EECS6414:
 Data Analytics \& Visualization

Network Properties: Characterizing/ Measuring Networks

Agenda

- Characterizing/Measuring Networks
" Network Properties
- Case Study: A Real World Network (MSN)

Structure of Networks

- For example, last time we talked about Observations and Models for the Web graph:
- 1) We took a real system: the Web
- 2) We represented it as a directed graph
- 3) We used the language of graph theory
- Strongly Connected Components
- 4) We designed a computational experiment:
- Find In- and Out-components of a given node v
- 5) We learned something about the structure of the Web: BOWTIE!

Undirected vs. Directed Networks

Undirected graphs

- Links: undirected
(symmetrical, reciprocal relations)

- Undirected links:
- Collaborations
- Friendship on Facebook

Directed graphs

- Links: directed
(asymmetrical relations)

- Directed links:
- Phone calls
- Following on Twitter

Adjacency Matrix

$\boldsymbol{A}_{\boldsymbol{i j}}=\mathbf{1}$ if there is a link from node \boldsymbol{i} to node \boldsymbol{j}
$\boldsymbol{A}_{i j}=\mathbf{0}$ otherwise

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad A=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Note that for a directed graph (right) the matrix is not symmetric.

Node Degrees

Node degree, k_{i} : the number of edges adjacent to node \boldsymbol{i} $k_{A}=4$
Avg. degree: $\bar{k}=\langle k\rangle=\frac{1}{N}_{i=1}^{N} k_{i}=\frac{2 E}{N}$
In directed networks we define
 an in-degree and out-degree. The (total) degree of a node is the sum of in- and out-degrees.

$$
k_{C}^{\text {in }}=2 \quad k_{C}^{\text {out }}=1 \quad k_{C}=3
$$

Source: Node with $k^{\text {in }}=0$ Sink: Node with $k^{\text {out }}=0$

$$
\bar{k}=\frac{E}{N} \quad \overline{k^{\text {in }}}=\overline{k^{\text {out }}}
$$

Complete Graph

The maximum number of edges in an undirected graph on N nodes is

$$
E_{\max }=\binom{N}{2}=\frac{N(N-1)}{2}
$$

An undirected graph with the number of edges $\boldsymbol{E}=\boldsymbol{E}_{\max }$ is called a complete graph, and its average degree is \boldsymbol{N}-1

Networks are Sparse Graphs

Most real-world networks are sparse $\mathbf{E} \ll \mathrm{E}_{\text {max }}($ or $\mathrm{K} \ll \mathbf{N}-1)$

WWW (Stanford-Berkeley):

$\mathrm{N}=319,717$	$\langle\mathrm{k}\rangle=9.65$
$\mathrm{~N}=6,946,668$	$\langle\mathrm{k}\rangle=8.87$
$\mathrm{~N}=242,720,596$	$\langle\mathrm{k}\rangle=11.1$
$\mathrm{~N}=317,080$	$\langle\mathrm{k}\rangle=6.62$
$\mathrm{~N}=1,719,037$	$\langle\mathrm{k}\rangle=14.91$
$\mathrm{~N}=1,957,027$	$\langle\mathrm{k}\rangle=2.82$
$\mathrm{~N}=1,870$	$\langle\mathrm{k}\rangle=2.39$

(Source: Leskovec et al., Internet Mathematics, 2009)
Consequence: Adjacency matrix is filled with zeros!
(Density of the matrix $\left(E / N^{2}\right): W W W=1.51 \times 10^{-5}, \mathrm{MSN} \mathrm{IM}=2.27 \times 10^{-8}$)

Graph Representation

- Adjacency Matrix
- symmetric matrix for undirected graphs

Graph Representation

Adjacency Matrix

- unsymmetric matrix for undirected graphs

$$
A=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Graph Representation

Adjacency List

- For each node keep a list with neighboring nodes

$$
\begin{aligned}
& 1:[2,3] \\
& 2:[1,3] \\
& 3:[1,2,4] \\
& 4:[3,5] \\
& 5:[4]
\end{aligned}
$$

Graph Representation

Adjacency List

- For each node keep a list of the nodes it points to

$$
1:[2,3]
$$

2: [1]
3: $[2,4]$
4: [5]
5: [null]

Graph Representation

List of edges

- Keep a list of all the edges in the graph
$(1,2)$
$(2,3)$
$(1,3)$
$(3,4)$
$(4,5)$

Graph Representation

List of edges

- Keep a list of all the directed edges in the graph
$(1,2)$
$(2,1)$
$(1,3)$
$(3,2)$
$(3,4)$
$(4,5)$

More Types of Graphs:

- Unweighted
(undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
A_{i i}=0
\end{gathered} A_{i j}=A_{j i} .
$$

Examples: Friendship, Hyperlink

- Weighted
(undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{cccc}
0 & 2 & 0.5 & 0 \\
2 & 0 & 1 & 4 \\
0.5 & 1 & 0 & 0 \\
0 & 4 & 0 & 0
\end{array}\right) \\
E=\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) \quad \bar{k}=\frac{2 E}{N}
\end{gathered}
$$

Examples: Collaboration, Internet, Roads

More Types of Graphs:

- Self-edges (self-loops) (undirected)

$A_{i j}=\left(\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$

$$
A_{i i} \neq 0 \quad A_{i j}=A_{j i}
$$

$E=\frac{1}{2} \sum_{i, j=1, i \neq j}^{N} A_{i j}+\sum_{i=1}^{N} A_{i i}$
Examples: Proteins, Hyperlinks

- Multigraph
(undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
0 & 2 & 1 & 0 \\
2 & 0 & 1 & 3 \\
1 & 1 & 0 & 0 \\
0 & 3 & 0 & 0
\end{array}\right) \\
E=\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) \quad \bar{k}=\frac{2 E}{N}
\end{gathered}
$$

Examples: Communication, Collaboration

Network Representations

WWW >> directed multigraph with self-edges
Facebook friendships >> undirected, unweighted
Citation networks >> unweighted, directed, acyclic
Collaboration networks >> undirected multigraph or weighted graph
Mobile phone calls >> directed, (weighted?) multigraph
Protein Interactions >> undirected, unweighted with self-interactions

Bipartite Graph

- Bipartite graph is a graph whose nodes can be divided into two disjoint sets \boldsymbol{U} and \boldsymbol{V} such that every link connects a node in \boldsymbol{U} to one in \boldsymbol{V}; that is, \boldsymbol{U} and \boldsymbol{V} are independent sets
- Examples:
- Authors-to-papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- "Folded" networks:
- Author collaboration networks
- Movie co-rating networks

$U \quad V$

Folded version of the graph above

Web Cores

- Cores: Small complete bipartite graphs (of size $3 \times 3,4 \times 3,4 \times 4$)
- Similar to the triangles in undirected graphs
- Found more frequently than expected on the Web graph
- Correspond to communities of enthusiasts (e.g., fans of japanese rock bands)

Motifs

- Most networks have the same characteristics with respect to global measurements
" can we say something about the local structure of the networks?
- Motifs: Find small subgraphs that are overrepresented in the network

Example

- Motifs of size 3 in a directed graph

B

Finding Interesting Motifs

- Sample a part of the graph of size S
- Count the frequency of the motifs of interest
- Compare against the frequency of the motif in a random graph with the same number of nodes and the same degree distribution

Generating a Random Graph

- Find edges (i, j) and (x, y) such that edges (i, y) and (x, j) do not exist, and swap them
repeat for a large enough number of times

degrees of i, j, x, y
are preserved

Subgraphs

- Subgraph: Given $\mathrm{V}^{\prime} \subseteq \mathrm{V}$, and $\mathrm{E}^{\prime} \subseteq \mathrm{E}$, the graph $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ is a subgraph of G.
- Induced subgraph: Given $\mathrm{V}^{\prime} \subseteq \mathrm{V}$, let $\mathrm{E}^{\prime} \subseteq \mathrm{E}$ is the set of all edges between the nodes in V^{\prime}. The graph $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$, is an induced subgraph of G

Trees

Connected Undirected graphs without cycles

Spanning Tree

- For any connected graph, the spanning tree is a subgraph and a tree that includes all the nodes of the graph
- There may exist multiple spanning trees for a graph
- The weigh of a spanning tree (among multiple spanning trees) of a graph is the summation of the edge weights in that spanning tree
- Minimum Spanning Tree (MST): The spanning tree with the minimum weight

Classes of Complexity

P: Solvable in polynomial time
NP: Verified in polynomial time, but no known solution in polynomial time NP-hard: At least as difficult as the hardest NP problems NP-complete: The hardest of NP problems

More Network Properties...

Degree Distribution

- Degree distribution $P(k)$: Probability that a randomly chosen node has degree \boldsymbol{k} $\boldsymbol{N}_{\boldsymbol{k}}=\#$ nodes with degree \boldsymbol{k}
- Normalized histogram:

$$
P(k)=N_{k} / N \quad \rightarrow \text { plot }
$$

Paths in a Graph

- A path is a sequence of nodes in which each node is linked to the next one

$$
P_{n}=\left\{i_{0}, i_{1}, i_{2}, \ldots, i_{n}\right\} \quad P_{n}=\left\{\left(i_{0}, i_{1}\right),\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{n-1}, i_{n}\right)\right\}
$$

- Path can intersect itself and pass through the same edge multiple times
- E.g.: ACBDCDEG
- In a directed graph a path can only follow the direction

Distance in a Graph

$$
h_{B, D}=2
$$

- Distance (shortest path, geodesic) between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes
- *If the two nodes are disconnected, the distance is usually defined as infinite
- In directed graphs paths need to follow the direction of the arrows
- Consequence: Distance is not symmetric: $h_{A, C} \neq h_{C, A}$

Finding Shortest Paths

- Breadth First Search:
- Start with node u, mark it to be at distance $h_{u}(u)=0$, add u to the queue
- While the queue not empty:
- Take node v off the queue, put its unmarked neighbors w into the queue and mark $h_{u}(w)=h_{u}(v)+1$

Shortest Paths on Weighted Graphs

- Shortest paths on weighted graphs are harder to construct
- There are several well known algorithms for finding single-source, or all-pairs shortest paths
- Single-source Shortest Path (SSSP)
- Dijkstra's algorithm (non-negative weights)
- Bellman-Ford algorithm (allows negative weights)
- All-pairs Shortest Paths (APSP)
- Floyd-Warshall algorithm (allows negative weights)
- Johnson's algorithm (allows negative weights)

Network Diameter

- Diameter: the maximum (shortest path) distance between any pair of nodes in a graph
- Average path length for a connected graph (component) or a strongly connected (component of a) directed graph

$$
\bar{h}=\frac{1}{2 E_{\max }} \sum_{i, j \neq i} h_{i j}
$$

- Many times we compute the average only over the connected pairs of nodes (that is, we ignore "infinite" length paths)

Clustering Coefficient

- Clustering coefficient:
- What portion of i 's neighbors are connected?
- Node \boldsymbol{i} with degree $\boldsymbol{k}_{\boldsymbol{i}}$
- $C_{i} \in[0,1]$
$-C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)} \quad \begin{aligned} & \text { where } e_{i} \text { is the number of edges } \\ & \text { between the neighbors of node } i\end{aligned}$

Clustering Coefficient: Example

- Clustering coefficient:
- What portion of i 's neighbors are connected?
- Node \boldsymbol{i} with degree $\boldsymbol{k}_{\boldsymbol{i}}$
$-C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}$
where e_{i} is the number of edges
between the neighbors of node i

$$
\begin{array}{lll}
k_{B}=2, & e_{B}=1, & C_{\boldsymbol{B}}=2 / 2=1 \\
k_{D}=4, & e_{D}=2, & C_{D}=4 / 12=1 / 3
\end{array}
$$

Key Network Properties

Degree distribution:
 Path length:
 $P(k)$

Clustering coefficient:
C

Let's measure P(k), h and C on a real-world network!

The MSN Messenger

MSN Messenger activity in June 2006:

- 245 million users logged in
- 180 million users engaged in conversations
- More than 30 billion conversations
- More than 255 billion exchanged messages

Communication: Geography

Communication network

Messaging as a Multigraph

—Contact —Conversation
Messaging as an undirected graph

- Edge (u,v) if users u and v exchanged at least 1 msg
- $\mathrm{N}=180$ million people
- $\mathrm{E}=1.3$ billion edges

MSN Network: Connectivity

MSN: Degree Distribution

MSN: Log-Log Degree Distribution

MSN: Clustering

C_{k} : average C_{i} of nodes i of degree $k: C_{k}=\frac{1}{N_{k}} \sum_{i: k_{i}=k} C_{i}$

MSN: Diameter

Avg. path length 6.6 90% of the nodes can be reached in <8 hops

MSN: Key Network Properties

Degree distribution:
Heavily skewed avg. degree= 14.4
Path length:
6.6

Clustering coefficient: 0.11

Are these values "expected"? Are they "surprising"?

To answer this we need a null-mode!!

Is MSN Network like a "chain"?

- $P(k)=\delta(k-4) \quad k_{i}=4$ for all nodes
- $C=\frac{1}{N}\left(\frac{1}{2}(N-4)+2+2 \frac{2}{3}\right)=1 / 2$ as $N \rightarrow \infty$
- Path length: $h_{\max }=\frac{N-1}{2}=O(N)$
- Avg. shortest path-length: $\bar{h}<\frac{2}{N(N-1)} \frac{N-1}{2} \frac{N(N-1)}{2}=O(N)$
- So, we have: Constant degree, Constant avg. clustering coeff.

Note about calculations:
We are interested in quantities as graphs get large ($\mathrm{N} \rightarrow \infty$) Linear avg. path-length

Is MSN Network like a "grid"?

- $P(k)=\delta(k-6)$
- $k=6$ for each inside node
- $C=6 / 15$ for inside nodes
- Path length:

$$
\mathrm{h}_{\max }=O(\sqrt{N})
$$

- In general, for lattices:
- Average path-length is $\bar{h} \approx N^{1 / D} \quad$ (D... lattice dimensionality)
- Constant degree, constant clustering coefficient

What did we learn so far?

MSN Network is
neither a chain
nor a grid

