Community Detection:
Graph Cuts & Spectral
Clustering



Graph Partitioning
Graph Cuts
Spectral Clustering



Graph Partitioning

Undirected graph G(V, E):

Bi-partitioning task:

Divide vertices into two disjoint groups A, B

A (5 ) B
o) (oo

Questions:
How can we define a “good” partition of G?
How can we efficiently identify such a partition?
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Graph Partitioning

What makes a good partition?
Maximize the number of within-group
connections

Minimize the number of between-group
connections

A ! B
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Graph Cuts

Express partitioning objectives as a function
of the “edge cut” of the partition

Cut: Set of edges with only one vertex in a
roup: _
8rOUP: ryt(4, B) = Zwl.j

icA,jeB

A B
# Cut(A,B) = 2
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Graph Cut Criterion

Criterion: Minimum-cut

Minimize weight of connections between groups
arg min, g Cut(A,B)
Degenerate case:

“Optimal” cut
/ Minimum cut

Problem:
Only considers external cluster connections
Does not consider internal cluster connectivity
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Graph Bisection

Since the minimum cut does not always yield
good results we need extra constraints to
make the problem meaningful

Graph Bisection

Partition the graph into two equal sets of nodes
Kernighan-Lin algorithm
Start with random equal partitions

Swap nodes to improve some quality metric (e.g.,
cut, modularity, etc)



Ratio Cut

Criterion: Ratio-cut
Normalize cut by the size of the groups

Cut(UV-U) _Cut(UV-U)

Ratio-cut=
|U| V-U|



Normalized Cut

Criterion: Normalized-cut
Connectivity between groups relative to the
density of each group

Cut(UV-U) | Cut(UV-U)

Normalized-cut=
Vol(U) Vol(V—-U)

vol(U): total weight of the edges with at least
one endpointin U: vol(U) = Y,y di

Why use these criteria?

Produce more balanced partitions



An Example

Red is Min-Cut
1, 1_9
Ratio-Cut(Red) == + ===
1 8 8
: 2 , 2 _ 18
Ratio-Cut(Green) == + - = —
5 4 20
1, 1 _28
Normalized-Cut(Red) == + — = — | |
1 27 7 Normalized-cut is even
_ 2 2 14 better for Green due to
Normalized-Cut(Green)=— + — = — density
12 16 48



Another Example

Which of the three cuts has the best
(min, normalized, ratio) cut?



[Shi-Malik]

Graph Cut Criteria

Criterion: Conductance [Shi-Malik, "97]

Connectivity between groups relative to the
density of each group
cut (A, B)

¢(4,B) = —
min( vol (A),vol (B))
vol(A): total weight of the edges with at least
one endpoint in A: vol(A) = };ca k;

Why use this criterion?
Produces more balanced partitions
How do we efficiently find a good partition?

Problem: Computing optimal cut is NP-hard
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Graph Cuts

Ratio-cut and normalized-cut can be
reformulated in matrix format and solved
using spectral clustering



Spectral Clustering for
Graph Partitioning

-



Spectral Clustering Algorithms

Three basic stages:
1) Pre-processing

Construct a matrix representation of the graph
2) Decomposition
Compute eigenvalues and eigenvectors of the matrix

Map each point to a lower-dimensional representation
based on one or more eigenvectors

3) Grouping

Assign points to two or more clusters, based on the new
representation

But first, let’s define the problem
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Spectral Graph Partitioning

A: adjacency matrix of undirected G
A;j=1 if (i,j) is an edge, else 0
X is a vector in ‘R" with components (x4, ..., X,,)

Think of it as a label/value of each node of G
What is the meaning of A- X?

Ay e Gy | N Y
. n

| V= A= QX

a, ... a,l||lx, v, j=1 (i.))<E

n

Entry y; is a sum of labels Xx; of neighbors of |
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Spectral Graph Theory

Spectral Graph Theory:
Analyze the “spectrum” of matrix representing G

Spectrum: Eigenvectors x; of a graph, ordered by the
magnitude (strength) of their corresponding

eigenvalues 4;: A = {4, A,,.... A } L, <4, <..<],

Note: We sort 4; in ascending (not descending) order!

Spectral clustering: use the eigenvectors of A or
graphs derived by it (mostly graph Laplacian)
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Matrix Representations

Adjacency matrix (A):
Nx N matrix
A=[a;], a;=1 if edge between node I and |

Important properties:
Symmetric matrix
Eigenvectors are real and orthogonal
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Matrix Representations

Degree matrix (D):
Nx N diagonal matrix
D=[d.], d;; = degree of node |
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Matrix Representations

Laplacian matrix (L):

N

Nx N symmetric matrix

3
4
5
6

|L=D - A

Laplacian matrix L important properties:
Eigenvalues are non-negative real numbers
Eigenvectors are real and orthogonal
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Example: Eigenvalues & Eigenvectors

Eigenvalue 0 1 3 3 A }
Figenvector | 1 T I
L 2| 4] 2 1 0
1 1 1 31 =1 1
1 —1 -5 1 1 |
1Ly =2 4]=2]-11 0
1| —1 1 3 11




The Smallest Eigenvalue

What is a trivial eigenpair?
x=(1,..,1)thenL-x=0andsoAdA=4;=0
A, = 0 is the smallest eigenvalue



The Second Smallest Eigenvalue

The second smallest eigenvalue (also known
as ) A, satisfies

A, = min x'Lx

xLwy,|x|=1

For the Laplacian, it is:

XLw, > > x=0
X'LX = Xx-xf

(IL)eE



The Second Smallest Eigenvalue

Thus, the eigenvector for eigenvalue A,
(called the ) minimizes

min Z:(Xi—xj)2 where ZiXi:O

X#0 i feE

" Intuitively, minimum when x; and x; close whenever there is
an edge between nodes i and J in the graph
= x must have some positive and ‘components



Cuts + Eigenvalues: Intuition

= A partition of the graph by taking:
o one set to be the nodes i whose corresponding vector
component x;is positive and
o the otherset to be the nodes whose corresponding
vector component is negative.

* The cut between the two sets will have a small number of
edges because (x,-x)* is likely to be smaller if both x; and x,
have the same sign than if they have different signs.

» Thus, minimizing x"Lx under the required constraints will
end giving x; and x; the same sign if there is an edge (i, ).



Cuts + Eigenvalues: Summary

What we know about X?
x is unit vector: Y; xf = 1

x is orthogonal to 1%t eigenvector (1, ..., 1) thus:
2%~ 1=2;x=0

A, =min

All labelings . X.
of nodes i so
that in =0

We want to assign values x; to nodes i such that
few edges cross 0.
(we want x; and x; to subtract each other)

Balance to minimize
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How to define a “good” partition of a graph?

Minimize a given graph cut criterion

How to efficiently identify such a partition?

Approximate using information provided by the
eigenvalues and eigenvectors of a graph

Spectral Clustering
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Spectral Clustering Algorithms

Three basic stages:
1) Pre-processing

Construct a matrix representation of the graph
2) Decomposition
Compute eigenvalues and eigenvectors of the matrix

Map each point to a lower-dimensional representation
based on one or more eigenvectors

3) Grouping

Assign points to two or more clusters, based on the new
representation
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Spectral Partitioning Algorithm

1) Pre-processing:

Build Laplacian >
matrix L of the @

graph

2)

Decomposition: < e

Find eigenvalues A

|
N N e N e e

(6) 1) o o o o

3
3
4.0
5

and eigenvectors X

) o o <) o <)
N N BN N (N

of the matrix L

0.3
0.6

Map vertices to

3 0.3
components of A, s | o3

-0.6
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Spectral Partitioning

3) Grouping:
Sort components of reduced 1-dimensional vector

|dentify clusters by splitting the sorted vector in two
How to choose a splitting point?

Naive approaches:
Split at 0 or median value

More expensive approaches:

Attempt to minimize normalized cut in 1-dimension
(sweep over ordering of nodes induced by the eigenvector)

1| o3 Split at O: A B
C 2 | o6 Cluster A: Positive points

3 | o3 ‘ Cluster B: Negative points \

4 | -03 1 | o3 4 | -03

5| -03 2 | 06 5 | -03

6

-0.6 3 0.3 6 | -06
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Example: Spectral Partitioning

Value of x,

03r

0.2

o
—

-0.1r
—-0.2f
-0.3

-04
0

/rf‘M

A

é ‘IID 1|5
Rank in x,
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Example: Spectral Partit

Value of x,

loning

| | | | | | |
"0 5 10 15 20 25 30 35 40

Rank in x,
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Example: Spectral Partitioning

5 5 10 15 20v2;ﬂg 3 40
Components of X,
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k-Way Spectral Clustering

How do we partition a graph into K clusters?

Two basic approaches:

Recursive bi-partitioning [Hagen et al., "92]

Recursively apply bi-partitioning algorithm in a
hierarchical divisive manner

Disadvantages: Inefficient, unstable
Cluster multiple eigenvectors [Shi-IVlalik, "00]
Build a reduced space from multiple eigenvectors

Commonly used in recent papers
A preferable approach...
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Recursive Bi-partitioning

WL S| &
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Cluster Multiple Eigenvectors

Use several of the eigenvectors to partition the
graph

If we use m eigenvectors, and set a threshold for
each, we can get a partition into 2™ groups, each
group consisting of the nodes that are above or
below threshold for each of the eigenvectors, in
a particular pattern.
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Eigenvalue | 0 1 3 3 A -
Eigenvector | 1 T T =5 =11 =11 =1
L2 4)p=21 1) 0
1 1 1 31 1 |
1 —1 | =5 | =1 1 |
Ly =20 4,21 -1 0
11 —1 1 3 Ll

If we use both the 2"¢ and 3" eigenvectors:
* nodes 2 and 3 (positive in both)

* nodes 5and 6 (negative in 2"Y, positive in 37)

* nodesiand g4 alone

Note that while each eigenvector tries to produce a minimum-sized cut,
successive eigenvectors have to satisfy more and more constraints => the cuts
progressively worse.



Why use multiple eigenvectors?

Approximates the optimal cut [Shi-Malik, '00]

Can be used to approximate optimal k-way normalized
cut

Emphasizes cohesive clusters
Increases the unevenness in the distribution of the data

Associations between similar points are amplified,
associations between dissimilar points are attenuated

The data begins to “approximate a clustering”
Well-separated space

Transforms data to a new “embedded space”,
consisting of K orthogonal basis vectors
Multiple eigenvectors prevent instability due to

information loss
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Many Other Partitioning Methods

1/31/2017

Heuristic but works really well in practice
http://glaros.dtc.umn.edu/gkhome/views/metis

Based on kernel k-means
http://www.cs.utexas.edu/users/dml/Software/graclus.html

Based on Modularity optimization
http://perso.uclouvain.be/vincent.blondel/research/louvain.html

For finding overlapping clusters
http://angel.elte.hu/cfinder/

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

53


http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.cs.utexas.edu/users/dml/Software/graclus.html
http://perso.uclouvain.be/vincent.blondel/research/louvain.html
http://angel.elte.hu/cfinder/

Spectral Clustering

Use the lowest k eigenvalues of L to construct
the nxk graph G’ that has these eigenvectors
as columns

The n-rows represent the graph vertices in a
k-dimensional Euclidean space

Group these vertices in k clusters using k-
means clustering or similar techniques



The values of x minimize

min >0 —x,f Zixi =0

(i, j)eE

For weighted matrices

min %A[i,j](xi xf % =0
The ordering according to the x. values will
group similar (connected) nodes together

Physical interpretation: The stable state of
springs placed on the edges of the graph



Spectral Clust. (besides graphs)

Can be used to cluster any points (not just
vertices), as long as an appropriate similarity
matrix

Needs to be symmetric and non-negative

How to construct a graph:

e-neighborhood graph: connect all points whose
pairwise distances are smaller than €

k-nearest neighbor graph: connect each point with
each k nearest neighbor

full graph: connect all points with weight in the edge
(i, j) equal to the similarity of i and j



