
Linked Lists

1

Linked Lists

• Dynamic storage allocation is especially useful for

building lists, trees, graphs, and other linked data

structures.

• A linked list consists of a chain of structures (called

nodes), with each node containing a pointer to the next

node in the chain:

• The last node in the list contains a null pointer.

2

Linked Lists

• A linked list is more flexible than an array: we can easily

insert and delete nodes in a linked list, allowing the list to

grow and shrink as needed.

• On the other hand, we lose the “random access”

capability of an array:

− Any element of an array can be accessed in the same

amount of time.

− Accessing a node in a linked list is fast if the node is close

to the beginning of the list, slow if it’s near the end.

3

Declaring a Node Type

• To set up a linked list, we’ll need a structure that

represents a single node.

• A node structure will contain data (an integer in this

example) plus a pointer to the next node in the list:

struct node {

int value; /* data stored in the node */

struct node *next; /* pointer to the next node */

};

• node must be a tag, not a typedef name, or there

would be no way to declare the type of next.

4

Declaring a Node Type

• Next, we’ll need a variable that always points to the first

node in the list:

struct node *first = NULL;

• Setting first to NULL indicates that the list is initially

empty.

5

Creating a Node

• As we construct a linked list, we’ll create nodes one by

one, adding each to the list.

• Steps involved in creating a node:

1. Allocate memory for the node.

2. Store data in the node.

3. Insert the node into the list.

• We’ll concentrate on the first two steps for now.

6

Creating a Node

• When we create a node, we’ll need a variable that can

point to the node temporarily:

struct node *new_node;

• We’ll use malloc to allocate memory for the new node,

saving the return value in new_node:

new_node = malloc(sizeof(struct node));

• new_node now points to a block of memory just large

enough to hold a node structure:

7

Creating a Node

• Next, we’ll store data in the value member of the new

node:

(*new_node).value = 10;

• The resulting picture:

• The parentheses around *new_node are mandatory

because the . operator would otherwise take precedence

over the * operator.

8

The -> Operator

• Accessing a member of a structure using a pointer is so

common that C provides a special operator for this

purpose.

• This operator, known as right arrow selection, is a
minus sign followed by >.

• Using the -> operator, we can write

new_node->value = 10;

instead of

(*new_node).value = 10;

9

The -> Operator

• The -> operator produces an lvalue, so we can use it

wherever an ordinary variable would be allowed.

• A scanf example:

scanf("%d", &new_node->value);

• The & operator is still required, even though new_node is

a pointer.

10

Inserting a Node at the

Beginning of a Linked List

• One of the advantages of a linked list is that nodes

can be added at any point in the list.

• However, the beginning of a list is the easiest place

to insert a node.

• Suppose that new_node is pointing to the node to be

inserted, and first is pointing to the first node in the

linked list.

11

Inserting a Node at the

Beginning of a Linked List

• It takes two statements to insert the node into the list.

• The first step is to modify the new node’s next

member to point to the node that was previously at

the beginning of the list:

new_node->next = first;

• The second step is to make first point to the new

node:

first = new_node;

• These statements work even if the list is empty.

12

Inserting a Node at the

Beginning of a Linked List

• Let’s trace the process of inserting two nodes into an

empty list.

• We’ll insert a node containing the number 10 first,

followed by a node containing 20.

13

Inserting a Node at the

Beginning of a Linked List

first = NULL;

new_node =

malloc(sizeof(struct node));

new_node->value = 10;

14

Inserting a Node at the

Beginning of a Linked List

new_node->next = first;

first = new_node;

new_node =

malloc(sizeof(struct node));

15

Inserting a Node at the

Beginning of a Linked List

new_node->value = 20;

new_node->next = first;

first = new_node;

16

Inserting a Node at the

Beginning of a Linked List

• A function that inserts a node containing n into a

linked list, which pointed to by list:

struct node *add_to_list(struct node *list, int n)

{
struct node *new_node;

new_node = malloc(sizeof(struct node));

if (new_node == NULL) {

printf("Error: malloc failed in add_to_list\n");

exit(EXIT_FAILURE);
}

new_node->value = n;

new_node->next = list;

return new_node;
}

17

Inserting a Node at the

Beginning of a Linked List

• Note that add_to_list returns a pointer to the

newly created node (now at the beginning of the list).

• When we call add_to_list, we’ll need to store its

return value into first:

first = add_to_list(first, 10);

first = add_to_list(first, 20);

• Getting add_to_list to update first directly,

rather than return a new value for first, turns out to

be tricky.

18

Inserting a Node at the

Beginning of a Linked List

• A function that uses add_to_list to create a

linked list containing numbers entered by the user:
struct node *read_numbers(void)

{
struct node *first = NULL;

int n;

printf("Enter a series of integers (0 to terminate): ");

for (;;) {

scanf("%d", &n);

if (n == 0)

return first;

first = add_to_list(first, n);
}

}

• The numbers will be in reverse order within the list.

19

Searching a Linked List

• Although a while loop can be used to search a list, the

for statement is often superior.

• A loop that visits the nodes in a linked list, using a pointer
variable p to keep track of the “current” node:

for (p = first; p != NULL; p = p->next)

…

• A loop of this form can be used in a function that searches
a list for an integer n.

20

Searching a Linked List

• If it finds n, the function will return a pointer to the

node containing n; otherwise, it will return a null

pointer.

• An initial version of the function:

struct node *search_list(struct node *list, int n)

{
struct node *p;

for (p = list; p != NULL; p = p->next)

if (p->value == n)

return p;

return NULL;
}

21

Searching a Linked List

• There are many other ways to write search_list.

• One alternative is to eliminate the p variable, instead

using list itself to keep track of the current node:

struct node *search_list(struct node *list, int n)

{
for (; list != NULL; list = list->next)

if (list->value == n)

return list;

return NULL;
}

• Since list is a copy of the original list pointer,

there’s no harm in changing it within the function.

22

Searching a Linked List

• Another alternative:

struct node *search_list(struct node *list, int n)

{
for (; list != NULL && list->value != n;

list = list->next)
;

return list;
}

• Since list is NULL if we reach the end of the list,

returning list is correct even if we don’t find n.

23

Searching a Linked List

• This version of search_list might be a bit clearer if

we used a while statement:

struct node *search_list(struct node *list, int n)

{
while (list != NULL && list->value != n)

list = list->next;

return list;
}

24

Deleting a Node from a Linked List

• A big advantage of storing data in a linked list is that we
can easily delete nodes.

• Deleting a node involves three steps:

1. Locate the node to be deleted.

2. Alter the previous node so that it “bypasses” the deleted

node.

3. Call free to reclaim the space occupied by the deleted

node.

• Step 1 is harder than it looks, because step 2 requires
changing the previous node.

• There are various solutions to this problem.

25

Deleting a Node from a Linked List

• The “trailing pointer” technique involves keeping a pointer
to the previous node (prev) as well as a pointer to the
current node (cur).

• Assume that list points to the list to be searched and n
is the integer to be deleted.

• A loop that implements step 1:

for (cur = list, prev = NULL;

cur != NULL && cur->value != n;

prev = cur, cur = cur->next)
;

• When the loop terminates, cur points to the node to be
deleted and prev points to the previous node.

26

Deleting a Node from a Linked List

• Assume that list has the following appearance and n is

20:

• After cur = list, prev = NULL has been executed:

27

Deleting a Node from a Linked List

• The test cur != NULL && cur->value != n is true,

since cur is pointing to a node and the node doesn’t

contain 20.

• After prev = cur, cur = cur->next has been

executed:

28

Deleting a Node from a Linked List

• The test cur != NULL && cur->value != n is again

true, so prev = cur, cur = cur->next is executed

once more:

• Since cur now points to the node containing 20, the

condition cur->value != n is false and the loop

terminates.

29

Deleting a Node from a Linked List

• Next, we’ll perform the bypass required by step 2.

• The statement

prev->next = cur->next;

makes the pointer in the previous node point to the node

after the current node:

30

Deleting a Node from a Linked List

• Step 3 is to release the memory occupied by the current

node:

free(cur);

31

Deleting a Node from a Linked List

• The delete_from_list function uses the strategy just

outlined.

• When given a list and an integer n, the function deletes

the first node containing n.

• If no node contains n, delete_from_list does nothing.

• In either case, the function returns a pointer to the list.

• Deleting the first node in the list is a special case that

requires a different bypass step.

32

Deleting a Node from a Linked List

struct node *delete_from_list(struct node *list, int n)

{
struct node *cur, *prev;

for (cur = list, prev = NULL;

cur != NULL && cur->value != n;

prev = cur, cur = cur->next)
;

if (cur == NULL)

return list; /* n was not found */

if (prev == NULL)

list = list->next; /* n is in the first node */

else

prev->next = cur->next; /* n is in some other node */

free(cur);

return list;
}

33

Ordered Lists

• When the nodes of a list are kept in order—sorted by the

data stored inside the nodes—we say that the list is

ordered.

• Inserting a node into an ordered list is more difficult,

because the node won’t always be put at the beginning of

the list.

• However, searching is faster: we can stop looking after

reaching the point at which the desired node would have

been located.

34

