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Networks & Communities

We often think of networks “looking”
like this:

What lead to such a conceptual picture?
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Networks: Flow of Information

How information flows through the network?
What structurally distinct roles do nodes play?
What roles do different links (short vs. long) play?
How people find out about new jobs?
Mark Granovetter, part of his PhD in 1960s
People find the information through personal contacts
But: Contacts were often acquaintances
rather than close friends

This is surprising: One would expect your friends to
help you out more than casual acquaintances

Why is it that acquaintances are most helpful?
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[Granovetter ‘73]

Granovetter’'s Answer

Two perspectives on friendships

Structural: Friendships that span different parts of
the network

Interpersonal: Friendship between two people is
either strong or weak
Structural role: Triadic Closure

If two people in a
network have a friend in
common, then there is
an increased likelihood
they will become friends
themselves.

Which edge is more
likely, a-b or a-c?
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Granovetter’s Explanation

Granovetter makes a connection between
social and structural role of an edge
First point: Structure

Structurally embedded edges are socially strong

Long-range edges spanning different parts of the
network are socially weak

Second point: Information

Long-range edges allow you to gather information
from different parts of the network and get a job
Structurally embedded edges are

Weak
Strong
heavily redundant in terms of A b%
information access VZ
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Triadic Closure

Triadic closure == High clustering coefficient
Reasons for triadic closure:
If B and C have a friend A in common, then:
B is more likely to meet C
(since they both spend time with A)
B and C trust each other
(since they have a friend in common)

A has incentive to bring B and C together
(as it is hard for 4 to maintain two disjoint relationships)

Empirical study by Bearman and Moody:

Teenage girls with low clustering coefficient are
more likely to contemplate suicide
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Granovetter’s Explanation

Define: Bridge edge
If removed, it disconnects the graph
Define: Local bridge Local bridge

Edge of Span > 2 ‘\
(Span of an edge is the distance of the
edge endpoints if the edge is deleted. Local

bridges with long span are like real bridges) Edae:
Define: Two types of edges: i

WorS
Strong (friend), Weak (acquaintance)
Define: Strong triadic closure: S ;; S
Two strong ties imply a third edge
Fact: If strong triadic closure is
satisfied then local bridges

are weak ties!

“
N
/X0
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Local Bridges and Weak ties

Claim: If node A satisfies Strong Triadic Closure
and is involved in at least two strong ties, then
any local bridge adjacent to A must be a weak tie.

Proof by contradiction:
Assume A satisfies Strong Triadic S S
Closure and has 2 strong ties

Let A — B be local bridge
and a strong tie

Then B — C must exist 4“ 2 B‘
because of Strong C
Triadic Closure

But then A — B is not a bridge!

(since B-C must be connected due to Strong Triadic Closure property)
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Tie strength In real data

For many years Granovetter’s theory was not

tested
But, today we have large
who-talks-to-whom graphs:

Email, Messenger, Cell phones, Facebook

Onnela et al. 2007:
Cell-phone network of 20% of country’s population
Edge strength: # phone calls
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Neighborhood Overlap

o=13 C

&

Edge overlap: o
o _NonNg |
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of neighbors
of node i
0i=2/3
Overlap= 0
when an edge is H
a local bridge

Oi=1

%
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Phones: Edge Overlap vs. Strength

Cell-phone network —
Observation:

Highly used links
have high overlap!

0.2¢

N
@)

rPermuted
strengths

Legend:
True: The data

Permuted strengths: Keep
the network structure
but randomly reassign 0

edge strengths 0O 02 04 06 038 1
Edge strength (#calls)

-
&)

Neighborhood overlap
- O
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Real Network, Real Tie Strengths

1 -’ ‘.

Real edge strengths in mobile call graph
Strong ties are more embedded (have higher overlap)
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Real Net, Permuted Tie Strengths

aYv

-""

ﬂt’*i-

' Lo =<,,
%f{ 3

Same network, same set of edge strengths
but now strengths are randomly shuffled
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Link Removal by Strength

Low
disconnects
the network

sooner

0.75 t
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0
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Removing links by strength (#calls)
Low to high

Conceptual picture

ngh to IOW of network structure
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Link Removal by Overlap

Low
disconnects
the network

sooner

0.75 t

0.50 |

0.25

Size of largest component

0

Removing links based on overlap
Low to high

ngh to |OW Conceptual picture
of network structure
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Conceptual Picture of Networks

Granovetter’s theory leads to the following
conceptual picture of networks

/ Strong ties
/ Weak ties
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Small Detour:
Structural Holes




[Ron Burt]

Small Detour: Structural Holes

Who is better off, Robert or James?
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Structural Holes

Structural hole

Few structural holes Many structural holes

Structural Holes provide ego with access
to novel information, power, freedom
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Structural Holes: Network Constraint

The “network constraint” measure [Burt]:

To what extent are person’s contacts redundant

Low: disconnected contacts

High: contacts that are
close or strongly tied 1 2 3 4 5

, 00 .25 .25 .25 .25
Ci :ZCij ZZ|:pij +Z(pik Pyi )}
j ] k

.50 .00 .00 .00 .50
Py --- Prop. of u’s “energy” invested in relationship with v
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Example: Robert vs. James

. Constraint: To what
S B extent are person’s
contacts redundant

Low: disconnected
contacts

James

High: contacts that

are close or strongly

tied

Network constraint:
James: ¢, = 0.309

Robert: ¢, = 0.148
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Spanning Holes Matters

[Ron Burt]
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Network Communities



Network Communities

Granovetter’s theory
suggest that networks
are composed of
tightly connected
sets of nodes

Network communities:

1/26/2017

Sets of nodes with lots of connections inside and
few to outside (the rest of the network)

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

26



Finding Network Communities

How to automatically
find such densely
connected groups of
nodes?

ldeally such automatically
detected clusters would
then correspond to real
groups

For example:
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Social Network Data

Zachary’s Karate club network:
Observe social ties and rivalries in a university karate club
During his observation, conflicts led the group to split
Split could be explained by a minimum cut in the network
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NCAA Football Network

Can we identify

e AT node groups?
. e . (communities,
NER AANIET \ modules, clusters)
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NCAA Football Network

/ NCAA conferences

Mid American

Big East

Atlantic Coast
SEC
Conference USA
Big 12

Western Athletic
Pacific 10
Mountain West
Big 10

Sun Belt

O e O0O00eOoeo

Independents

Nodes: Teams
Edges: Games played
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Facebook Ego-network

Can we identify
social communities?

Nodes: Users
vl Edges: Friendships
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Facebook Ego-network

Social o Nodes: Users
oclal communities Edges: Friendships
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Protein-Protein Interactions
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Protein-Protein Interactions

‘{v‘.' ‘.;,; ¥ Nodes: Proteins
o Edges: Interactions
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Community Detection

James

We will work 2d) networks

1/26/2017 Jure Leskovec, Analysis, http://cs224w.stanford.edu
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Method 1: Strength of Weak Ties

Edge betweenness: Number of
shortest paths passing over the edge
Intuition:

1 -’ ‘

Edge betweenness
in a real network

Edge strengths (call volume)
in a real network
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[Girvan-Newman ‘02]

Method 1: Girvan-Newman

Divisive hierarchical clustering based on the
notion of edge betweenness:

Number of shortest paths passing through the edge
Girvan-Newman Algorithm:

Undirected unweighted networks

Repeat until no edges are left:
Calculate betweenness of edges
Remove edges with highest betweenness

Connected components are communities
Gives a hierarchical decomposition of the network
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Girvan-Newman: Example

Need to re-compute
betweenness at
every step
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Girvan-Newman: Example

Step 1. Step 2: 0
O
S b
= @
Oan®, (i y—8)
S Y &
Step 3: Hierarchical network decomposition:
o
@ © © @
@
O © CHO
©
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iIrvan-Newman: Results

Fell Stadler
Cleiss
. Mukkerjes
‘r"ﬁagpar ]_asslg e Ay \]]E‘al[llpﬂa
TM TER ncabart!
Manna ",
\ Stenklewlcz
Berg Sen _
Selman . Frispczak
errmann -
Munaéw J Pachden Penna Hutysi Jectynak
? . Alekslejuk
\za‘i:q[m@’ Moukarzel sHilee
P Valverde b Hmt _—
Ecora EE;&M 7a
m"'ﬂ_mﬂfﬂ Wz [Vilone ——
Ferrer | Cancho™ \ Lshfinen
Barahona h gina v Kertesz
Saolg Mpﬁ;,“.j e |.||£MI1I Alava Andrade
Girvan R riabdiy-. Ea't?"' Murella'
Strogatz ', Feey pler Wsﬂ_ﬂlﬁ}a’ sﬂgUam =
Rubl avar Caldasell 56 ucaen.fehd ['ahrales
{ [ail t
Ilup-crnft .-3% Warls Sl Munoz \ qﬂd\.l!p.-" - Culmm
Kleiber - Rotmea . ;ﬁtﬁl W |
L2 !_utﬁfp'an Dodds Capoce  Blancond H'E?-J’Q:ﬂlj;'m
Zaltmyak } arahasl
Simonsén.. * Mooge Moy Ed"'"s \"%\
Rajagnpa]l 'n\ \h Leyvraz | Tadic
Maslgy - Sneppen !" a5 #h/ ky, ~ Rodgers
Masloy . Park Alhgr[ r
Eriksen : el E:al;ng \ . Vazquez irgum
Schuster ! r- i m Mendes
Bornhold: L LTSN . Dorogovisey
Klemm s o wm“@ w
: * uss an gl ' s
Eguiluz Davidsen Yoon Infﬁe‘!':‘umhw . Catisev
o Trusing %tﬂ:ud Samukhin
b Mjetsch
Kulkarn
Almaas

Communities in physics collaborations
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Girvan-Newman: Results

Zachary’s Karate club:
Hierarchical decomposition
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We need to resolve 2 questions




How to Compute Betweenness?

Want to compute
betweenness of
paths starting at
node A

Breadth first search
starting from A:




How to Compute Betweenness?

Count the number of shortest paths from
A to all other nodes of the network:

.3
U # shortest A-J paths =
# shortest A-G paths +
# shortest A-H paths

# shortest A-K paths
= # shortest A-l paths
+ # shortest A-J paths

# shortest A-l paths =
# shortest A-F paths +
# shortest A-G paths
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How to Compute Betweenness?

Compute betweenness by working up the
tree: If there are multiple paths count them

fractionally ﬂ\
The algorithm:
.Add edge flows: | 1 @ 1\® 1

-- node flow =

1_‘"ZCh”d edges 1+1 paths to H
-- split the flow up 2 1 2 Split evenly

based on the parent

value
» Repeat the BFS 3 é g 1t0.5pathstoJ
Split 1:2

procedure for each

starting node U
b ¢ 1pathtoK.
Split evenly
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How to Compute Betweenness?

Compute betweenness by working up the
tree: If there are multiple paths count them

fractionally A

2 D) 4 2
The algorithm:
-Add edge flows: 1 1 @ 1\® 1
-- node flow = 1 1 2 1 L
1+> child edges 1+1 paths to H
-- split the flow up &E’JD 2 @ 1 @ 2 gplit evenly
based on the parent 1 " 1 1

value
» Repeat the BFS 3 é g 1t0.5pathstoJ
Split 1:2

procedure for each

starting node U
b ¢ 1pathtoK.
Split evenly
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We need to resolve 2 questions




Network Communities

Communities: sets of

tightly connected nodes
Define: Modularity Q
A measure of how well

a network is partitioned
Into communities

Given a partitioning of the
network into groups s € §:

Q o« >, 5[ (#edges within group s) —
(expected # edges within group s) ]

Need a null model!
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Null Model: Configuration Model

Given real G on n nodes and m edges,
construct rewired network G’

Same degree distribution but

random connections /01 = 1
Consider G’ as a multigraph o— \,0\—
The expected number of edges between nodes
ki  kikj
i and j of degrees k; and k; equals to: k; - P
The expected number of edges in (multigraph) G’:
kik;j
= ZzeN JEN 50 ; zinZzeNk (ZjeN kj) -
=—2m.2m=m Note:

4m
z k, =2m

1/26/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



Modularity

Modularity of partitioning S of graph G:

Q oc > o[ (#edges within group s) —
(expected # edges within group s) |

1 kik;
6.5) = 25 Y5 ies Bes (g — 25)
Q( ) \Zapz ESZE Z]E J A = Lifio],

2Zm

Normalizing cost.: -1<Q<1 0 else

Modularity values take range [-1,1]

It is positive if the number of edges within
groups exceeds the expected number

0.3-0.7<Q means significant community structure
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Modularity: Number of clusters

Modularity is useful for selecting the
number of clusters: Q modtaiy

DDDDD

o — o [#5} W= o

LOOOLOO OO 0 o o Dﬂfﬂ ._\.f_\.lijlf_\_ L\.Elab_g Q0000 JOO000000

Why not optimize Modularity directly?
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Modularity Optimization



Method 2: Modularity Optimization

Let’s split the graph into 2 communities!
Want to directly optimize modularity!

" kik;
mSaX Q(G,S) = %ZSESZL'ES Zjes (Aij - ])

2m

Community membership vector s:

s;=1if nodeiis in community 1 sispt1l _1.ifs=s
-1 if node i is in community -1 2 0 else

Q(G,s) = iZiEN 2.jeN (Aij I;l:,l]) (sis+1)

2
kik;
_Z JEN( Zm) 515
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Modularity Matrix

Note: each row/col of B

. sumsto 0: ),: A4;; = k;,
Define: e >y y =™
Ziam ~ Ki2Zig, = ki

kik;

Modularity matrix: B;; = A;; —
Membership: s = {—1,+1}

1 kik
Then: Q(G,s) = RZiENZ]-EN (Al-]- » ]) SiSj

2m

m
1
= —Xijen Bijsis
_ 1 _ 1 T
_Rzisiszlfifsf,_ am S DS
:Bi.'S

Task: Find se{-1,+1}" that maximizes Q(G,s)
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Quick Review of Linear Algebra

Symmetric matrix A
That is positive semi-definite:
A=U-U"

Then solutions 4, x to equation A-x =41 x:

Eigenvectors x; ordered by the magnitude of their
corresponding eigenvalues A; (A < A, ... < 4,))

x; are orthonormal (orthogonal and unit length)

x; form a coordinate system (basis)

If A is positive-semidefinite: A; = 0 (and they always exist)
Eigen Decomposition theorem: Can rewrite matrix
A in terms of its eigenvectors and eigenvalues: A =

T
iXi A X

1/26/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Modularity Optimization

1

Rewrite: Q(G,s) = ESTBS in terms of its
eigenvectors and eigenvalues:
N | n n
2
=% z xiAixi |s = z sTx;dix] s = E(STXL-) A;
_i:l | =1 =1

So, if there would be no other constraintson s
then to maximize Q, we make s = x,,

Why? Because 4,, = 4,1 = -+ X,
Remember s has fixed length!
Assigns all weight in the sum to 4,, (largest eigenvalue) | £:S
All other sT x; terms are zero because of orthonormality X1
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Finding the vectors

Let’s consider only the first term in the summation
(because 4,, is the largest):

max Q(G,s) = ’{‘zl(sTxi)z/li = (STxn)z/ln

Let’s maximize: Z}‘zl Sj * Xpj Where s;e{-1,+1}
To do this, we set:

o 41 if x,; = 0 (j—th coordinate of x,, > 0)
] |-1 if x,; <0 (j—th coordinate of x,, < 0)

Continue the bisection hierarchically
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Summary: Modularity Optimization

Fast Modularity Optimization Algorithm:
Find leading eigenvector x,, of modularity matrix B
Divide the nodes by the signhs of the elements of x,,

Repeat hierarchically until:

If a proposed split does not cause modularity to increase,
declare community indivisible and do not split it

If all communities are indivisible, stop
How to find x,,? Power method!
(t+1)
Vv

Bv
Start with random v(9, repeat : =

|Bv®|

When converged (vt = v(t*?)), set x = vit/
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Summary: Modularity

Girvan-Newman:
Based on the “strength of weak ties”

Remove edge of highest betweenness
Modularity:

Overall quality of the partitioning of a graph

Use to determine the number of communities
Fast modularity optimization:

Transform the modularity optimization to a
eigenvalue problem
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