.7<Q means significant community structure

Aij = 1 if ij,

0 else
Normalizing cost.: -1<Q<1

 Modularity is useful for selecting the
number of clusters:

Why not optimize Modularity directly?

Q

 Let’s split the graph into 2 communities!
 Want to directly optimize modularity!

 max
𝑆

𝑄 𝐺, 𝑆 =
1

2𝑚
σ𝑠∈𝑆σ𝑖∈𝑠σ𝑗∈𝑠 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚

 Community membership vector s:

 si = 1 if node i is in community 1
-1 if node i is in community -1

 𝑄 𝐺, 𝑠 =
1

2𝑚
σ𝑖∈𝑁σ𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚

𝑠𝑖𝑠𝑗+1

2

=
1

4𝑚
σ𝑖,𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑠𝑖𝑠𝑗

𝑠𝑖𝑠𝑗 + 1

2
=

1.. if si=sj

0.. else

 Define:

 Modularity matrix: 𝑩𝒊𝒋 = 𝑨𝒊𝒋 −
𝒌𝒊𝒌𝒋

𝟐𝒎

 Membership: 𝒔 = {−𝟏,+𝟏}

 Then: 𝑄 𝐺, 𝑠 =
1

4𝑚
σ𝑖∈𝑁σ𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑠𝑖𝑠𝑗

=
1

4𝑚
σ𝑖,𝑗∈𝑁𝐵𝑖𝑗𝑠𝑖𝑠𝑗

=
1

4𝑚
σ𝑖 𝑠𝑖 σ𝑗𝐵𝑖𝑗𝑠𝑗 =

1

4𝑚
𝑠𝑇𝐵𝑠

 Task: Find s{-1,+1}n that maximizes Q(G,s)

= 𝑩𝒊⋅ ⋅ 𝒔

Note: each row/col of B
sums to 0: σ𝒋𝑨𝒊𝒋 = 𝒌𝒊,

σ𝒋
𝒌𝒊𝒌𝒋

𝟐𝒎
= 𝒌𝒊σ𝒋

𝒌𝒋

𝟐𝒎
= 𝒌𝒊

 Symmetric matrix A
 That is positive semi-definite:
𝑨 = 𝑼 ⋅ 𝑼𝑻

 Then solutions 𝝀, 𝒙 to equation 𝑨 ⋅ 𝒙 = 𝜆 ⋅ 𝒙 :
 Eigenvectors 𝒙𝒊 ordered by the magnitude of their

corresponding eigenvalues 𝜆𝑖 (𝜆1 ≤ 𝜆2… ≤ 𝜆𝑛)

 𝒙𝒊 are orthonormal (orthogonal and unit length)

 𝒙𝒊 form a coordinate system (basis)

 If 𝑨 is positive-semidefinite: 𝜆𝑖 ≥ 0 (and they always exist)
 Eigen Decomposition theorem: Can rewrite matrix
𝑨 in terms of its eigenvectors and eigenvalues: 𝑨 =
σ𝒊𝒙𝒊 ⋅ 𝜆𝑖 ⋅ 𝒙𝒊

𝑻

 Rewrite: 𝑄 𝐺, 𝑠 =
1

4𝑚
𝑠T𝐵𝑠 in terms of its

eigenvectors and eigenvalues:

= sT

𝑖=1

𝑛

𝑥𝑖𝜆𝑖𝑥𝑖
𝑇 𝑠 =

𝑖=1

𝑛

𝑠𝑇𝑥𝑖𝜆𝑖𝑥𝑖
𝑇𝑠 =

𝑖=1

𝑛

𝑠𝑇x𝑖
2𝜆𝑖

 So, if there would be no other constraints on 𝒔
then to maximize 𝑸, we make 𝒔 = 𝒙𝒏
 Why? Because 𝝀𝒏 ≥ 𝝀𝒏−𝟏 ≥ ⋯

 Remember 𝒔 has fixed length!

 Assigns all weight in the sum to 𝝀𝒏 (largest eigenvalue)
 All other 𝒔𝑻𝒙𝒊 terms are zero because of orthonormality

s

x1

x2

 Let’s consider only the first term in the
summation (because 𝝀𝒏 is the largest):
max
𝑠

𝑄 𝐺, 𝑠 = σ𝑖=1
𝑛 𝑠𝑇𝑥𝑖

2𝜆𝑖 ≈ 𝑠𝑇𝑥𝑛
2𝜆𝑛

 Let’s maximize: σ𝒋=𝟏
𝒏 𝒔𝒋 ⋅ 𝒙𝒏,𝒋 where sj{-1,+1}

 To do this, we set:

 𝒔𝒋 = ൝
+𝟏
−𝟏

𝒊𝒇 𝒙𝒏,𝒋 ≥ 𝟎 (j−th coordinate of 𝒙𝒏 ≥ 𝟎)

𝒊𝒇 𝒙𝒏,𝒋 < 𝟎 (j−th coordinate of 𝒙𝒏 < 𝟎)

 Continue the bisection hierarchically

 Fast Modularity Optimization Algorithm:

 Find leading eigenvector 𝒙𝒏 of modularity matrix B

 Divide the nodes by the signs of the elements of 𝒙𝒏
 Repeat hierarchically until:

 If a proposed split does not cause modularity to increase,
declare community indivisible and do not split it

 If all communities are indivisible, stop

 How to find 𝒙𝒏? Power method!

 Start with random v(0), repeat :

 When converged (v(t) ≈ v(t+1)), set xn = v(t)

)(

)(
)1(

t

t
t

Bv

Bv
v

 Girvan-Newman:

 Based on the “strength of weak ties”

 Remove edge of highest betweenness

 Modularity:

 Overall quality of the partitioning of a graph

 Use to determine the number of communities

 Fast modularity optimization:

 Transform the modularity optimization to a
eigenvalue problem

 Graph Partitioning
 Graph Cuts
 Spectral Clustering

 Undirected graph 𝑮(𝑽, 𝑬):

 Bi-partitioning task:

 Divide vertices into two disjoint groups 𝑨,𝑩

 Questions:
 How can we define a “good” partition of 𝑮?

 How can we efficiently identify such a partition?

1

3
2

5

4
6

A B

1

3

2

5

4
6

 What makes a good partition?

 Maximize the number of within-group
connections

 Minimize the number of between-group
connections

1

3

2

5

4
6

A B

A B

 Express partitioning objectives as a function
of the “edge cut” of the partition

 Cut: Set of edges with only one vertex in a
group:

cut(A,B) = 2
1

3

2

5

4
6

 Criterion: Minimum-cut
 Minimize weight of connections between groups

 Degenerate case:

 Problem:
 Only considers external cluster connections

 Does not consider internal cluster connectivity

arg minA,B cut(A,B)

“Optimal” cut

Minimum cut

 Since the minimum cut does not always yield
good results we need extra constraints to
make the problem meaningful

 Graph Bisection

 Partition the graph into two equal sets of nodes

 Kernighan-Lin algorithm

 Start with random equal partitions

 Swap nodes to improve some quality metric (e.g.,
cut, modularity, etc)

Criterion: Ratio-cut
Normalize cut by the size of the groups

Ratio-cut=
Cut(U,V−U)

|𝑈|
+
Cut(U,V−U)

|𝑉−𝑈|

Criterion: Normalized-cut
Connectivity between groups relative to the
density of each group

𝑣𝑜𝑙(𝑈): total weight of the edges with at least
one endpoint in 𝑈: 𝑣𝑜𝑙 𝑈 = σ𝑖∈𝑈 𝑑𝑖

Why use these criteria?

 Produce more balanced partitions

50

Normalized-cut=
Cut(U,V−U)

𝑉𝑜𝑙(𝑈)
+

Cut(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)

Normalized-Cut(Red) =
1

1
+

1

27
=

28

27

Normalized-Cut(Green) =
2

12
+

2

16
=

14

48

Ratio-Cut(Red) =
1

1
+

1

8
=
9

8

Ratio-Cut(Green) =
2

5
+

2

4
=

18

20

Red is Min-Cut

Minimizing Normalized-
cut is even better for
Green due to density

Which of the three cuts has the best
(min, normalized, ratio) cut?

 Criterion: Conductance [Shi-Malik, ’97]

 Connectivity between groups relative to the
density of each group

𝒗𝒐𝒍(𝑨): total weight of the edges with at least
one endpoint in 𝑨: 𝒗𝒐𝒍 𝑨 = σ𝒊∈𝑨𝒌𝒊

 Why use this criterion?

 Produces more balanced partitions

 How do we efficiently find a good partition?

 Problem: Computing optimal cut is NP-hard

[Shi-Malik]

 Ratio-cut and normalized-cut can be
reformulated in matrix format and solved
using spectral clustering

 Three basic stages:

 1) Pre-processing

 Construct a matrix representation of the graph

 2) Decomposition

 Compute eigenvalues and eigenvectors of the matrix

 Map each point to a lower-dimensional representation
based on one or more eigenvectors

 3) Grouping

 Assign points to two or more clusters, based on the new
representation

 But first, let’s define the problem

 A: adjacency matrix of undirected G

 Aij =1 if (𝒊, 𝒋) is an edge, else 0

 x is a vector in n with components (𝒙𝟏, … , 𝒙𝒏)

 Think of it as a label/value of each node of 𝑮

 What is the meaning of A x?

 Entry yi is a sum of labels xj of neighbors of i

 Spectral Graph Theory:
 Analyze the “spectrum” of matrix representing 𝑮

 Spectrum: Eigenvectors 𝒙𝒊 of a graph, ordered by the
magnitude (strength) of their corresponding
eigenvalues 𝝀𝒊:

 Spectral clustering: use the eigenvectors of A or
graphs derived by it (mostly graph Laplacian)

𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

Note: We sort 𝝀𝒊 in ascending (not descending) order!

 Adjacency matrix (A):
 n n matrix

 A=[aij], aij=1 if edge between node i and j

 Important properties:
 Symmetric matrix

 Eigenvectors are real and orthogonal

1

3

2

5

4
6

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0

 Degree matrix (D):
 n n diagonal matrix

 D=[dii], dii = degree of node i

1

3

2

5

4
6

1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2

 Laplacian matrix (L):

 n n symmetric matrix

 Laplacian matrix L important properties:

 Eigenvalues are non-negative real numbers

 Eigenvectors are real and orthogonal

𝑳 = 𝑫 − 𝑨

1

3

2

5

4
6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

1

3

2

5

4
6

 Three basic stages:

 1) Pre-processing

 Construct a matrix representation of the graph

 2) Decomposition

 Compute eigenvalues and eigenvectors of the matrix

 Map each point to a lower-dimensional representation
based on one or more eigenvectors

 3) Grouping

 Assign points to two or more clusters, based on the new
representation

 1) Pre-processing:
 Build Laplacian

matrix L of the
graph

 2)
Decomposition:
 Find eigenvalues

and eigenvectors x
of the matrix L

 Map vertices to
corresponding
components of 2

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

= X =

How do we now
find the clusters?

-0.66

-0.35

-0.34

0.33

0.62

0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

 3) Grouping:
 Sort components of reduced 1-dimensional vector
 Identify clusters by splitting the sorted vector in two

 How to choose a splitting point?
 Naïve approaches:
 Split at 0 or median value

 More expensive approaches:
 Attempt to minimize normalized cut in 1-dimension

(sweep over ordering of nodes induced by the eigenvector)

-0.66

-0.35

-0.34

0.33

0.62

0.31 Split at 0:

Cluster A: Positive points

Cluster B: Negative points

0.33

0.62

0.31

-0.66

-0.35

-0.34

A B

Rank in x2

V
a
lu

e
 o

f
x

2

Rank in x2

V
a
lu

e
 o

f
x

2

Components of x2

Components of x1

Components of x3

 How do we partition a graph into k clusters?

 Two basic approaches:

 Recursive bi-partitioning [Hagen et al., ’92]

 Recursively apply bi-partitioning algorithm in a
hierarchical divisive manner

 Disadvantages: Inefficient, unstable

 Cluster multiple eigenvectors [Shi-Malik, ’00]

 Build a reduced space from multiple eigenvectors

 Commonly used in recent papers

 A preferable approach…

 Use several of the eigenvectors to partition the
graph

 If we use m eigenvectors, and set a threshold for
each, we can get a partition into 2m groups, each
group consisting of the nodes that are above or
below threshold for each of the eigenvectors, in
a particular pattern.

1

3

2

5

4
6

If we use both the 2nd and 3rd eigenvectors:
• nodes 2 and 3 (positive in both)
• nodes 5 and 6 (negative in 2nd, positive in 3rd)
• nodes 1 and 4 alone

Note that while each eigenvector tries to produce a minimum-sized cut,
successive eigenvectors have to satisfy more and more constraints => the cuts
progressively worse.

 Approximates the optimal cut [Shi-Malik, ’00]
 Can be used to approximate optimal k-way normalized

cut
 Emphasizes cohesive clusters
 Increases the unevenness in the distribution of the data
 Associations between similar points are amplified,

associations between dissimilar points are attenuated
 The data begins to “approximate a clustering”

 Well-separated space
 Transforms data to a new “embedded space”,

consisting of k orthogonal basis vectors
 Multiple eigenvectors prevent instability due to

information loss

 METIS:
 Heuristic but works really well in practice
 http://glaros.dtc.umn.edu/gkhome/views/metis

 Graclus:
 Based on kernel k-means
 http://www.cs.utexas.edu/users/dml/Software/graclus.html

 Louvain:
 Based on Modularity optimization
 http://perso.uclouvain.be/vincent.blondel/research/louvain.html

 Clique percolation method:
 For finding overlapping clusters
 http://angel.elte.hu/cfinder/

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.cs.utexas.edu/users/dml/Software/graclus.html
http://perso.uclouvain.be/vincent.blondel/research/louvain.html
http://angel.elte.hu/cfinder/

 How should we think about large scale
organization of clusters in networks?

 Finding: Community Structure

 How community-like is a set of nodes?
 A good cluster S has

 Many edges internally

 Few edges pointing outside

 What’s a good metric:
Conductance

Small conductance corresponds to good clusters
(Note |S| < |V|/2)

S

S’

Ss

sd

SjSiEji
S

|},;),{(|
)(

 Define:
Network community profile (NCP) plot

Plot the score of best community of size k

Community size, log k

log Φ(k)

k=5 k=7

[WWW ‘08]

k=10

(Note |S| < |V|/2)

• Run the favorite clustering method
• Each dot represents a cluster
• For each size find “best” cluster

Cluster size, log k

C
lu

st
er

 s
co

re
,
lo

g
 Φ

(k
)

Spectral

Graclus

Metis

 Meshes, grids, dense random graphs:

d-dimensional meshes California road network

[WWW ‘08]

 Collaborations between scientists in networks
[Newman, 2005]

Community size, log k

C
o

n
d

u
ct

a
n

ce
,

lo
g

 Φ
(k

)

[WWW ‘08]

Dips in the conductance graph correspond to the
"good" clusters we can visually detect

Typical example: General Relativity collaborations
(n=4,158, m=13,422)

[Internet Mathematics ‘09]

[Internet Mathematics ‘09]

-- Rewired graph

-- Real graph

Φ
(k

),
 (s

co
re

)

k, (cluster size)

Better and
better clusters

Clusters get worse
and worse

Best cluster has
~100 nodes

LiveJournal

Spectral

Metis

[WWW ‘09]

Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster
distances are
maximized

Intra-cluster
distances are

minimized

103

104

How many clusters?

Four ClustersTwo Clusters

Six Clusters

 Some issues with community detection:

 Many different formalizations of clustering
objective functions

 Objectives are NP-hard to optimize exactly

 Methods can find clusters that are
systematically “biased”

 Questions:

 How well do algorithms optimize objectives?

 What clusters do different methods find?

 Single-criterion:
 Modularity: m-E(m)

 Edges cut: c
 Multi-criterion:
 Conductance: c/(2m+c)

 Expansion: c/n

 Density: 1-m/n2

 CutRatio: c/n(N-n)

 Normalized Cut: c/(2m+c) + c/2(M-m)+c

 Flake-ODF: frac. of nodes with more than ½ edges
pointing outside S

S

n: nodes in S
m: edges in S
c: edges pointing

outside S

[WWW ‘09]

Many algorithms to implicitly or explicitly
optimize objectives and extract communities:

 Heuristics:

 Girvan-Newman, Modularity optimization:
popular heuristics

 Metis: multi-resolution heuristic [Karypis-Kumar ‘98]

 Theoretical approximation algorithms:

 Spectral partitioning

[WWW ‘09]

500 node communities from Spectral:

500 node communities from Metis:

[WWW ‘09]

 Metis gives sets with better
conductance

 Spectral gives tighter and
more well-rounded sets

Conductance of bounding cut

Spectral

Disconnected Metis

Connected Metis

[WWW ‘09]

Diameter of the cluster

External / Internal conductance

L
o

w
er is g

o
o

d

Observations:
 All measures are

monotonic
 Modularity

 prefers large
clusters

 Ignores small
clusters

[WWW ‘09]

 All qualitatively
similar

 Observations:
 Conductance,

Expansion, Norm-
cut, Cut-ratio are
similar

 Flake-ODF prefers
larger clusters

 Density is bad
 Cut-ratio has high

variance

[WWW ‘09]

