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 The Influence Maximization Problem (IMP)
 (Or, how to create big cascades)
 (Or, finding the most influential set of nodes)

 IMP Hardness
 IMP Approximation
 Submodularity
 Hill Climbing Approximation Algorithm

 IMP Experiments and Remarks



 We are more influenced by our friends 
than strangers

3

 68% of consumers consult 
friends and family before 
purchasing home electronics 

50% do research online 
before purchasing electronics
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Identify influential 
customers

These customers 
endorse the product 
among their friends

Convince them to 
adopt the product –
Offer discount/free 

samples



 Information epidemics:

 Which are the influential users?

 Which news sites create big cascades?

 Where should we advertise?
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vs.

Which node shall we target?



 Independent Cascade Model
 Directed finite 𝑮 = (𝑽, 𝑬)

 Set 𝑺 starts out with new behavior
 Say nodes with this behavior are “active”

 Each edge (𝒗,𝒘) has a probability 𝒑𝒗𝒘
 If node 𝒗 is active, it gets one chance to 

make 𝒘 active, with probability 𝒑𝒗𝒘
 Each edge fires at most once

 Does scheduling matter? No
 𝒖, 𝒗 both active, doesn’t matter which fires first

 But the time moves in discrete steps
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 Initially some nodes S are active
 Each edge (𝒗,𝒘) has probability (weight) 𝒑𝒗𝒘

 When node v becomes active: 
 It activates each out-neighbor 𝒘 with prob. 𝒑𝒗𝒘

 Activations spread through the network
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 S: is initial active set
 f(S): The expected size of final active set 

 Set S is more influential if f(S) is larger
𝒇( 𝒂, 𝒃 ) < 𝒇({𝒂, 𝒄}) < 𝒇({𝒂, 𝒅})
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Problem: (k is user-specified parameter)

 Most influential set of 
size k: set S of k nodes 
producing largest 
expected cascade size 
f(S) if activated 
[Domingos-Richardson ‘01]

 Optimization problem:
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Why “expected cascade size”? Xa is a result of a random process. So in 

practice we would want to compute Xa for many realizations and then 

maximize the “average” value f(S). For now let’s ignore this nuisance and 

simply assume that each node a influences a set of nodes Xa

 )()( SfSf i
Random

realizations i





 Problem: Most influential set of k nodes:
set S on k nodes producing largest expected 
cascade size f(S) if activated

 The optimization problem:

 How hard is this problem?

 NP-COMPLETE!

 Show that finding most influential 
set is at least as hard as a vertex cover
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)(max
k size of S

Sf



 Vertex cover problem 
(a known NP-complete problem):

 Given universe of elements  𝑼 = {𝒖𝟏, … , 𝒖𝒏}
and sets 𝑿𝟏, … , 𝑿𝒎 𝑼

 Are there k sets among X1,…, Xm such that 
their union is U?

 Goal:
Encode vertex cover as an instance of
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 Let a vertex cover instance with sets X1,…, Xm

 Build a bipartite “X-to-U” graph:

 Vertex Cover as Influence Maximization in 
X-to-U graph: There exists a set S of size k with 
f(S)=k+n iff there exists a size k set cover
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Construction:

• Create  edge 

(Xi,u)  Xi  uXi

-- directed edge 

from sets to their 

elements

• Put weight 1 on 

each edge (the 

activation is 

deterministic)

u1

u2

u3

un

e.g.:

X1 = {u1, u2, u3}

1

1

1

X1

X2

X3

Xm

Note: Optimal solution is always a set of nodes Xi (we never influence nodes “u”)

This problem is hard in general, could be special cases that are easier.



 Extremely bad news:

 Influence maximization is NP-complete

 Next, good news:

 There exists an approximation algorithm!

 For some inputs the algorithm won’t find globally 
optimal solution/set OPT

 But we will also prove that the algorithm will never do 
too badly either. More precisely, the algorithm will find 
a set S where f(S) > 0.63*f(OPT), where OPT is the 
globally optimal set.
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 Consider a Greedy Hill Climbing
algorithm to find S:

 Input:
Influence set 𝑿𝒖 of each node 𝒖: 𝑿𝒖 =
{𝒗𝟏, 𝒗𝟐, … }

 If we activate 𝒖, nodes {𝒗𝟏, 𝒗𝟐, … } will eventually 
get active

 Algorithm: At each iteration 𝒊 take the node 𝒖
that gives best marginal gain: 
𝐦𝐚𝐱
𝒖
𝒇(𝑺𝒊−𝟏  {𝒖})
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𝑆𝑖 … Initially active set

𝑓(𝑆𝑖) … Size of the union of 𝑋𝑢, 𝑢 ∈ 𝑆𝑖



Algorithm:
 Start with 𝑺𝟎 = { }
 For 𝒊 = 𝟏…𝒌

 Take node 𝒖 that max𝒇(𝑺𝒊−𝟏  {𝒖})

 Let 𝑺𝒊 = 𝑺𝒊−𝟏 {𝒖}

 Example:

 Eval. 𝑓 𝑎 ,… , 𝑓({𝑒}), pick max of them

 Eval. 𝑓 𝒅, 𝑎 , … , 𝑓({𝒅, 𝑒}), pick max

 Eval. 𝑓(𝒅, 𝒃, 𝑎}), … , 𝑓({𝒅, 𝒃, 𝑒}), pick max
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 Claim: Hill climbing produces a solution S 
where: f(S) (1-1/e)*f(OPT) (f(S)>0.63*f(OPT))
[Nemhauser, Fisher, Wolsey ’78, Kempe, Kleinberg, Tardos ‘03]

 Claim holds for functions f(·) with 2 properties:

 f is monotone: (activating more nodes doesn’t hurt)

if S  T then f(S)  f(T) and f({})=0

 f is submodular: (activating each additional node helps less)

adding an element to a set gives less improvement 
than adding it to one of its subsets: S  T
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Gain of adding a node to a small set Gain of adding a node to a large set

f(S  {u}) – f(S)   ≥  f(T  {u}) – f(T)



 Diminishing returns:
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f(
·)

Set size |T|, |S|

Gain of adding a node to a small set Gain of adding a node to a large set

f(S  {u}) – f(S)   ≥  f(T  {u}) – f(T)

f(S)

f(S {u})

f(T {u})
S T

f(T)

Adding u to T helps less

than adding it to S!





 We must show our f(·) is submodular:
 S  T

 Basic fact 1:

 If 𝒇𝟏(𝒙), … , 𝒇𝒌(𝒙) are submodular, 
and 𝒄𝟏, … , 𝒄𝒌  𝟎
then 𝑭 𝒙 =  𝒊 𝒄𝒊 ∙ 𝒇𝒊 𝒙 is also submodular
(Linear combination of submodular functions is a submodular function)
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Gain of adding a node to a small set Gain of adding a node to a large set

f(S  {u}) – f(S)   ≥  f(T  {u}) – f(T)



 S  T:

 Basic fact 2: A simple submodular function

 Sets 𝑿𝟏, … , 𝑿𝒎

 𝒇 𝑺 =  𝒌∈𝑺𝑿𝒌 (size of the union of sets 𝑿𝒌, 𝒌𝑺)

 Claim: 𝒇(𝑺) is submodular!
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S
T

u

Gain of adding u to a small set Gain of adding u to a large set

f(S  {u}) – f(S)   ≥  f(T  {u}) – f(T)

S T

The more sets 

you already 

have the less 

new area a 

given set will 

cover



 Proof strategy:

 We will argue that 
influence maximization 
is an instance of the 
set cover problem:

 f(S) is the size of the
union of nodes influenced
by set S

 Note f(S) is “random” (a result of a random process) 
so we need to be careful

 Principle of deferred decision to the rescue!
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 Principle of deferred decision:

 Flip all the coins at the
beginning and record
which edges fire successfully

 Now we have a 
deterministic graph!

 Def: Edge is live if it fired successfully

 That is, we remove edges that did not fire

 What is influence set 𝑿𝒖 of node 𝒖?

 The set reachable by live-edge paths from 𝒖
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Influence sets

for realization 𝒊:
𝑋𝑎
𝑖 = {a,f,c,g}

𝑋𝑏
𝑖 = {b,c}, 

𝑋𝑐
𝑖 = {c}

𝑋𝑑
𝑖 = {d,e,h}

…

 )()( SfSf i
Random

realizations i



 What is an influence set 𝑿𝒖?

 The set reachable by 
live-edge paths from 𝒖

 What is now f(S)?

 fi(S) = size of the set 
reachable by live-edge 
paths from nodes in S

 For the i-th realization of coin flips
 𝑓𝑖(𝑆 = 𝑎, 𝑏 ) = 𝑎, 𝑓, 𝑐, 𝑔 ∪ 𝑏, 𝑐 = 5

 𝑓𝑖 𝑆 = 𝑎, 𝑑 = 𝑎, 𝑓, 𝑐, 𝑔} ∪ {𝑑, 𝑒, ℎ = 7
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𝑋𝑎
𝑖 = {a,f,c,g}

𝑋𝑏
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 Fix outcome 𝒊 ∈ 𝑰 of coin flips
 𝑿𝒗

𝒊 = set of nodes reachable from
𝒗 on live-edge paths

 𝒇𝒊(𝑺) = size of cascades from 𝑺
given coin flips 𝒊

 𝒇𝒊 𝑺 =  𝒗∈𝑺𝑿𝒗
𝒊  𝒇𝒊(𝑺)

is submodular!
 𝑿𝒗

𝒊 are sets, 𝒇𝒊(𝑺) is the size of their union
 Expected influence set size:
𝒇 𝑺 =  𝒊∈𝑰𝒇𝒊(𝑺) 𝒇(𝑺) is submodular!
 𝒇(𝑺) is a linear combination of submodular functions
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 Find most influential set S of size k: largest 
expected cascade size f(S) if set S is activated

 Want to solve:
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Claim: 
If f(S) is monotone and submodular.
Hill climbing produces a solution S 
where: 𝒇 𝑺  𝟏 −

𝟏

𝒆
⋅ 𝒇(𝑶𝑷𝑻)

 In other words: 𝑓 𝑆 > 0.63 ⋅ 𝑓(𝑂𝑃𝑇)

 The setting:
 Keep adding nodes that give the largest gain
 Start with 𝑺𝟎 = {}, produce sets 𝑺𝟏, 𝑺𝟐, … , 𝑺𝒌
 Add elements one by one
 Let 𝑶𝑷𝑻 = {𝒕𝟏…𝒕𝒌} be the optimal set (OPT) of size 𝒌

 We need to show: 𝒇(𝑺)  (𝟏 −
𝟏

𝒆
) 𝒇(𝑶𝑷𝑻)
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 Define: Marginal gain: 𝜹𝒊 = 𝒇(𝑺𝒊) − 𝒇(𝑺𝒊−𝟏)
 Proof: 3 steps:

 0) Lemma: 𝑓(𝐴∪𝐵)−𝑓(𝐴) ≤  𝑗=1
𝑘 [𝑓(𝐴∪ {𝑏𝑗})−𝑓(𝐴)]

 where: 𝐵 = {𝑏1, … , 𝑏𝑘} and 𝑓(⋅) is submodular

 1) 𝜹𝒊+𝟏 ≥
𝟏

𝒌
[𝒇 𝑶𝑷𝑻 − 𝒇(𝑺𝒊)]

 2) 𝒇(𝑺𝒊+𝟏) = 𝟏 −
𝟏

𝒌
𝒇 𝑺𝒊 +

𝟏

𝒌
𝒇(𝑶𝑷𝑻)

 3) 𝒇 𝑺𝒌 ≥ 𝟏 −
𝟏

𝒆
𝒇(𝑶𝑷𝑻)
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 𝑓(𝐴 ∪ 𝐵) − 𝑓(𝐴) ≤  𝑗=1
𝑘 [𝑓(𝐴 ∪ {𝑏𝑗}) − 𝑓(𝐴)]

 where: 𝐵 = {𝑏1, … , 𝑏𝑘} and 𝑓(⋅) is submodular

 Proof:

 Let 𝑩𝒊 = {𝒃𝟏, … 𝒃𝒊}, so we have 𝑩𝟏, 𝑩𝟐, … , 𝑩𝒌(= 𝑩)

 𝑓 𝐴 ∪ B − 𝑓 𝐴 =  𝑖=1
𝑘 𝑓 𝐴 ∪ 𝐵𝑖 − 𝑓 𝐴 ∪ 𝐵𝑖−1

 =  𝑖=1
𝑘 𝑓 𝐴 ∪ 𝐵𝑖−1 ∪ 𝑏𝑖 − 𝑓 𝐴 ∪ 𝐵𝑖−1

 ≤  𝑖=1
𝑘 𝑓 𝐴 ∪ {𝑏𝑖} − 𝑓 𝐴
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𝑓 𝐴 ∪ 𝐵1 − 𝑓 𝐴 ∪ 𝐵0
+ 𝑓 𝐴 ∪ 𝐵2 − 𝑓 𝐴 ∪ 𝐵1
+ 𝑓 𝐴 ∪ 𝐵3 − 𝑓 𝐴 ∪ 𝐵2 …
+ 𝑓 𝐴 ∪ 𝐵𝑘 − 𝑓(𝐴 ∪ 𝐵𝑘−1)

Work out the sum. 

Everything but 1st and 

last term cancel out:

By submodularity

since AX {b}  A{b}



 𝑓 𝑂𝑃𝑇 ≤ 𝑓 𝑆𝑖 ∪ 𝑂𝑃𝑇

 = 𝑓 𝑆𝑖 ∪ 𝑂𝑃𝑇 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖

 ≤  𝑗=1
𝑘 𝑓 𝑆𝑖 ∪ {𝑡𝑗} − 𝑓 𝑆𝑖 + 𝑓(𝑆𝑖)

 ≤  𝑗=1
𝑘 𝛿𝑖+1 + 𝑓 𝑆𝑖

 = 𝑓 𝑆𝑖 + 𝑘 𝛿𝑖+1

 Thus: 𝑓 𝑂𝑃𝑇 ≤ 𝑓 𝑆𝑖 + 𝑘 𝛿𝑖+1

  𝜹𝒊+𝟏 ≥
𝟏

𝒌
[𝒇 𝑶𝑷𝑻 − 𝒇(𝑺𝒊)]
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(by monotonicity)

(by prev. slide)

OPT = { t1, … tk }

tj is j-th element of the 

optimal solution.

Rather than choosing tj
let’s greedily choose the

best element qi, which 

gives a gain of i+1. 

So, 𝒇 𝑺𝒊 ∪ 𝒕𝒋 ≤ 𝜹𝒊+𝟏.

This is the “hill-climbing” 

assumption.

Remember: 𝜹𝒊 = 𝒇(𝑺𝒊) − 𝒇(𝑺𝒊−𝟏)



 We just showed: 𝛿𝑖+1 ≥
1

𝑘
[𝑓 𝑂𝑃𝑇 − 𝑓(𝑆𝑖)]

 What is 𝒇(𝑺𝒊+𝟏)?

 𝑓 𝑆𝑖+1 = 𝑓 𝑆𝑖 + 𝛿𝑖+1

 ≥ 𝑓 𝑆𝑖 +
1

𝑘
𝑓 𝑂𝑃𝑇 − 𝑓 𝑆𝑖

 = 1 −
1

𝑘
𝑓 𝑆𝑖 +

1

𝑘
𝑓(𝑂𝑃𝑇)

 What is 𝒇(𝑺𝒌)?
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 Claim:

Proof by induction:
 𝒊 = 𝟎:

 𝑓 𝑆0 = 𝑓({}) = 0

 1 − 1 −
1

𝑘

0
𝑓 𝑂𝑃𝑇 = 0
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 Given that this is true for Si: 

Proof by induction:
 At 𝒊 + 𝟏:

 𝑓 𝑆𝑖+1 ≥ 1 −
1

𝑘
𝑓 𝑆𝑖 +

1

𝑘
𝑓 𝑂𝑃𝑇

 ≥ 1 −
1

𝑘
1 − 1 −

1

𝑘

𝑖
𝑓 𝑂𝑃𝑇 +

1

𝑘
𝑓 𝑂𝑃𝑇

 = 1 − 1 −
1

𝑘

𝑖+1
𝑓(𝑂𝑃𝑇)
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𝑓 𝑆𝑖+1 ≥ 1 −
1

𝑘
𝑓 𝑆𝑖 +

1

𝑘
𝑓(𝑂𝑃𝑇)

Two slides ago we showed:

the claim



 Thus: 

𝒇 𝑺 = 𝒇 𝑺𝒌 ≥ 𝟏 − 𝟏 −
𝟏

𝒌

𝒌

𝒇 𝑶𝑷𝑻

 So:

𝒇 𝑺𝒌 ≥ 𝟏 −
𝟏

𝒆
𝒇(𝑶𝑷𝑻)
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≤
𝟏

𝒆

qed.



We just proved:
 Hill climbing finds solution S which

f(S)  (1-1/e)*f(OPT) i.e., f(S)  0.63*f(OPT)

 This is a data independent bound

 This is a worst case bound

 No matter what is the input data, 
we know that the Hill-Climbing will never 
do worse than 0.63*f(OPT)
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 How to evaluate ƒ(S)?
 Still an open question of how to compute it 

efficiently
 But: Very good estimates by simulation
 Repeating the diffusion process often enough 

(polynomial in n; 1/ε)

 Achieve (1± ε)-approximation to f(S)

 Generalization of Nemhauser-Wolsey proof: 
Greedy algorithm is now a (1-1/e- ε′)-
approximation

3/16/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 37





 A collaboration network: co-authorships in 
papers of the arXiv high-energy physics theory:

 10,748 nodes, 53,000 edges

 Example cascade process: Spread of new scientific 
terminology/method or new research area

 Independent Cascade Model:

 Case 1: Uniform probability p on each edge

 Case 2: Edge from v to w has probability 
1/deg(w) of activating w.
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 Simulate the process 10,000 times for each 
targeted set

 Every time re-choosing edge outcomes randomly

 Compare with other 3 common heuristics 

 Degree centrality: Pick nodes with highest degree 

 Distance centrality: Pick nodes in the “center” of 
the network

 Random nodes: Pick a random set of nodes
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puv = 0.01 puv = 0.10
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Uniform edge firing probability puv

f(
S

k
)

f(
S

k
)

k k



puv=1/deg(v)
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Non-uniform edge firing probability puv

k

f(
S

k
)



 Notice: Greedy approach is slow!

 For a given network G, repeat 10,000s of times:

 Flip coin for each edge and determine influence sets under 
coin-flip realization i

 Each node u is associated with 10,000s influence sets Xu
i

 Greedy’s complexity is 𝑶(𝒌 ⋅ 𝒏 ⋅ 𝑹 ⋅ 𝑴)

 𝑛 … number of nodes in G

 𝑘 … number of nodes be selected/influenced

 𝑅 … number of simulation rounds

 𝑚 … number of edges in G
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 Many researchers have since proposed 
heuristics that work well in practice and run 
faster than the greedy algorithm
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[Chen, Wang, Yang, KDD ‘09]



 More realistic marketing: 

 Different marketing actions increase likelihood of 
initial activation, for several nodes at once

 Study more general influence models

 Find trade-offs between generality and feasibility

 Deal with negative influences

 Model competing ideas

 Obtain more data (better models) about how 
activations occur in real social networks
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