EECS6414: Data Analytics & Visualization

Network Properties: Characterizing/ Measuring Networks

Thanks to Jure Leskovec, Stanford & Panayiotis Tsaparas, Univ. of Ioannina for slides

- Characterizing/Measuring Networks
 - Network Properties
- Case Study: A Real World Network (MSN)

Structure of Networks

- For example, last time we talked about Observations and Models for the Web graph:
 - 1) We took a real system: the Web
 - 2) We represented it as a directed graph
 - 3) We used the language of graph theory
 - Strongly Connected Components
 - 4) We designed a computational experiment:
 - Find In- and Out-components of a given node v
 - 5) We learned something about the structure of the Web: BOWTIE!

Undirected vs. Directed Networks

Undirected graphs

 Links: undirected (symmetrical, reciprocal relations)

- Undirected links:
 - Collaborations
 - Friendship on Facebook

Directed graphs

Links: directed

 (asymmetrical relations)

- Directed links:
 - Phone calls
 - Following on Twitter

Adjacency Matrix

Note that for a directed graph (right) the matrix is not symmetric.

Node Degrees

Source: Node with $k^{in} = 0$ **Sink:** Node with $k^{out} = 0$

Node degree, k_i: the number of edges adjacent to node *i* $k_{4} = 4$ Avg. degree: $\overline{k} = \langle k \rangle = \frac{1}{N} \overset{N}{\overset{N}{\stackrel{}_{\stackrel{}_{\stackrel{}_{\stackrel{}}_{\stackrel{}_{\stackrel{}}_{\stackrel{}}_{\stackrel{}}_{\stackrel{}_{\stackrel{}}_{\stackrel{}}_{\stackrel{}}}}{\overset{N}_{\stackrel{}_{\stackrel{}}_{\stackrel{}}} k_i = \frac{2E}{N}$ In directed networks we define an in-degree and out-degree. The (total) degree of a node is the sum of in- and out-degrees.

$$k_C^{in} = 2 \qquad k_C^{out} = 1 \qquad k_C = 3$$

$$\overline{k} = \frac{E}{N} \qquad \overline{k^{in}} = \overline{k^{out}}$$

Complete Graph

The **maximum number of edges** in an undirected graph on *N* nodes is

$$E_{\max} = \binom{N}{2} = \frac{N(N-1)}{2}$$

An undirected graph with the number of edges $E = E_{max}$ is called a **complete graph**, and its average degree is *N-1*

Most real-world networks are sparse

 $E << E_{max}$ (or k << N-1)

WWW (Stanford-Berkeley):	N=319,717	⟨k⟩=9.65
Social networks (LinkedIn):	N=6,946,668	$\langle k \rangle = 8.87$
Communication (MSN IM):	N=242,720,596	⟨k⟩=11.1
Coauthorships (DBLP):	N=317,080	⟨k⟩=6.62
Internet (AS-Skitter):	N=1,719,037	⟨k⟩=14.91
Roads (California):	N=1,957,027	⟨k⟩=2.82
Proteins (S. Cerevisiae):	N=1,870	⟨k⟩=2.39

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros!

(Density of the matrix (E/N^2): WWW=1.51×10⁻⁵, MSN IM = 2.27×10⁻⁸)

- Adjacency Matrix
 - symmetric matrix for undirected graphs

- Adjacency Matrix
 - unsymmetric matrix for undirected graphs

- Adjacency List
 - For each node keep a list with neighboring nodes

1: [2, 3] 2: [1, 3] 3: [1, 2, 4] 4: [3, 5] 5: [4]

Adjacency List

For each node keep a list of the nodes it points to

1: [2, 3] 2: [1] 3: [2, 4] 4: [5] 5: [null]

- List of edges
 - Keep a list of all the edges in the graph

(1,2) (2,3) (1,3) (3,4) (4,5)

List of edges

Keep a list of all the directed edges in the graph

(1,2) (2,1) (1,3) (3,2) (3,4) (4,5)

More Types of Graphs:

Examples: Friendship, Hyperlink

Weighted

Examples: Collaboration, Internet, Roads

More Types of Graphs:

Examples: Proteins, Hyperlinks

Multigraph

Examples: Communication, Collaboration

WWW >> directed multigraph with self-edges

Facebook friendships >> undirected, unweighted

Citation networks >> unweighted, directed, acyclic

Collaboration networks >> undirected multigraph or weighted graph

Mobile phone calls >> directed, (weighted?) multigraph

Protein Interactions >> undirected, unweighted with self-interactions

Bipartite Graph

Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets

Examples:

- Authors-to-papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- "Folded" networks:
 - Author collaboration networks
 - Movie co-rating networks

Web Cores

- Cores: Small complete bipartite graphs (of size 3x3, 4x3, 4x4)
 - Similar to the triangles in undirected graphs
- Found more frequently than expected on the Web graph
- Correspond to communities of enthusiasts (e.g., fans of japanese rock bands)

- Most networks have the same characteristics with respect to global measurements
 - can we say something about the local structure of the networks?
- Motifs: Find small subgraphs that are overrepresented in the network

Example

Motifs of size 3 in a directed graph

Finding Interesting Motifs

- Sample a part of the graph of size S
- Count the frequency of the motifs of interest
- Compare against the frequency of the motif in a random graph with the same number of nodes and the same degree distribution

Generating a Random Graph

Find edges (i,j) and (x,y) such that edges (i,y) and (x,j) do not exist, and swap them
 repeat for a large enough number of times

Subgraphs

- Subgraph: Given V' ⊆ V, and E' ⊆ E, the graph G'=(V',E') is a subgraph of G.
- Induced subgraph: Given
 V' ⊆ V, let E' ⊆ E is the set of all edges between the nodes in V'. The graph G'=(V',E'), is an induced subgraph of G

Connected Undirected graphs without cycles

Spanning Tree

- For any connected graph, the spanning tree is a subgraph and a tree that includes all the nodes of the graph
- There may exist multiple spanning trees for a graph
- The weigh of a spanning tree (among multiple spanning trees) of a graph is the summation of the edge weights in that spanning tree
- Minimum Spanning Tree (MST): The spanning tree with the minimum weight $v_1 + v_2$

Classes of Complexity

P: Solvable in polynomial time

NP: Verified in polynomial time, but no known solution in polynomial timeNP-hard: At least as difficult as the hardest NP problemsNP-complete: The hardest of NP problems

More Network Properties...

Degree Distribution

Degree distribution P(k): Probability that a randomly chosen node has degree k $N_{k} =$ # nodes with degree kP(k)Normalized histogram: 0.6 0.5 $P(k) = N_k / N \rightarrow \text{plot}$ 0.4 0.3 0.2 0.1 2 3 4 1

Paths in a Graph

A path is a sequence of nodes in which each node is linked to the next one

 $P_n = \{i_0, i_1, i_2, \dots, i_n\} \qquad P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), \dots, (i_{n-1}, i_n)\}$

- Path can intersect itself and pass through the same edge multiple times
 - E.g.: ACBDCDEG
 - In a directed graph a path can only follow the direction of the "arrow"

Distance in a Graph

 $h_{B,D} = 2$

Distance (shortest path, geodesic) between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes

- *If the two nodes are disconnected, the distance is usually defined as infinite
- In directed graphs paths need to follow the direction of the arrows
 - Consequence: Distance is

not symmetric: $h_{A,C} \neq h_{C,A}$

Finding Shortest Paths

Breadth First Search:

- Start with node u, mark it to be at distance h_u(u)=0, add u to the queue
- While the queue not empty:
 - Take node v off the queue, put its unmarked neighbors w into the queue and mark h_u(w)=h_u(v)+1

Shortest Paths on Weighted Graphs

- Shortest paths on weighted graphs are harder to construct
 - There are several well known algorithms for finding single-source, or all-pairs shortest paths
- Single-source Shortest Path (SSSP)
 - Dijkstra's algorithm (non-negative weights)
 - Bellman-Ford algorithm (allows negative weights)
- All-pairs Shortest Paths (APSP)
 - Floyd-Warshall algorithm (allows negative weights)
 - Johnson's algorithm (allows negative weights)

Network Diameter

- Diameter: the maximum (shortest path) distance between any pair of nodes in a graph
- Average path length for a connected graph (component) or a strongly connected (component of a) directed graph

$$\overline{h} = \frac{1}{2E_{\max}} \sum_{i, j \neq i} h_{ij}$$

where $m{h}_{ij}$ is the distance from node $m{i}$ to node $m{j}$

 Many times we compute the average only over the connected pairs of nodes (that is, we ignore "infinite" length paths)

Clustering Coefficient

Clustering coefficient:

- What portion of *i*'s neighbors are connected?
- Node i with degree k_i
- $C_i \in [0, 1]$ • $C_i = \frac{2e_i}{k_i(k_i - 1)}$

where e_i is the number of edges between the neighbors of node i

Clustering Coefficient: Example

Clustering coefficient:

- What portion of *i*'s neighbors are connected?
- Node i with degree k_i

$$\Box C_i = \frac{2e_i}{k_i(k_i - 1)}$$

where e_i is the number of edges between the neighbors of node i

. . .

$$k_B = 2, e_B = 1, C_B = 2/2 = 1$$

 $k_D = 4, e_D = 2, C_D = 4/12 = 1/3$

Key Network Properties

Degree distribution:P(k)Path length:hClustering coefficient:C

Let's measure P(k), h and C on a real-world network!

The MSN Messenger

MSN Messenger activity in June 2006:

- 245 million users logged in
- 180 million users engaged in conversations
- More than 30 billion conversations
- More than 255 billion exchanged messages

Communication: Geography

Communication network

Network: 180M people, 1.3B edges

Messaging as a Multigraph

MSN Network: Connectivity

MSN: Degree Distribution

MSN: Log-Log Degree Distribution

MSN: Clustering

MSN: Diameter

Steps		#Nodes
# nodes as we do BFS out of a random node	0	1
	1	10
	2	78
	3	3,96
	4	8,648
	5	3,299,252
	6	28,395,849
	7	79,059,497
	8	52,995,778
	9	10,321,008
	10	1,955,007
	11	518,410
	12	149,945
	13	44,616
	14	13,740
	15	4,476
	16	1,542
	17	536
	18	167
	19	71
	20	29
	21	16
	22	10
	23	3
	24	2
	25	3

MSN: Key Network Properties

Heavily skewed **Degree distribution:** avg. degree = 14.466 Path length: **Clustering coefficient:** 0.11 Are these values "expected"? Are they "surprising"? To answer this we need a null-model!

Is MSN Network like a "chain"?

So, we have: Constant degree,
 Constant avg. clustering coeff.
 Linear avg. path-length

Note about calculations: We are interested in quantities as graphs get large $(N \rightarrow \infty)$

Is MSN Network like a "grid"?

$$\bullet P(k) = \delta(k-6)$$

- k =6 for each inside node
- C = 6/15 for inside nodes
- Path length:

$$h_{max} = O(\sqrt{N})$$

In general, for lattices:

• Average path-length is $\overline{h} pprox N^{1/D}$

(D... lattice dimensionality)

Constant degree, constant clustering coefficient

What did we learn so far?

MSN Network is neither a chain nor a grid