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 Strength of Weak Ties
 Structural Holes
 Network Communities
 Community Detection
 Method 1: Girvan-Newman
 Method 2: Modularity Optimization



 We often think of networks “looking” 
like this:

 What lead to such a conceptual picture?
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 How information flows through the network?

 What structurally distinct roles do nodes play?

 What roles do different links (short vs. long) play?

 How people find out about new jobs?

 Mark Granovetter, part of his PhD in 1960s

 People find the information through personal contacts

 But: Contacts were often acquaintances
rather than close friends

 This is surprising: One would expect your friends to 
help you out more than casual acquaintances

 Why is it that acquaintances are most helpful?
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 Two perspectives on friendships:

 Structural: Friendships that span different parts of 
the network

 Interpersonal: Friendship between two people is 
either strong or weak

 Structural role: Triadic Closure
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[Granovetter ‘73]

a

b
c

If two people in a 

network have a friend in 

common, then there is 

an increased likelihood 

they will become friends 

themselves.

Which edge is more 

likely, a-b or a-c?



 Granovetter makes a connection between 
social and structural role of an edge

 First point: Structure
 Structurally embedded edges are socially strong

 Long-range edges spanning different parts of the 
network are socially weak

 Second point: Information
 Long-range edges allow you to gather information 

from different parts of the network and get a job

 Structurally embedded edges are 
heavily redundant in terms of 
information access
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 Triadic closure == High clustering coefficient
Reasons for triadic closure:
 If 𝑩 and 𝑪 have a friend 𝑨 in common, then:
 𝑩 is more likely to meet 𝑪

 (since they both spend time with 𝑨)

 𝑩 and 𝑪 trust each other 
 (since they have a friend in common)

 𝑨 has incentive to bring 𝑩 and 𝑪 together 
 (as it is hard for 𝑨 to maintain two disjoint relationships)

 Empirical study by Bearman and Moody: 
 Teenage girls with low clustering coefficient are 

more likely to contemplate suicide
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 Define: Bridge edge
 If removed, it disconnects the graph

 Define: Local bridge
 Edge of Span > 2

(Span of an edge is the distance of the 
edge endpoints if the edge is deleted. Local 
bridges with long span are like real bridges)

 Define: Two types of edges:
 Strong (friend), Weak (acquaintance)

 Define: Strong triadic closure:
 Two strong ties imply a third edge

 Fact: If strong triadic closure is 
satisfied then local bridges 
are weak ties!
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 Claim: If node 𝑨 satisfies Strong Triadic Closure
and is involved in at least two strong ties, then 
any local bridge adjacent to 𝑨must be a weak tie.

 Proof by contradiction:
 Assume 𝑨 satisfies Strong Triadic 

Closure and has 2 strong ties

 Let 𝑨 − 𝑩 be local bridge
and a strong tie

 Then 𝑩− 𝑪must exist 
because of Strong 
Triadic Closure

 But then 𝑨 − 𝑩 is not a bridge! 
(since B-C must be connected due to Strong Triadic Closure property)
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 For many years Granovetter’s theory was not 
tested

 But, today we have large 
who-talks-to-whom graphs:

 Email, Messenger, Cell phones, Facebook

 Onnela et al. 2007: 

 Cell-phone network of 20% of country’s population

 Edge strength: # phone calls
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 Edge overlap:

𝑂𝑖𝑗 =
𝑁(𝑖) 𝑁(𝑗)

𝑁(𝑖) 𝑁(𝑗)
 𝑁(𝑖) … a set 

of neighbors 
of node 𝑖

 Overlap = 𝟎
when an edge is 
a local bridge
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 Cell-phone network
 Observation:

 Highly used links 
have high overlap!

 Legend:
 True: The data

 Permuted strengths: Keep 
the network structure 
but randomly reassign 
edge strengths
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 Real edge strengths in mobile call graph

 Strong ties are more embedded (have higher overlap)
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 Same network, same set of edge strengths
but now strengths are randomly shuffled
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 Removing links by strength (#calls) 

 Low to high

 High to low
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 Removing links based on overlap

 Low to high

 High to low
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 Granovetter’s theory leads to the following 
conceptual picture of networks
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Strong ties
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[Ron Burt]

Who is better off, Robert or James?
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Few structural holes Many structural holes

Structural Holes provide ego with access 

to novel information, power, freedom



 The “network constraint” measure [Burt]:

 To what extent are person’s contacts redundant

 Low: disconnected contacts

 High:  contacts that are 
close or strongly tied
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 Network constraint:
 James: 𝑐𝐽 = 0.309

 Robert: 𝑐𝑅 = 0.148
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 Constraint: To what 
extent are person’s 
contacts redundant

 Low: disconnected 
contacts

 High: contacts that 
are close or strongly 
tied

Lower c is better!
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[Ron Burt]





 Granovetter’s theory 
suggest that networks 
are composed of 
tightly connected 
sets of nodes

 Network communities:

 Sets of nodes with lots of connections inside and 
few to outside (the rest of the network)
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Communities, clusters, 
groups, modules



 How to automatically 
find such densely 
connected groups of 
nodes?

 Ideally such automatically 
detected clusters would 
then correspond to real 
groups

 For example:

27

Communities, clusters, 
groups, modules
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 Zachary’s Karate club network:

 Observe social ties and rivalries in a university karate club

 During his observation, conflicts led the group to split

 Split could be explained by a minimum cut in the network



30

Nodes: Teams
Edges: Games played

Can we identify 
node groups?
(communities, 

modules, clusters)
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NCAA conferences

Nodes: Teams
Edges: Games played
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Nodes: Users
Edges: Friendships

Can we identify 
social communities?
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High school Company

Stanford (Squash)

Stanford (Basketball)

Social communities
Nodes: Users
Edges: Friendships
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Nodes: Proteins
Edges: Interactions

Can we identify 
functional modules?
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Functional modules

Nodes: Proteins
Edges: Interactions
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How to find communities?
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We will work with undirected (unweighted) networks



 Edge betweenness: Number of 
shortest paths passing over the edge

 Intuition:
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Edge strengths (call volume) 
in a real network

Edge betweenness
in a real network

b=16
b=7.5



 Divisive hierarchical clustering based on the 
notion of edge betweenness:

Number of shortest paths passing through the edge

 Girvan-Newman Algorithm:
 Undirected unweighted networks

 Repeat until no edges are left:

 Calculate betweenness of edges

 Remove edges with highest betweenness

 Connected components are communities

 Gives a hierarchical decomposition of the network
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[Girvan-Newman ‘02]
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Need to re-compute 

betweenness at 

every step

49
33

12
1
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Step 1: Step 2:

Step 3: Hierarchical network decomposition:
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Communities in physics collaborations 



 Zachary’s Karate club: 
Hierarchical decomposition
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1. How to compute betweenness?
2. How to select the number of 

clusters?
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 Want to compute 
betweenness of 
paths starting at 
node 𝑨

 Breadth first search 
starting from 𝑨:
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 Count the number of shortest paths from 
𝑨 to all other nodes of the network:
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 Compute betweenness by working up the 
tree: If there are multiple paths count them 
fractionally
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1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:

•Add edge flows:

-- node flow = 

1+∑child edges 

-- split the flow up 

based on the parent 

value

• Repeat the BFS 

procedure for each 

starting node 𝑈



 Compute betweenness by working up the 
tree: If there are multiple paths count them 
fractionally

1/26/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 47

1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:

•Add edge flows:

-- node flow = 

1+∑child edges 

-- split the flow up 

based on the parent 

value

• Repeat the BFS 

procedure for each 

starting node 𝑈



1. How to compute betweenness?
2. How to select the number of 

clusters?
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 Communities: sets of 
tightly connected nodes

 Define: Modularity 𝑸

 A measure of how well 
a network is partitioned 
into communities

 Given a partitioning of the 
network into groups 𝒔 𝑺:

Q  ∑s S [ (# edges within group s) –

(expected # edges within group s) ]
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Need a null model!



 Given real 𝑮 on 𝒏 nodes and 𝒎 edges, 
construct rewired network 𝑮’
 Same degree distribution but 

random connections

 Consider 𝑮’ as a multigraph

 The expected number of edges between nodes 

𝒊 and 𝒋 of degrees 𝒌𝒊 and 𝒌𝒋 equals to: 𝒌𝒊 ⋅
𝒌𝒋

𝟐𝒎
=
𝒌𝒊𝒌𝒋

𝟐𝒎
 The expected number of edges in (multigraph) G’:

 =
𝟏

𝟐
 𝒊∈𝑵 𝒋∈𝑵

𝒌𝒊𝒌𝒋

𝟐𝒎
=
𝟏

𝟐
⋅
𝟏

𝟐𝒎
 𝒊∈𝑵𝒌𝒊  𝒋∈𝑵𝒌𝒋 =

 =
𝟏

𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎
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𝑢∈𝑁

𝑘𝑢 = 2𝑚

Note:



 Modularity of partitioning S of graph G:

 Q  ∑s S [ (# edges within group s) –

(expected # edges within group s) ]

 𝑸 𝑮, 𝑺 =
𝟏

𝟐𝒎
 𝒔∈𝑺 𝒊∈𝒔 𝒋∈𝒔 𝑨𝒊𝒋 −

𝒌𝒊𝒌𝒋

𝟐𝒎

 Modularity values take range [−1,1]

 It is positive if the number of edges within 
groups exceeds the expected number

 0.3-0.7<Q means significant community structure
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Aij = 1 if ij, 

0 else
Normalizing cost.: -1<Q<1



 Modularity is useful for selecting the 
number of clusters:
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Why not optimize Modularity directly?

Q
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 Let’s split the graph into 2 communities!
 Want to directly optimize modularity!

 max
𝑆
𝑄 𝐺, 𝑆 =

1

2𝑚
 𝑠∈𝑆 𝑖∈𝑠 𝑗∈𝑠 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚

 Community membership vector s:

 si = 1 if node i is in community 1
-1 if node i is in community -1

 𝑄 𝐺, 𝑠 =
1

2𝑚
 𝑖∈𝑁 𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚

𝑠𝑖𝑠𝑗+1

2

=
1

4𝑚
 𝑖,𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑠𝑖𝑠𝑗
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𝑠𝑖𝑠𝑗 + 1

2
=

1.. if si=sj

0.. else



 Define:

 Modularity matrix: 𝑩𝒊𝒋 = 𝑨𝒊𝒋 −
𝒌𝒊𝒌𝒋

𝟐𝒎

 Membership: 𝒔 = {−𝟏,+𝟏}

 Then: 𝑄 𝐺, 𝑠 =
1

4𝑚
 𝑖∈𝑁 𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑠𝑖𝑠𝑗

=
1

4𝑚
 𝑖,𝑗∈𝑁𝐵𝑖𝑗𝑠𝑖𝑠𝑗

=
1

4𝑚
 𝑖 𝑠𝑖  𝑗𝐵𝑖𝑗𝑠𝑗 =

1

4𝑚
𝑠𝑇𝐵𝑠

 Task: Find s{-1,+1}n that maximizes Q(G,s)
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= 𝑩𝒊⋅ ⋅ 𝒔

Note: each row/col of B
sums to 0:  𝒋𝑨𝒊𝒋 = 𝒌𝒊, 

 𝒋
𝒌𝒊𝒌𝒋

𝟐𝒎
= 𝒌𝒊 𝒋

𝒌𝒋

𝟐𝒎
= 𝒌𝒊



 Symmetric matrix A
 That is positive semi-definite:
𝑨 = 𝑼 ⋅ 𝑼𝑻

 Then solutions 𝝀, 𝒙 to equation 𝑨 ⋅ 𝒙 = 𝜆 ⋅ 𝒙 :
 Eigenvectors 𝒙𝒊 ordered by the magnitude of their 

corresponding eigenvalues 𝜆𝑖 (𝜆1 ≤ 𝜆2… ≤ 𝜆𝑛)

 𝒙𝒊 are orthonormal (orthogonal and unit length)

 𝒙𝒊 form a coordinate system (basis)

 If 𝑨 is positive-semidefinite: 𝜆𝑖 ≥ 0 (and they always exist)
 Eigen Decomposition theorem: Can rewrite matrix 
𝑨 in terms of its eigenvectors and eigenvalues: 𝑨 =
 𝒊𝒙𝒊 ⋅ 𝜆𝑖 ⋅ 𝒙𝒊

𝑻
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 Rewrite: 𝑄 𝐺, 𝑠 =
1

4𝑚
𝑠T𝐵𝑠 in terms of its 

eigenvectors and eigenvalues:

= sT  

𝑖=1

𝑛

𝑥𝑖𝜆𝑖𝑥𝑖
𝑇 𝑠 = 

𝑖=1

𝑛

𝑠𝑇𝑥𝑖𝜆𝑖𝑥𝑖
𝑇𝑠 = 

𝑖=1

𝑛

𝑠𝑇x𝑖
2
𝜆𝑖

 So, if there would be no other constraints on 𝒔
then to maximize 𝑸, we make 𝒔 = 𝒙𝒏
 Why? Because 𝝀𝒏 ≥ 𝝀𝒏−𝟏 ≥ ⋯

 Remember 𝒔 has fixed length!

 Assigns all weight in the sum to 𝝀𝒏 (largest eigenvalue)
 All other 𝒔𝑻𝒙𝒊 terms are zero because of orthonormality
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 Let’s consider only the first term in the summation 
(because 𝝀𝒏 is the largest):

max
𝑠
𝑄 𝐺, 𝑠 =  𝑖=1

𝑛 𝑠𝑇𝑥𝑖
2
𝜆𝑖 ≈ 𝑠

𝑇𝑥𝑛
2
𝜆𝑛

 Let’s maximize:  𝒋=𝟏
𝒏 𝒔𝒋 ⋅ 𝒙𝒏,𝒋 where sj{-1,+1} 

 To do this, we set:

 𝒔𝒋 =  
+𝟏
−𝟏

𝒊𝒇 𝒙𝒏,𝒋 ≥ 𝟎 (j−th coordinate of 𝒙𝒏 ≥ 𝟎)

𝒊𝒇 𝒙𝒏,𝒋 < 𝟎 (j−th coordinate of 𝒙𝒏 < 𝟎)

 Continue the bisection hierarchically
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 Fast Modularity Optimization Algorithm:

 Find leading eigenvector 𝒙𝒏 of modularity matrix B

 Divide the nodes by the signs of the elements of 𝒙𝒏
 Repeat hierarchically until:

 If a proposed split does not cause modularity to increase, 
declare community indivisible and do not split it

 If all communities are indivisible, stop

 How to find 𝒙𝒏? Power method!

 Start with random v(0), repeat :

 When converged (v(t) ≈ v(t+1)), set xn = v
(t)
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 Girvan-Newman:

 Based on the “strength of weak ties”

 Remove edge of highest betweenness

 Modularity:

 Overall quality of the partitioning of a graph

 Use to determine the number of communities

 Fast modularity optimization:

 Transform the modularity optimization to a 
eigenvalue problem
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