Network Models

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

- Erdös-Renyi Random Graph Model
- The Small-World Model
- The Configuration Model

Erdös-Renyi Random Graph Model

Simplest Model of Graphs

- Erdös-Renyi Random Graphs [Erdös-Renyi, '60]
 Two variants:
 - G_{n,p}: undirected graph on n nodes and each edge (u,v) appears i.i.d. with probability p
 - $G_{n,m}$: undirected graph with *n* nodes, and *m* uniformly at random picked edges

What kinds of networks does such model produce?

Random Graph Model

n and p do not uniquely determine the graph!

The graph is a result of a random process

 We can have many different realizations given the same *n* and *p*

Random Graph Model: Edges

- How likely is a graph on E edges?
- P(E): the probability that a given G_{np} generates a graph on exactly E edges:

$$P(E) = \begin{pmatrix} E_{\max} \\ E \end{pmatrix} p^{E} (1-p)^{E_{\max}-E}$$

where $E_{max} = n(n-1)/2$ is the maximum possible number of edges in an undirected graph of *n* nodes

Normal p.d.f

Degree distribution:P(k)Path length:hClustering coefficient:C

What are values of these properties for *G_{np}*?

Node Degrees in a Random Graph

What is expected degree of a node?

- Let X_v be a rnd. var. measuring the degree of node v
- We want to know: $E[X_v] = \sum_{i=0}^{n-1} j P(X_v = j)$
 - For the calculation we will need: Linearity of expectation
 - For any random variables $Y_1, Y_2, ..., Y_k$
 - If $Y = Y_1 + Y_2 + ... Y_k$, then $E[Y] = \sum_i E[Y_i]$

An easier way:

- Decompose X_v to $X_v = X_{v,1} + X_{v,2} + ... + X_{v,n-1}$
 - where X_{v,u} is a {0,1}-random variable which tells if edge (v,u) exists or not

$$E[X_{v}] = \mathop{a}\limits^{n-1}_{u=1} E[X_{vu}] = (n-1)p$$

How to think about this?

- Prob. of node *u* linking to node *v* is *p*
- *u* can link (flips a coin) to all other (*n*-1) nodes
- Thus, the expected degree of node u is: p(n-1)

Degree Distribution

Fact: Degree distribution of G_{np} is <u>Binomial</u>.
Let P(k) denote a fraction of nodes with degree k:

Mean, variance of a binomial distribution

$$\overline{k} = p(n-1)$$

$$S^2 = p(1 - p)(n - 1)$$

By the law of large numbers, as the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of k.

1/17/2017

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Clustering Coefficient of G_{np}

• Remember:
$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

Where e_i is the number of edges between i's neighbors

• Edges in G_{np} appear i.i.d. with prob. p

So:
$$e_i = p \frac{k_i(k_i - 1)}{2}$$

Each pair is connected
with prob. p
Number of distinct pairs of
neighbors of node i of degree k_i
Then: $C_i = \frac{p \cdot k_i(k_i - 1)}{k_i(k_i - 1)} = p = \frac{\overline{k}}{n-1} \approx \frac{\overline{k}}{n}$

Clustering coefficient of a random graph is small. For a fixed avg. degree (that is p=1/n), C decreases with the graph size n.

Network Properties of G_{np}

Degree distribution:

Clustering coefficient:

$$P(k) = \binom{n-1}{k} p^{k} (1-p)^{n-1-k}$$
$$C = p = \overline{k}/n$$

Path length:

Def: Random k-Regular Graphs

- We need to define two concepts
- 1) Define: Random k-Regular graph
 - Assume each node has k spokes (half-edges)
 - Randomly pair them up!
- 2) Define: Expansion
 - Graph G(V, E) has expansion α:
 if ∀ S ⊆ V: #edges leaving S
 - $\geq \alpha \cdot \min(S/, V \setminus S/)$
 - Or equivalently:

$$\alpha = \min_{S \subseteq V} \frac{\# edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$$

Def: Random k-Regular Graphs

- To prove the diameter of a G_{np} we define few concepts
 Define: Random k-Regular graph
 - Assume each node has k spokes (half-edges)
 - k=1:

Graph is a set of cycles

Graph is a set of pairs

Arbitrarily complicated graphs

• k=2:

Expansion: Intuition

$\alpha = \min_{S \subseteq V} \frac{\# edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$

(A big) graph with "good" expansion

Expansion: Measures Robustness

 $\alpha = \min_{S \subseteq V} \frac{\#edges \ leaving \ S}{\min(| \ S |, |V \setminus S |)}$

- Expansion is measure of robustness:
 - To disconnect l nodes, we need to cut $\geq \alpha \cdot l$ edges
- Low expansion:

High expansion:

- Social networks:
 - "Communities"

Expansion: k-Regular Graphs

- k-regular graph (every node has degree k):
 - Expansion is at most k (when S is a single node)
- Is there a graph on *n* nodes $(n \rightarrow \infty)$, of fixed max deg. *k*, so that expansion α remains const?

Examples:

- **n×n grid:** $k=4: \alpha = 2n/(n^2/4) \rightarrow 0$ (S=n/2 × n/2 square in the center)
- Complete binary tree: $\alpha \rightarrow 0$ for /S/=(n/2)-1

Make this into 6x6 grid!

#edges leaving S

 $\min(|S|, |V \setminus S|)$

 $\alpha = \min$

Fact: For a random 3-regular graph on n nodes, there is some const α (α >0, independent. of n) such that w.h.p. the expansion of the graph is ≥ α (In fact, α=d/2 as d→∞)

Diameter of 3-Regular Rnd. Graph

- Fact: In a graph on *n* nodes with expansion *α*, for all pairs of nodes *s* and *t* there is a path of O((log n) / α) edges connecting them.
 Proof:
 - Proof strategy:
 - We want to show that from any node s there is a path of length O((log n)/α) to any other node t
 - Let S_j be a set of all nodes found within j steps of BFS from s.

How does S_i increase as a function of j?

Diameter of 3-Regular Rnd. Graph

Proof (continued):

Let S_j be a set of all nodes found within j steps of BFS from s.

Expansion

We want to relate S_i and S_{i+1}

 $\left|S_{j+1}\right| \geq \left|S_{j}\right| + \frac{\alpha \left|S_{j}\right|}{I_{r}} =$

 $\left|S_{j+1}\right| \ge \left|S_{j}\right| \left(1 + \frac{\alpha}{k}\right) = S_{0} \left(1 + \frac{\alpha}{k}\right)^{j+1}$

At most k edges

"collide" at a node

where $S_0 = I$

Diameter of 3-Regular Rnd. Graph

Proof (continued):

- In how many steps of BFS do we reach >n/2 nodes?
- Need j so that: $S_j = \left(1 + \frac{\alpha}{k}\right)^j \ge \frac{n}{2}$

• Let's set:
$$j = \frac{k \log_2 n}{\alpha}$$

Then:

$$\left(1+\frac{\alpha}{k}\right)^{\frac{k\log_2 n}{\alpha}} \ge 2^{\log_2 n} = n > \frac{n}{2}$$

In 2k/α·log n steps /S_j/ grows to Θ(n).
 So, the diameter of G is O(log(n)/ α)

Claim:
$$\left(1 + \frac{\alpha}{k}\right)^{\frac{k \log_2 n}{\alpha}} \ge 2^{\log_2 n}$$

 $e = \lim_{x \to \infty} \left(1 + \frac{1}{r} \right)^{x}$

Remember n > 0, $\alpha \le k$ then: if $\alpha = k : (1+1)^{\frac{1}{1}\log_2 n} = 2^{\log_2 n}$ if $\alpha \to 0$ then $\frac{k}{\alpha} = x \to \infty$: and $\left(1 + \frac{1}{x}\right)^{x\log_2 n} = e^{\log_2 n} > 2^{\log_2 n}$

Network Properties of G_{np}

Degree distribution:

Clustering coefficient:

$P(k) = \binom{n-1}{k} p^{k} (1-p)^{n-1-k}$

$$C=p=k/n$$

Path length:

 $O(\log n)$

Paul Erdös

G_{np} is so cool! Let's also look at its evolution

"Evolution" of a Random Graph

• Graph structure of G_{np} as p changes:

Emergence of a Giant Component: avg. degree k=2E/n or p=k/(n-1)

- $k=1-\varepsilon$: all components are of size $\Omega(\log n)$
- $k=1+\varepsilon$: 1 component of size $\Omega(n)$, others have size $\Omega(\log n)$

G_{np} Simulation Experiment

Fraction of nodes in the largest component

•
$$G_{np}$$
, *n*=100,000, *k*=*p*(*n*-1) = 0.5 ... 3

Back to MSN vs. G_{np}

Real Networks vs. G_{np}

Are real networks like random graphs?

- Average path length: ③
- Giant connected component: ^(C)
- Clustering Coefficient: S

Problems with the random network model:

- Degreed distribution differs from that of real networks
- Giant component in most real networks does NOT emerge through a phase transition
- No "local" structure clustering coefficient is too low

Most important: Are real networks random?

The answer is simply: NO!

Real Networks vs. G_{np}

If G_{np} is wrong, why did we spend time on it?

- It is the reference model for the rest of the class
- It will help us calculate many quantities, that can then be compared to the real data
- It will help us understand to what degree is a particular property the result of some random process

So, while G_{np} is WRONG, it will turn out to be extremly USEFUL!

The Small-World Model

Can we have high clustering while also having short paths?

Six Degrees of Kevin Bacon

Origins of a small-world idea:The Bacon number:

- Create a network of Hollywood actors
- Connect two actors if they co-appeared in the movie
- Bacon number: number of steps to Kevin Bacon
- As of Dec 2007, the highest (finite) Bacon number reported is 8
- Only approx. 12% of all actors cannot be linked to Bacon

Elvis Presley has a Bacon number of 2.

Find out your Erdos number: http://www.ams.org/mathscinet/collaborationDistance.html

The Small-World Experiment

- What is the typical shortest path length between any two people?
 - Experiment on the global friendship network
 - Can't measure, need to probe explicitly
- Small-world experiment [Milgram '67]
 - Picked 300 people in Omaha, Nebraska and Wichita, Kansas
 - Ask them to get a letter to a stock-broker in Boston by passing it through friends
- How many steps did it take?

The Small-World Experiment

64 chains completed:

(i.e., 64 letters reached the target)

It took 6.2 steps on the average, thus
 "6 degrees of separation"

Further observations:

- People who owned stock had shorter paths to the stockbroker than random people: 5.4 vs. 6.7
- People from the Boston area have even closer paths: 4.4

Milgram: Further Observations

- Boston vs. occupation networks:Criticism:
 - Funneling:
 - 31 of 64 chains passed through 1 of 3 people as their final step → Not all links/nodes are equal
 - Starting points and the target were non-random
 - There are not many samples (only 64)
 - People refused to participate (25% for Milgram)
 - Not all searches finished (only 64 out of 300)
 - Some sort of social search: People in the experiment follow some strategy instead of forwarding the letter to everyone. They are not finding the shortest path!
 - People might have used extra information resources

Two Questions

(Today) What is the structure of a social network?

<u>(offline)</u> What kind of mechanisms do people use to route and find the target?

6-Degrees: Should We Be Surprised?

- Assume each human is connected to 100 other people Then:
 - Step 1: reach 100 people
 - Step 2: reach 100*100 = 10,000 people
 - Step 3: reach 100*100*100 = 1,000,000 people
 - Step 4: reach 100*100*100*100 = 100M people
 - In 5 steps we can reach 10 billion people
- What's wrong here?
 - 92% of new FB friendships are to a friend-of-a-friend [Backstom-Leskovec '11]

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Clustering Implies Edge Locality

 MSN network has 7 orders of magnitude larger clustering than the corresponding G_{np}!
 Other examples:

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree $\overline{k} = 61$ Electrical power grid: N = 4,941 nodes, $\overline{k} = 2.67$ Network of neurons: N = 282 nodes, $\overline{k} = 14$

Network	\mathbf{h}_{actual}	h_{random}	C_{actual}	C _{random}
Film actors	3.65	2.99	0.79	0.00027
Power Grid	18.70	12.40	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

- h ... Average shortest path length
- C ... Average clustering coefficient
- "actual" ... real network
- "random" ... random graph with same avg. degree

The "Controversy"

Consequence of expansion:

Short paths: O(log n)

- This is "best" we can do if we have a constant degree
- But clustering is low!
- But networks have "local" structure:
 - Triadic closure:

Friend of a friend is my friend

 High clustering but diameter is also high

How can we have both?

Low diameter Low clustering coefficient

High clustering coefficient High diameter

Small-World: How?

- Could a network with high clustering be at the same time a small world?
 - How can we at the same time have high clustering and small diameter?

- Clustering implies edge "locality"
- Randomness enables "shortcuts"

[Watts-Strogatz, '98]

Solution: The Small-World Model

Small-world Model [Watts-Strogatz '98] Two components to the model:

- (1) Start with a low-dimensional regular lattice
 - (In our case we using a ring as a lattice)
 - Has high clustering coefficient
- Now introduce randomness ("shortcuts")

(2) Rewire:

- Add/remove edges to create shortcuts to join remote parts of the lattice
- For each edge with prob. p move the other end to a random node

[Watts-Strogatz, '98]

The Small-World Model

Rewiring allows us to "interpolate" between a regular lattice and a random graph

The Small-World Model

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Diameter of the Watts-Strogatz

Alternative formulation of the model:

- Start with a square grid
- Each node has 1 random long-range edge
 - Each node has 1 spoke. Then randomly connect them.

$$C_i = \frac{2 \times e_i}{k_i (k_i - 1)} = \frac{2 \times 12}{9 \times 8} \ ^3 \ 0.33$$

There are already 12 triangles in the grid and the long-range edge can only close more.

What's the diameter? It is O(log(n))Why?

Diameter of the Watts-Strogatz

Proof:

- Consider a graph where we contract 2x2 subgraphs into supernodes
- Now we have 4 edges sticking out of each supernode
 - 4-regular random graph!
- From Thm. we have short paths between super nodes
- We can turn this into a path in a real graph by adding at most 2 steps per long range edge (by having to traverse internal nodes)
- $\Rightarrow \text{Diameter of the model is} \\ O(2 \log n)$

4-regular random graph

Small-World: Summary

- Could a network with high clustering be at the same time a small world?
 - Yes! You don't need more than a few random links
- The Watts Strogatz Model:
 - Provides insight on the interplay between clustering and the small-world
 - Captures the structure of many realistic networks
 - Accounts for the high clustering of real networks
 - Does not lead to the correct degree distribution
 - Does not enable navigation (offline lecture)

How to Navigate a Network?

• (offline) What mechanisms do people use to navigate networks and find the target?

The Configuration Model

Intermezzo: Configuration Model

Goal: Generate a random graph with a given degree sequence k₁, k₂, ... k_N
 Configuration model:

Useful as a "null" model of networks

We can compare the real network G and a "random" G' which has the same degree sequence as G