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 Web Search: How to Organize the Web?
 Ranking Nodes on Graphs
 Hubs and Authorities
 PageRank

 How to Solve PageRank
 Personalized PageRank



 How to organize the Web?
 First try: Human curated

Web directories
 Yahoo, DMOZ, LookSmart

 Second try: Web Search
 Information Retrieval attempts to 

find relevant docs in a small 
and trusted set
 Newspaper articles, Patents, etc.

 But: Web is huge, full of untrusted documents, 
random things, web spam, etc.

 So we need a good way to rank webpages!
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2 challenges of web search:
 (1) Web contains many sources of information

Who to “trust”?

 Insight: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query 
“newspaper”?

 No single right answer

 Insight: Pages that actually know about newspapers 
might all be pointing to many newspapers
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 All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

 We already know:
There is large diversity 
in the web-graph 
node connectivity.

 So, let’s rank the pages 
using the web graph
link structure!

vs.
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 We will cover the following Link Analysis 
approaches to computing importance of 
nodes in a graph:
 Hubs and Authorities (HITS)

 Page Rank

 Topic-Specific (Personalized) Page Rank

Sidenote: Various notions of node centrality: Node 𝒖
 Degree centrality = degree of 𝑢

 Betweenness centrality = #shortest paths passing through 𝑢

 Closeness centrality = avg. length of shortest paths from 𝑢 to 
all other nodes of the network

 Eigenvector centrality = like PageRank
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 Goal (back to the newspaper example):
 Don’t just find newspapers. Find “experts” – pages that 

link in a coordinated way to good newspapers

 Idea: Links as votes
 Page is more important if it has more links

 In-coming links? Out-going links?

 Hubs and Authorities
Each page has 2 scores:
 Quality as an expert (hub):

 Total sum of votes of pages pointed to

 Quality as a content (authority):
 Total sum of votes of experts

 Principle of repeated improvement

NYT: 10

Ebay: 3

Yahoo: 3

CNN: 8

WSJ: 9
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Interesting pages fall into two classes:
1. Authorities are pages containing 

useful information
 Newspaper home pages

 Course home pages

 Home pages of auto manufacturers

2. Hubs are pages that link to authorities
 List of newspapers

 Course bulletin

 List of U.S. auto manufacturers

NYT: 10
Ebay: 3
Yahoo: 3
CNN: 8
WSJ: 9
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Each page starts with hub score 1

Authorities collect their votes

(Note this is idealized example. In reality graph is not bipartite and 

each page has both the hub and authority score)
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Hubs collect authority scores

(Note this is idealized example. In reality graph is not bipartite and 

each page has both the hub and authority score)
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Authorities collect hub scores

(Note this is idealized example. In reality graph is not bipartite and 

each page has both the hub and authority score)
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 A good hub links to many good authorities
 A good authority is linked from many good 

hubs
 Note a self-reinforcing recursive definition

 Model using two scores for each node:

 Hub score and Authority score

 Represented as vectors 𝒉 and 𝒂, where the i-th
element is the hub/authority score of the i-th node
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 Each page 𝒊 has 2 scores:
 Authority score: 𝒂𝒊
 Hub score: 𝒉𝒊

HITS algorithm:

 Initialize: 𝑎𝑗
(0)
= 1/ n, hj

(0)
= 1/ n

 Then keep iterating until convergence:

 ∀𝒊: Authority: 𝑎𝑖
(𝑡+1)
=  𝑗→𝑖 ℎ𝑗

(𝑡)

 ∀𝒊: Hub: ℎ𝑖
(𝑡+1)
=  𝑖→𝑗 𝑎𝑗

(𝑡)

 ∀𝒊: Normalize:

 𝑖 𝑎𝑖
𝑡+1

2
= 1,  𝑗 ℎ𝑗

𝑡+1
2
= 1

[Kleinberg ‘98]

 

𝑖

ℎ𝑖
𝑡
− ℎ𝑖
𝑡+1

2
< 𝜀

 

𝑖

𝑎𝑖
𝑡
− 𝑎𝑖
𝑡+1

2
< 𝜀

Convergence criteria:
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 Definition: Eigenvectors & Eigenvalues
 Let 𝑹 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

for some scalar 𝝀, vector 𝒙, matrix 𝑹

 Then 𝒙 is an eigenvector, and 𝝀 is its eigenvalue

 The steady state (HITS has converged) is:

 𝑨𝑻 ⋅ 𝑨 ⋅ 𝒂 = 𝒄′ ⋅ 𝒂

 𝑨 ⋅ 𝑨𝑻 ⋅ 𝒉 = 𝒄′′ ⋅ 𝒉

 So, authority 𝒂 is eigenvector of 𝑨𝑻𝑨
(associated with the largest eigenvalue)
Similarly: hub 𝒉 is eigenvector of 𝑨𝑨𝑻
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Note constants c’,c’’

don’t matter as we 

normalize them out

every step of HITS





 Still the same idea: Links as votes

 Page is more important if it has more links

 In-coming links? Out-going links?

 Think of in-links as votes:
 www.stanford.edu has 23,400 in-links

 www.joe-schmoe.com has 1 in-link

 Are all in-links equal?

 Links from important pages count more

 Recursive question! 
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 A “vote” from an important 
page is worth more:

 Each link’s vote is proportional 
to the importance of its source 
page

 If page i with importance ri has 
di out-links, each link gets ri / di

votes

 Page j’s own importance rj is 
the sum of the votes on its in-
links

rj = ri/3 + rk/4

j

ki

rj/3

rj/3rj/3

ri/3 rk/4
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 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rj for node j





ji

i
j

r
r

id

y

ma
a/2

y/2
a/2

m

y/2

The web in 1839

“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

𝒅𝒊 … out-degree of node 𝒊
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You might wonder: Let’s just use Gaussian elimination

to solve this system of linear equations. Bad idea!



 Stochastic adjacency matrix 𝑴
 Let page 𝒋 have 𝒅𝒋 out-links

 If 𝒋 → 𝒊, then  𝑴𝒊𝒋 =
𝟏

𝒅
𝒋

 𝑴 is a column stochastic matrix
 Columns sum to 1

 Rank vector 𝒓: An entry per page
 𝒓𝒊 is the importance score of page 𝒊

  𝒊 𝒓𝒊 = 𝟏

 The flow equations can be written 

𝒓 = 𝑴 ⋅ 𝒓 



ji

i
j

r
r

id

i

j

M

1/3
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 Imagine a random web surfer:

 At any time 𝒕, surfer is on some page 𝑖

 At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

 Ends up on some page 𝒋 linked from 𝒊

 Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝑖th coordinate is the 

prob. that the surfer is at page 𝑖 at time 𝑡

 So, 𝒑(𝒕) is a probability distribution over pages





ji

i
j

r
r

(i)dout

j

i1 i2 i3
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 Where is the surfer at time t+1?

 Follows a link uniformly at random

𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝑡) is stationary distribution of a random walk

 Our original rank vector 𝒓 satisfies  𝒓 = 𝑴 ⋅ 𝒓

 So, 𝒓 is a stationary distribution for 
the random walk

)(M)1( tptp 

j

i1 i2 i3
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Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks
 Assign each node an initial page rank
 Repeat until convergence (i |ri

(t+1) – ri
(t)| < )

 Calculate the page rank of each node







ji

t

it

j

r
r

i

)(
)1(

d

𝒅𝒊…. out-degree of node 𝒊
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 Power Iteration:

 Set 𝑟𝑗 ← 1/N

 1: 𝑟′𝑗 ←  𝑖→𝑗
𝑟𝑖

𝑑𝑖

 2: 𝑟 ← 𝑟′

 If |𝑟 − 𝑟’| > 𝜀: goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
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 Power Iteration:

 Set 𝑟𝑗 ← 1/N

 1: 𝑟′𝑗 ←  𝑖→𝑗
𝑟𝑖

𝑑𝑖

 2: 𝑟 ← 𝑟′

 If |𝑟 − 𝑟’| > 𝜀: goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
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 Does this converge?

 Does it converge to what we want?

 Are results reasonable?







ji

t

it

j

r
r

i

)(
)1(

d Mrr or

equivalently
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 The “Spider trap” problem:

 Example:

ra 1 0 1 0

rb 0 1 0 1
=

ba

Iteration:  0, 1, 2, 3…







ji

t

it

j

r
r

i

)(
)1(

d
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 The “Dead end” problem:

 Example:

ra 1 0 0 0

rb 0 1 0 0=

ba 





ji

t

it

j

r
r

i

)(
)1(

d

2/10/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 31

Iteration:  0, 1, 2, 3…



2 problems:
 (1) Some pages are 

dead ends (have no out-links)

 Such pages cause 
importance to “leak out”

 (2) Spider traps
(all out-links are within the group)

 Eventually spider traps absorb all importance
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 Power Iteration:

 Set 𝑟𝑗 =
1

𝑁

 𝑟𝑗 =  𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm
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 The Google solution for spider traps: At each 
time step, the random surfer has two options

 With prob. , follow a link at random

 With prob. 1-, jump to a random page

 Common values for  are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap within a 
few time steps

y

a m

y

a m

2/10/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 34



 Power Iteration:

 Set 𝑟𝑗 =
1

𝑁

 𝑟𝑗 =  𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2
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 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

 Adjust matrix accordingly

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m
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 Google’s solution: At each step, random 
surfer has two options:

 With probability ,  follow a link at random

 With probability 1-, jump to some random page

 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 = 

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑛 di … out-degree 
of node i

The above formulation assumes that 𝑴 has no dead ends. We can 

either preprocess matrix 𝑴 (bad!) or explicitly follow random teleport 

links with probability 1.0 from dead-ends. See P. Berkhin, A Survey 

on PageRank Computing, Internet Mathematics, 2005.
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 PageRank as a principal eigenvector
𝒓 = 𝑴 ⋅ 𝒓 or equivalently 𝒓𝒋 = 𝒊

𝒓
𝒊

𝒅
𝒊

 But we really want (**):

𝒓𝒋 = 𝜷 𝒊
𝒓𝒊

𝒅𝒊
+ 𝟏 − 𝜷

𝟏

𝒏

 Let’s define:

𝑴’𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)
𝟏

𝒏
 Now we get what we want:
𝒓 = 𝑴’ ⋅ 𝒓

 What is 𝟏 − ?
 In practice 0.15 (Jump approx. every 5-6 links)

di … out-degree 
of node i

Note: 𝑀 is a sparse 

matrix but 𝑴′ is dense 

(all entries ≠ 0). In 

practice we never 

“materialize” 𝑀 but 

rather we use the 

“sum” formulation (**)

Details!
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 Input: Graph 𝑮 and parameter 𝜷
 Directed graph 𝑮 with spider traps and dead ends
 Parameter 𝛽

 Output: PageRank vector 𝒓

 Set: 𝑟𝑗
0
=
1

𝑁
, 𝑡 = 1

 do:

 ∀𝑗: 𝒓′𝒋
(𝒕)
=  𝒊→𝒋𝜷

𝒓𝒊
(𝒕−𝟏)

𝒅𝒊

𝒓′𝒋
(𝒕)
= 𝟎 if in-deg. of 𝒋 is 0

 Now re-insert the leaked PageRank:

∀𝒋: 𝒓𝒋
𝒕
= 𝒓′𝒋

𝒕
+
𝟏−𝑺

𝑵

 𝒕 = 𝒕 + 𝟏

 while  𝑗 𝑟𝑗
(𝑡)
− 𝑟𝑗
(𝑡−1)
> 𝜀

where: 𝑆 =  𝑗 𝑟′𝑗
(𝑡)
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 PageRank and HITS are two solutions to the 
same problem:

 What is the value of an in-link from u to v?

 In the PageRank model, the value of the link 
depends on the links into u

 In the HITS model, it depends on the value of the 
other links out of u

 The destinies of PageRank and HITS 
post-1998 were very different
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A BH1 1

D
1 1

E

F

G

1 11

I J1

1 1

a.k.a.: Relevance, Closeness, ‘Similarity’…

[Tong-Faloutsos, ‘06]
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 Given: 
Conferences-to-authors
graph

 Goal:
Proximity on graphs

 Q: What is most related 
conference to ICDM?

2/10/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 44

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference Author
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…

Sea Sun Sky Wave{ } { }Cat Forest Grass Tiger

{?, ?, ?,}

?

[Tong et al. ‘08]
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Test Image

Sea Sun Sky Wave Cat Forest Tiger Grass

Image

Keyword

Region

[Tong et al. ‘08]
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Test Image

Sea Sun Sky Wave Cat Forest Tiger Grass

Image

Keyword

Region

{Grass, Forest, Cat, Tiger}

[Tong et al. ‘08]



 Shortest path is not good:

 No influence for degree-1 nodes (E, F, G)!
 Multi-faceted relationships
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 Network Flow is not good:

 Does not punish long paths
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A BH1 1

D
1 1

E

F

G

1 11

I J1

1 1

• Multiple Connections

• Quality of connection

•Direct & In-direct 

connections

•Length, Degree, 

Weight…

…

[Tong-Faloutsos, ‘06]
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 Goal: Evaluate pages not just by popularity 
but by how close they are to the topic

 Teleporting can go to:

 Any page with equal probability

 (we used this so far)

 A topic-specific set of “relevant” pages

 Topic-specific (personalized) PageRank

𝑴’𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)/|𝑺| if 𝒊 ∈ 𝑺

= 𝜷𝑴𝒊𝒋 otherwise

 Random Walk with Restart: S is a single element

(S ...teleport set)
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 Graphs and web search:

 Ranks nodes by “importance”

 Personalized PageRank:

 Ranks proximity of nodes 
to the teleport nodes 𝑺

 Proximity on graphs:

 Q: What is most related 
conference to ICDM?

 Random Walks with Restarts

 Teleport back to the starting node:
S = { single node }

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference Author
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ICDM

KDD

SDM

ECML

PKDD

PAKDD

CIKM

DMKD

SIGMOD

ICML

ICDE

0.009

0.011

0.008
0.007

0.005

0.005

0.005

0.004
0.004

0.004



A: Personalized 
PageRank with 
teleport set S={KDD, 
ICDM}

Q: Which conferences
are closest to KDD & 
ICDM? 

I

K

Graph of CS conferences
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